
PHYSICAL REVIEW C 82, 045804 (2010)

Spin and spin-isospin instabilities in asymmetric nuclear matter at zero
and finite temperatures using Skyrme functionals
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Self-consistent mean-field methods based on phenomenological Skyrme effective interactions are known
to exhibit spurious spin and spin-isospin instabilities both at zero and finite temperatures when applied to
homogeneous nuclear matter at the densities encountered in neutron stars and in supernova cores. The origin
of these instabilities is revisited in the framework of the nuclear energy density functional theory, and a simple
prescription is proposed to remove them. The stability of several Skyrme parametrizations is reexamined.
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I. INTRODUCTION

The self-consistent mean-field method with Skyrme
effective interactions has been very successful in describing
the structure and the dynamics of medium-mass and heavy
nuclei [1]. These interactions have been also widely applied
to the description of extreme astrophysical environments
such as neutron stars and supernova cores. Actually very
soon after Skyrme [2] introduced his eponymous effective
interaction, Cameron [3] applied it to calculate the structure of
neutron stars. Assuming that neutron stars were made only of
neutrons, he found that their maximum mass was significantly
higher than the Chandrasekhar mass limit. His work thus
brought support to the scenario of neutron star formation
from the catastrophic gravitational collapse of massive stars
in supernova explosions, as proposed much earlier by Baade
and Zwicky [4]. The interior of neutron stars is highly neutron
rich but contains also a non-negligible amount of protons,
leptons, and possibly other particles. However, microscopic
calculations in uniform infinite nuclear matter using bare
nucleon-nucleon potentials have been usually restricted to
symmetric nuclear matter (SNM) and pure neutron matter
(NeuM). Even though effective interactions are phenomeno-
logical, they can provide a convenient interpolation of realistic
calculations to determine the equation of state of neutron star
cores. Mean-field calculations can be easily extended to finite
temperatures and can thus be also used to describe the hot
nuclear matter found in supernova cores and protoneutron
stars. Moreover, the mean-field method allows a consistent
and tractable treatment of both homogeneous matter and
inhomogeneous matter (e.g., neutron star crusts [5]) with a
reduced computational cost. This opens the way to a unified
description of all regions of neutron stars and supernova
cores [6].

Nevertheless, the application of these effective forces to
nuclear matter at high densities has been limited by the
occurrence of spurious instabilities [7,8]. In particular, Skyrme
forces predict a spontaneous transition to a spin-polarized
phase when the density exceeds a critical threshold which
depends on the isospin asymmetry [9–13]. Besides, it is found
that for some forces, the energy density of the spin-polarized
phase decreases with increasing density. In this case, the phase
transition is accompanied by a catastrophic collapse [14],

which is contradicted by the existence of neutron stars (note,
however, that observations alone do not exclude the possibility
of a ferromagnetic core inside neutron stars; see, for instance,
Refs. [15,16]). Moreover, the critical density predicted within
the Skyrme formalism generally decreases with temperature
due to an anomalous behavior of the entropy, which is
larger in the spin-ordered phase than in the unpolarized
phase [17,18]. This instability can strongly affect the neutrino
propagation in hot dense nuclear matter [12,19,20] which is
believed to play an important role in the supernova explosion
mechanism and in the evolution of protoneutron stars [21].
However, no such spin-polarized phase transition is found
by microscopic calculations using realistic nucleon-nucleon
potentials. Indeed, several calculations based on different
methods, such as the lowest-order constrained variational
method [22–26], the Brueckner-Hartree-Fock method [27–29],
the auxiliary field diffusion Monte Carlo method [30] and the
Dirac-Brueckner-Hartree-Fock method [31], show that nuclear
matter remains unpolarized well above the nuclear saturation
density ρ0 both at zero and finite temperatures.

The prediction of spin-ordering in nuclear matter is one
of the main deficiencies of the mean-field method with
effective forces. Different extensions of the standard Skyrme
force have been recently proposed in order to prevent these
phase transitions at zero temperature [12,13]. In this paper,
the origin of the spin and spin-isospin instabilities is revisited
in the more general framework of the nuclear energy density
functional (EDF) theory (see, for instance, Ref. [32] for a
review) and a simpler prescription is proposed to ensure
stability of dense nuclear matter for any degree of spin and
spin-isospin polarizations and for any temperature. The paper
is organized as follows. The Skyrme functionals that we
consider here are defined in Sec. II. Section III is devoted
to the discussion about the stability of nuclear matter. Several
Skyrme functionals are reexamined in Sec. IV.

II. SKYRME FUNCTIONALS

The nuclear EDFs that we consider here are of the form

E = Ekin + ECoul + ESky, (1)
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where Ekin is the kinetic energy, ECoul is the Coulomb energy,
and ESky is a functional of the local densities and currents (q =
n, p for neutron, proton, respectively): the density ρq , the cur-
rent density j q , the kinetic density τq , the spin density sq , the
spin kinetic density T q , and the spin-current tensor Jq,µν (see,
for instance, Ref. [1] for precise definitions). It is convenient to
introduce the isospin index t = 0, 1 for isoscalar and isovec-
tor quantities, respectively. Isoscalar quantities (also written
without any subscript) are sums over neutrons and protons
(e.g., ρ0 = ρ = ρn + ρp), while isovector quantities are dif-
ferences between neutrons and protons (e.g., ρ1 = ρn − ρp).
The Skyrme functional ESky is then given by

ESky =
∫

d3rESky(r), ESky =
∑
t=0,1

(
Eeven

t + Eodd
t

)
, (2a)

Eeven
t = C

ρ
t ρ2

t + C
�ρ
t ρt�ρt + Cτ

t ρt τt

+C∇J
t ρt∇ · J t + CJ

t

∑
µ,ν

Jt,µνJt,µν, (2b)

Eodd
t = Cs

t s
2
t + C�s

t st · �st + CT
t st · T t + C

j
t j 2

t

+C
∇j
t st · ∇ × j t . (2c)

The spin current vector is defined by Jtκ = ∑
µ,ν εκµνJt,µν ,

where εκµν is the Levi-Civita tensor. The so-called time-even
part Eeven

t (time-odd part Eodd
t ) contains only even (odd)

densities and currents with respect to time reversal.
The coupling “constants” C

ρ
t and Cs

t generally depend on
the isoscalar density ρ = ρn + ρp as follows:

C
ρ
t = a

ρ
t + b

ρ
t ρα, (3a)

Cs
t = as

t + bs
t ρ

α. (3b)

Moreover, local gauge invariance [33,34] imposes the follow-
ing relations:

C
j
t = −Cτ

t , CJ
t = −CT

t , C
∇j
t = C∇J

t . (4)

Historically the type of functionals given by Eqs. (2a)–(2c)
were obtained from the Hartree-Fock approximation using
effective zero-range interactions of the Skyrme type [1,6]

vi,j = t0(1 + x0Pσ )δ(r ij )

+ 1

2
t1(1 + x1Pσ )

1

h̄2

[
p2

ij δ(r ij ) + δ(r ij )p2
ij

]
+ t2(1 + x2Pσ )

1

h̄2 pij · δ(r ij ) pij

+ 1

6
t3(1 + x3Pσ )ρ(r)αδ(r ij )

+ i

h̄2 W0(σ̂i + σ̂ j ) · pij × δ(r ij ) pij , (5)

where r ij = r i − rj , r = (r i + rj )/2, pij = −ih̄(∇i − ∇j )/2
is the relative momentum, and Pσ is the two-body spin-
exchange operator. The relations between the coupling con-
stants in Eqs. (2b) and (2c) and the parameters of the effective
force in Eq. (5) can be found, for instance, in Appendix A of
Ref. [1].

Kutschera and Wójcik [14] pointed out that for some
Skyrme forces not only is the ground state of NeuM polarized,
but also the energy density of polarized NeuM decreases

with increasing density. However, such a catastrophic ferro-
magnetic collapse is ruled out by neutron star observations.
The origin of this singular behavior can be traced back to
the parameters t2 and x2 of the Skyrme force. In particular,
the authors of Ref. [14] found that in order to prevent a
ferromagnetic collapse of NeuM, the parameters of Skyrme
forces must satisfy the following inequality:

t2(1 + x2) � 0. (6)

This constraint was taken into account to construct the Saclay-
Lyon Skyrme parametrizations [35], which were fitted with
the parameter x2 = −1. These forces, which were specifically
developed for astrophysics, have been widely used in neutron
star studies. However, it has been found that these forces
predict various transitions to spin-ordered phases in nuclear
matter [10,12,13,17,18] even though Eq. (6) was enforced.
Actually, this is a general feature of standard Skyrme forces
[7,8]. We will now reexamine this issue in the framework of
the nuclear EDF theory.

III. STABILITY OF NUCLEAR MATTER

Let us consider the case of static uniform (possibly
polarized) infinite isospin asymmetric nuclear matter. The
Skyrme energy density, Eq. (2a), thus reduces to

ESky =
∑
t=0,1

(
C

ρ
t ρ2

t + Cτ
t ρt τt + Cs

t s
2
t + CT

t st · T t
)
. (7)

Let us choose the spin-quantization axis so that the only
nonvanishing components of the spin density sq and the spin
kinetic density T q are along the z axis. For brevity we will
simply write sq and Tq instead of sqz and Tqz. In the following
we will neglect the anisotropies induced by the polarization
of matter [36]. Introducing the density ρqσ of nucleons with
spins σ =↑,↓ and the kinetic density of polarized nucleons
defined by

τqσ = 3
5 (6π2)2/3ρ

5/3
qσ , (8)

the spin density and the spin kinetic density can now be
expressed as

sq = ρq↑ − ρq↓, (9)

Tq = τq↑ − τq↓. (10)

In fully polarized NeuM with all spins up (ρ = ρn↑), Eq. (7)
reduces to

Epol
NeuM =

[
h̄2

2Mn

+ (
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ

]
τn↑

+ (
C

ρ

0 + C
ρ

1 + Cs
0 + Cs

1

)
ρ2. (11)

If the energy density is calculated from a Skyrme force in the
Hartree-Fock approximation, we find

C
ρ

0 + C
ρ

1 + Cs
0 + Cs

1 = 0, (12)

Cτ
0 + Cτ

1 + CT
0 + CT

1 = 1
2 t2(1 + x2), (13)

so that Eq. (11) reduces to

Epol
NeuM =

[
h̄2

2Mn

+ 1

2
t2(1 + x2)ρ

]
τn↑. (14)
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Eq. (12) is a consequence of the Pauli exclusion principle
and the zero range of the Skyrme interaction. Actually as
will be shown elsewhere, Eq. (12) must still be satisfied for
nuclear EDFs that are not obtained from effective forces in
order to prevent self-interactions. The constraint of Kutschera
and Wójcik [14], Eq. (6), can thus be more generally written
as

Cτ
0 + Cτ

1 + CT
0 + CT

1 � 0. (15)

If this inequality is violated, Epol
NeuM decreases with increasing

density, thus leading to a ferromagnetic collapse.
It is instructive to rewrite Eq. (11) as

Epol
NeuM = h̄2

2M∗
n↑

τn↑, (16)

where we have introduced the effective mass of a nucleon in a
spin state σ defined by

h̄2

2M∗
qσ

= ∂E
∂τqσ

= h̄2

2M∗
q

± [
s
(
CT

0 − CT
1

) + 2sqC
T
1

]
, (17)

with +(−) for spin up (spin down), and M∗
q is the usual

effective mass given by

h̄2

2M∗
q

= ∂E
∂τq

= h̄2

2Mq

+ [(
Cτ

0 − Cτ
1

)
ρ + 2ρqC

τ
1

]
. (18)

It can be easily seen that in fully polarized NeuM, the effective
mass reduces to

h̄2

2M∗
n↑

= h̄2

2Mn

+ (
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ

= h̄2

2M∗
n

+ (
CT

0 + CT
1

)
ρ = h̄2

2Mn

+ t2(1 + x2)ρ, (19)

so that Eq. (16) coincides with Eq. (14). Setting x2 = −1 as in
the Saclay-Lyon Skyrme forces [35] therefore implies that the
effective mass of polarized neutrons is equal to the bare mass.

We have seen that the constraint of Ref. [14] is equivalent to
the requirement that the effective mass of polarized neutrons
remains always positive. However, the ground state of NeuM
(and more generally that of isospin asymmetric nuclear matter)
could still be polarized as shown below.

A. Landau stability criterion

The stability of unpolarized homogeneous nuclear matter
with respect to spin and spin-isospin polarizations has been
generally addressed using the Landau Fermi-liquid theory
(see, e.g., Ref. [37]). In this theory, the elementary excitations
of the liquid at low temperatures are described in terms
of quasiparticles which are in one-to-one correspondence
with single-particle states of the noninteracting Fermi gas.
Any small change δñ(k) in the distribution function of
quasiparticles with wave vector k leads to a change δE in
the energy density, which can be expressed (up to second

order) as

δE =
∫

d3k

(2π )3
ε(k)δñ(k)

+ 1

2

∫
d3k

(2π )3

∫
d3k′

(2π )3
v(k, k′)δñ(k)δñ(k′), (20)

where ε(k) is the energy of a quasiparticle with wave vector k
and v(k, k′) is the residual interaction between quasiparticles
with wave vectors k and k′.

In pure NeuM, the residual interaction (neglecting tensor
interaction) can be expressed as

vNeuM(k, k′) = 1

N
[F NeuM(k, k′) + GNeuM(k, k′)σ̂ · σ̂ ′], (21)

where N is the density of states at the Fermi surface given by

N = M∗
nkF

h̄2π2
, (22)

with kF = (3π2ρ)1/3. We have also introduced the Pauli
matrices σ̂ and σ̂ ′ in order to take into account the spin of the
quasiparticles. Small perturbations involve only quasiparticles
at the Fermi surface, i.e., with k = k′ = kF . We can thus
expand each term in the residual interaction in Legendre
polynomials P�(cos θ ), where θ is the angle between k and
k′. For instance,

F NeuM(k, k′) =
+∞∑
�=0

F NeuM
� P�(cos θ ), (23)

where F NeuM
� are dimensionless Landau parameters. Similarly,

we can define Landau parameters GNeuM
� . For the Skyrme

functional the only nonzero Landau parameters are of order
� = 0 and � = 1. The stability of the initial state is ensured if
any change in the energy per particle e ≡ E/ρ is positive. This
condition leads to Landau’s criterion

F NeuM
� > −(2� + 1), (24a)

GNeuM
� > −(2� + 1). (24b)

In particular, the condition on GNeuM
0 guarantees that NeuM

is stable against small fluctuations of the (isoscalar) spin
polarization Iσ = s0/ρ = (ρ↑ − ρ↓). This can be seen by
expanding the energy per particle up to second order in Iσ

e(Iσ ) � e(0) + 1

2

∂2e

∂I 2
σ

∣∣∣∣
Iσ =0

I 2
σ , (25)

with

∂2e

∂I 2
σ

∣∣∣∣
Iσ =0

= h̄2k2
F

3M∗
n

(
1 + GNeuM

0

)
. (26)

The first-order term vanishes because of the requirement that
the unpolarized phase be an equilibrium state.

Using the Skyrme functional, we find

GNeuM
0 = 2N

[
Cs

0 + Cs
1 + k2

F

(
CT

0 + CT
1

)]
. (27)

Now if the Skyrme functional is fitted to a realistic equation
of state of NeuM [13], we find that C

ρ

0 + C
ρ

1 � 0, which
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according to Eq. (12) implies that

Cs
0 + Cs

1 � 0. (28)

Ferromagnetic instabilities are therefore mainly due to the
coupling constants CT

t . In order to fulfill the Landau’s stability
condition GNeuM

0 > −1 at any density, we must have1

CT
0 + CT

1 � 0. (29)

The absence of a ferromagnetic transition in NeuM does
not generally forbid the occurrence of spin-ordered phases in
asymmetric nuclear matter. Let us consider in particular SNM.
The most general form of the residual interaction (neglecting
tensor interaction) can be expressed as

vSNM(k, k′) = 1

N0
[F (k, k′) + F ′(k, k′)τ̂ · τ̂ ′ + G(k, k′)

× σ̂ · σ̂ ′ + G′(k, k′)σ̂ · σ̂ ′τ̂ · τ̂ ′], (30)

where N0 is the density of states at the Fermi surface given by

N0 = 2M∗
s kF0

h̄2π2
, (31)

with kF0 = (3π2ρ/2)1/3, and M∗
s is the isoscalar effective mass

defined by

M

M∗
s

= 1 + 2M

h̄2 Cτ
0 ρ,

2

M
= 1

Mn

+ 1

Mp

. (32)

We have also introduced the Pauli matrices τ̂ , τ̂ ′ in order to
take into account the isospin of the quasiparticles. As before,
we can define dimensionless Landau parameters F�, F ′

�, G�,
and G′

�. The Landau stability conditions are in this case given
by

F� > −(2� + 1), (33a)

F ′
� > −(2� + 1), (33b)

G� > −(2� + 1), (33c)

G′
� > −(2� + 1). (33d)

The Landau parameters F0 and F ′
0 are related to the usual

compression modulus

Kv = 3h̄2k2
F0

M∗
s

(1 + F0), (34)

and symmetry energy

J = h̄2k2
F0

6M∗
s

(1 + F ′
0), (35)

respectively. The conditions on G0 and G′
0 ensure that SNM is

stable against small fluctuations of isoscalar and isovector spin

1This inequality is not strictly required if the coefficients Cs
t are

allowed to depend on the density according to Eqs. (3a) and (3b)
and the term in (bs

0 + bs
1)ρα dominates at high density. However,

for modern Skyrme parametrizations, such a situation does not arise
because 3α < 2.

densities, respectively. These Landau parameters can be ex-
pressed in terms of the spin asymmetry coefficient, defined by

aσ ≡ 1

2

∂2e

∂I 2
σ

∣∣∣∣
Iσ =0

= h̄2k2
F0

6M∗
s

(1 + G0), (36)

and the spin-isospin asymmetry coefficient, defined by

aστ ≡ 1

2

∂2e

∂I 2
στ

∣∣∣∣
Iστ =0

= h̄2k2
F0

6M∗
s

(1 + G′
0), (37)

where Iστ ≡ s1/ρ = (ρn↑ − ρn↓ − ρp↑ + ρp↓)/ρ. Using the
Skyrme functional, the Landau parameters G0 and G′

0 are
given by

G0 = 2N0
[
Cs

0 + CT
0 k2

F0

]
, (38)

G′
0 = 2N0

[
Cs

1 + CT
1 k2

F0

]
. (39)

The stability of SNM at any density thus requires

CT
t � 0. (40)

These two conditions entail Eq. (29). Note that Landau’s
stability conditions allow one of the coefficients Cs

t to be
negative provided their sum remains positive.

Landau’s stability conditions, Eqs. (24b), (33c), and (33d),
guarantee that the unpolarized state is locally stable
(metastable) against small fluctuations of the spin and spin-
isospin polarizations. But this criterion does not necessarily
imply that the unpolarized state is the ground state, i.e., the state
with the lowest energy. In particular, the ground state could
still be polarized with finite values of Iσ and Iστ . Moreover, we
have only considered so far the two limiting cases of SNM and
NeuM. However, the outer core of neutron stars is formed of
isospin asymmetric nuclear matter whose composition varies
with depth. We thus need a more general stability criterion.

B. General stability criterion

Asymmetric nuclear matter is stable with respect to any
degree of spin and spin-isospin polarizations whenever the
energy density Epol of the polarized state is larger than the
energy density Eunpol of the unpolarized state (for a given
density ρ). Using Eqs. (7), (17), and (18), we find

Epol =
∑
q,σ

h̄2

2M∗
qσ

τqσ + Cs
0s

2 + Cs
1(sn − sp)2

+C
ρ

0 ρ2 + C
ρ

1 (ρn − ρp)2, (41)

which for unpolarized matter (i.e., sq = 0, Tq = 0) yields

Eunpol =
∑

q

h̄2

2M∗
q

τq + C
ρ

0 ρ2 + C
ρ

1 (ρn − ρp)2, (42)

with

τq = 3
5 (3π2)2/3ρ

5/3
q . (43)

The difference can thus be expressed as

Epol − Eunpol =
∑

q

h̄2

2M∗
q

(
τ pol
q − τq

) + Cs
0s

2 + Cs
1(sn − sp)2

+CT
0 sT + CT

1 (sn − sp) (Tn − Tp), (44)

045804-4



SPIN AND SPIN-ISOSPIN INSTABILITIES IN . . . PHYSICAL REVIEW C 82, 045804 (2010)

where τ
pol
q = τq↑ + τq↓ is the nucleon kinetic density in the

polarized phase. The absolute stability of the unpolarized
phase can be ensured by requiring each term be separately
positive so that Epol > Eunpol. Now the first term in Eq. (44)
is always positive, since mechanical stability requires M∗

q � 0

and the Pauli exclusion principle implies that τ
pol
q > τq . Let us

also remark that (sn − sp) (Tn − Tp) � 0 because τqσ increases
monotonically with ρqσ . The following constraints

Cs
t � 0, (45a)

and

CT
t � 0, (45b)

therefore guarantee the absence of any spin-ordered phase
transitions in asymmetric nuclear matter. It is readily seen
from Eqs. (27), (38), and (39) that these inequalities enforce
Landau stability conditions, Eq. (24b) in NeuM and Eqs. (33c)
and (33d) in SNM. Since Eqs. (45a) and (45b) ensure the
stability of asymmetric nuclear matter, they obviously prevent
a ferromagnetic collapse of NeuM, as can be seen from Eq. (15)
remembering that Cτ

0 + Cτ
1 � 0 as a consequence of M∗

n � 0.

C. Anomalous behavior of the entropy

We have seen that the stability of nuclear matter requires
that CT

t � 0. However, these coefficients cannot take arbitrary
values. From Eq. (4), large positive values of CT

t translate into
large negative values of CJ

t which, in certain circumstances,
can lead to instabilities in finite nuclei whose consequence is a
major rearrangement of the single-particle spectrum [38]. We
will now show that these coupling constants can be further
constrained by requiring the stability of nuclear matter with
respect to any degree of spin and spin-isospin polarizations at
nonzero temperatures.

It was shown in Refs. [17,18] that not only do Skyrme
forces predict a ferromagnetic transition in NeuM above a
certain critical density, but worse this density decreases with
increasing temperature due to an anomalous behavior of the
entropy. This argument can be easily transposed to asymmetric
nuclear matter as follows. At low temperatures (compared to
nucleon Fermi energies), the difference between the entropy
density Spol of the polarized state and the entropy density
Sunpol of the unpolarized state is approximately given by

Spol − Sunpol =
∑
q,σ

π2T M∗
q ρq

2h̄2k2
Fq

[
M∗

qσ

M∗
q

(
2ρqσ

ρq

)1/3

− 1

]
.

(46)

Now because the polarized phase is more ordered than the
unpolarized phase, its entropy according to Boltzmann’s
definition should thus be lower, i.e., Spol < Sunpol as found
in realistic calculations [23–25,29]. Since this should be true
for any isospin asymmetry, we find from Eq. (46)

∑
σ

M∗
qσ

M∗
q

(
ρqσ

ρq

)1/3

< 22/3. (47)

This condition reduces to that of Ref. [17] in the limiting case
of fully polarized NeuM. Equation (47) can be equivalently
expressed as (q ′ 	= q)

(1 + Iσq)1/3

1 + �Iσq − ϒIσq ′
+ (1 − Iσq)1/3

1 − �Iσq + ϒIσq ′
< 2, (48)

with Iσq = (ρq↑ − ρq↓)/ρq ,

� = (
CT

0 + CT
1

)
ρq

2M∗
q

h̄2 , (49)

ϒ = (
CT

0 − CT
1

)
ρq ′

2M∗
q

h̄2 . (50)

We have found numerically that the inequalities (48) can be
satisfied for any degree of spin and spin-isospin polarizations,
i.e., 0 < |Iσq |, |Iσq ′ | � 1, provided

�1 � � � �2, (51a)

ϒ = 0, (51b)

with �1 � −0.21 and �2 � 0.54. We have also found solu-
tions of Eq. (48) for |ϒ | > ϒc(�) > 0. But it can be seen from
Eq. (50) that such solutions cannot exist for all densities and
must therefore be excluded. Inserting Eq. (49) into Eq. (51a)
using Eq. (18) yields

ρq

[(
CT

0 + CT
1

) − �2
(
Cτ

0 + Cτ
1

)] − �2ρq ′
(
Cτ

0 − Cτ
1

)
� �2

h̄2

2Mq

, (52a)

ρq

[(
CT

0 + CT
1

) − �1
(
Cτ

0 + Cτ
1

)] − �1ρq ′
(
Cτ

0 − Cτ
1

)
� �1

h̄2

2Mq

. (52b)

The terms in ρq ′ always satisfy the above inequalities. This
is a consequence of the positivity of M∗

q for any density and
isospin asymmetry which requires that Cτ

0 + Cτ
1 � 0 and Cτ

0 −
Cτ

1 � 0, as can be seen from Eq. (18). The conditions (52a)
and (52b) can be ensured for any density ρq by imposing that
the associated terms be, respectively, negative and positive,
leading to

�1
(
Cτ

0 + Cτ
1

)
� CT

0 + CT
1 � �2

(
Cτ

0 + Cτ
1

)
. (53)

On the other hand, Eq. (51b) implies

CT
0 = CT

1 . (54)

Combining these inequalities with Eqs. (45b), we arrive at the
following restrictions:

CT
0 = CT

1 , 0 � CT
t � 1

2�2
(
Cτ

0 + Cτ
1

)
. (55)

Equations (55) guarantee that asymmetric nuclear matter
remains unpolarized at finite temperature T , since the free
energy density of the polarized phase, defined by Fpol =
Epol − T Spol, is always higher than the free energy density
Funpol = Eunpol − T Sunpol of the unpolarized phase.

IV. STABILITY OF SKYRME FORCES REVISITED

Conventional Skyrme forces have been shown to predict
various spin and spin-isospin instabilities in nuclear matter
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[7,9,10,13,14,17,18]. We have seen in the previous section
that for a nuclear functional given by Eqs. (2a)–(2c), the
stability of asymmetric nuclear matter at any temperature can
be ensured by imposing Eqs. (45a) and (55) [the constraint
proposed in Ref. [14], Eq. (6), and more generally Eq. (15),
prevents a collapse of polarized NeuM, but does not forbid
a ferromagnetic transition]. While the coefficients Cs

t are
generally positive (at least for not too high densities), standard
Skyrme forces yield negative values of at least one of the
couplings constants CT

t . The origin of the instabilities can
therefore be traced back to the time-odd terms st · T t , which
are related to the time-even terms

∑
µ,ν Jt,µνJt,µν due to

gauge invariance (4). Since the seminal work of Vautherin
and Brink [39], it is commonly taken for granted that the
spin-current tensor (which is usually approximated by the
spin-current vector J q) is small in nuclei, and most Skyrme
parametrizations therefore neglect them. We have tested this
assumption by computing the HFB energies with and without
the J 2 and J 2

q terms (denoted, respectively, by EHFB and E0
HFB)

for all even-even nuclei with Z,N > 8 and Z < 110 lying
between the proton and neutron drip lines. (Note that when
the J 2 and J 2

q terms are included, the associated time-odd
terms in CT

t play a role in the exact treatment of the masses of
odd nuclei, but not in the equal-filling approximation [40],
which we adopt here, as in all our previous papers.) The
differences �M ≡ EHFB − E0

HFB are shown in Fig. 1 for the
Skyrme parametrization BSk17 [41,42], which was originally
fitted with the J 2 and J 2

q terms, and for SkI2 [43] which
was not. The impact of the J 2 and J 2

q terms is quite large,
reaching about 20 MeV for the heaviest nuclei. The impact
of dropping or including the J 2 and J 2

q terms is logically
found to be correlated to the amplitude of the CT

t = −CJ
t

coupling constants, especially CT
0 . For instance, in the case of

the SLy4 [35] interaction (CT
0 = −17.21 MeV fm5), the HFB

energy is affected by no more than 5 MeV, while for SkO [44]
(CT

0 = −220.54 MeV fm5) values up to 30 MeV can be
reached. Adding or removing the J 2 and J 2

q terms a posteriori
without refitting all the parameters of the force can thus lead
to significant errors. However, in all previous studies of spin
and spin-isospin instabilities in nuclear matter [7–14,17,18],
the time-odd terms st · T t were taken into account, whereas
the Skyrme forces were generally fitted without the J 2 and
J 2

q terms. This treatment not only violates gauge symmetry
but also introduces inconsistencies in the residual interaction
hence in the Landau parameters (see the discussion in Sec. III
of Ref. [45] and also in Sec. 5D of Ref. [38]).

We have therefore reexamined the stability of several
Skyrme parametrizations for which the J 2 and J 2

q terms were
not included in the fit: SGII [46], SLy4 [35], SkI1-SkI5 [43],
SkO [44], and LNS [47]. The parametrization SGII [46]
was constructed in order to improve the Landau parameters
G0 and G′

0 and the description of Gamow-Teller resonances
in nuclei. The Skyrme Saclay-Lyon forces and especially
the parametrization SLy4 [35] have been widely used not
only in nuclear physics but also in neutron star studies,
because these forces were constrained to reproduce a realistic
neutron-matter equation of state. The SkI [43] forces were
all constrained (except for SkI1) to reproduce the isotopic

FIG. 1. Differences between the HFB energies estimated with
and without the J 2 terms for two Skyrme forces SkI2 (upper panel)
and BSk17 (lower panel) for all even-even nuclei with Z, N > 8 and
Z < 110 lying between the proton and neutron drip lines.

shifts of the root-mean-square charge radii of neutron-rich
Pb and Ca nuclei. Forces SkI3 and SkI4 were constructed
with nonstandard spin-orbit couplings. For the parametrization
SkI5, the 16O ground-state data were excluded from the fit.
We have also included the parametrization SkO [44] from
the same group. The parametrization LNS [47] was fitted to
Brueckner calculations. The Landau parameters in SNM and in
NeuM calculated at saturation density ρ0, with and without the
terms in CT

t , are shown in Table I. For comparison we have
also indicated the predictions from Brueckner-Hartree-Fock
calculations in SNM [48] and from realistic calculations based
on the renormalization group approach in NeuM [49]. As can
be seen in Table I, setting CT

t = 0 in Eqs. (27), (33c), and (33d)
tends to reduce the discrepancies between the different Skyrme
functionals and generally leads to a better agreement with
realistic calculations, especially for G′

0. In particular, the new
values of G′

0 lie closely inside the empirical range of 1.0 ± 0.1
deduced in Ref. [50] from the analysis of Gamow-Teller
resonances and magnetic-dipole modes in finite nuclei. The
improvement is quite spectacular for the parametrization SkI1.
In the case of LNS, setting CT

0 = 0 actually deteriorates
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TABLE I. Landau parameters G0 and G′
0 in symmetric nuclear

matter and GNeuM
0 in neutron matter (at saturation density) for selected

Skyrme forces which were fitted without the J 2 and J 2
q terms. Values

in parentheses were obtained by setting CT
t = 0. The last line shows

the Landau parameters predicted by microscopic calculations using
realistic interactions: Ref. [48] for symmetric nuclear matter and
Ref. [49] for neutron matter.

G0 G′
0 GNeuM

0

SGII 0.01(0.62) 0.51(0.93) −0.07(1.19)
SLy4 1.11(1.39) −0.13(0.90) 0.11(1.27)
SkI1 −8.74(1.09) 3.17(0.90) −5.57(1.10)
SkI2 −1.18(1.35) 0.77(0.90) −1.08(1.24)
SkI3 0.57(1.90) 0.20(0.85) −0.19(1.35)
SkI4 −2.81(1.77) 1.38(0.88) −2.03(1.40)
SkI5 0.28(1.79) 0.30(0.85) −0.31(1.30)
SkO −4.08(0.48) 1.61(0.98) −3.17(0.97)
LNS 0.83(0.32) 0.14(0.92) 0.59(0.91)
Realistic 0.83 1.22 0.77

the value of the Landau parameter G0, since the latter was
directly fitted to the value obtained from realistic calculations.
Table II shows the critical densities of the spin-ordered phase
transitions according to Landau’s stability criterion. It can be
seen that dropping the terms st · T t eliminates the instabilities
in almost all Skyrme forces. This prescription is also consistent
with Eqs. (55) and therefore prevents an anomalous behavior
of the entropy, thus ensuring the stability of nuclear matter for
any temperatures.

Moreover, setting CT
t = 0 is the only prescription which

guarantees the Landau stability conditions of Eqs. (24b), (33c),
and (33d) at any density both for � = 0 and � = 1. Indeed the
Landau parameters G1, G′

1 in SNM and GNeuM
1 in NeuM are

given by

G1 = −2N0C
T
0 k2

F0, (56)

G′
1 = −2N0C

T
1 k2

F0, (57)

GNeuM
1 = −2Nk2

F

(
CT

0 + CT
1

)
. (58)

TABLE II. Critical densities above which nuclear matter becomes
unstable according to Landau’s criterion for selected Skyrme forces
which were fitted without the J 2 and J 2

q terms. The first two columns
are for symmetric nuclear matter, while the last column is for pure
neutron matter. The densities indicated in parentheses were obtained
by setting CT

t = 0.

ρc(G0) (fm−3) ρc(G′
0) (fm−3) ρc(GNeuM

0 ) (fm−3)

SGII 0.44(∞) 0.80(∞) 0.26(2.07)
SLy4 ∞ (∞) 0.33(∞) 0.59(∞)
SkI1 0.04(0.71) ∞ (∞) 0.05(∞)
SkI2 0.14(∞) ∞ (∞) 0.15(∞)
SkI3 0.91(∞) 0.92(∞) 0.37(∞)
SkI4 0.07(∞) ∞ (∞) 0.09(∞)
SkI5 0.43(∞) 1.36(∞) 0.28(∞)
SkO 0.07(0.52) ∞(2.32) 0.09(0.67)
LNS ∞ (∞) 0.43(∞) 0.62(1.38)

TABLE III. Landau sum rules given by Eqs. (59a) and (59b) for
selected Skyrme forces which were fitted without the J 2 and J 2

q terms.
Values in parentheses were obtained by setting CT

t = 0.

S1 S2

SGII 0.97(0.61) 1.13(−0.51)
SLy4 −0.31(−0.65) 1.52(0.85)
SkI1 −6.71(−0.59) −89.2(0.86)
SkI2 6.87(−0.71) −20.7(0.98)
SkI3 −1.46(−2.33) 2.14(1.84)
SkI4 1.01(−1.23) −11.3(1.32)
SkI5 −1.47(−2.28) 2.17(1.77)
SkO 3.21(1.07) −13.7(0.87)
LNS 0.49(0.63) 3.53(−0.04)

Requiring G1 � −3, G′
1 � −3, and GNeuM

1 � −3 for any
density thus leads to CT

t � 0. Combining these inequalities
with Eqs. (40) yields CT

t = 0. Adopting these particular values
tends to be supported by the following basic sum rules of
Landau Fermi-liquid theory [51]:

S1 =
∑

�

F�

1 + F�/(2� + 1)
+ F ′

�

1 + F ′
�/(2� + 1)

+ G�

1 + G�/(2� + 1)
+ G′

�

1 + G′
�/(2� + 1)

= 0, (59a)

and

S2 =
∑

�

F�

1 + F�/(2� + 1)
− 3

F ′
�

1 + F ′
�/(2� + 1)

− 3
G�

1 + G�/(2� + 1)
+ 9

G′
�

1 + G′
�/(2� + 1)

= 0. (59b)

Even though Skyrme forces generally violate these sum rules,
the prescription CT

t = 0 significantly improves the second
sum rule, as can be seen in Table III. It is quite remarkable
that dropping the terms st · T t not only removes all kinds of
instabilities in nuclear matter but also improves the internal
consistency of the nuclear functional. Nevertheless with this
prescription, the Landau parameters G1, G′

1, and GNeuM
1 all

vanish, leading to unrealistic effective masses in polarized
matter. Indeed, according to Eqs. (17) M∗

q↑ = M∗
q↓ = M∗

q

which obviously holds in the limit of vanishing spin polar-
izations but is otherwise contradicted by realistic calculations
[23–25,29,31]. In particular, these calculations indicate that in
polarized NeuM, Mn↑ > Mn↓ whenever ρ↑ > ρ↓. Imposing
the less stringent stability conditions (55) leads to a splitting
of effective masses but with a wrong sign. This deficiency calls
for further extensions of existing Skyrme functionals.

In the discussion above, we have implicitly adopted the
point of view of the nuclear EDF theory [32] that the different
terms appearing in Eqs. (2b) and (2c) can be a priori considered
as independent from each other (apart from the requirements
of gauge invariance). It is therefore perfectly legitimate to
set CJ

t = −CT
t ≡ 0. However, in the framework of effective

forces, the coupling constants are uniquely determined by the
parameters of the force. In particular, the coefficients Cs

t and
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CT
t are now given by

Cs
0 = −1

4
t0

(
1

2
− x0

)
− 1

24
t3

(
1

2
− x3

)
ρα, (60a)

Cs
1 = −1

8
t0 − 1

48
t3ρ

α, (60b)

CT
0 = −1

8

[
t1

(
1

2
− x1

)
− t2

(
1

2
+ x2

)]
, (60c)

CT
1 = − 1

16
(t1 − t2). (60d)

We have therefore studied the stability of the few Skyrme
parametrizations which were fitted with the J 2 and J 2

q terms:
SkP [52], SLy5 [35], SkO′ [44], SkX [53], and BSk17 [41,42].
The parametrization SkP, which was specifically designed to
be used both in the particle-hole channel and in the particle-
particle channel, is still used nowadays. The forces SLy5 and
SkO′ were fitted following the same protocol as SLy4 and SkO,
respectively, but they include the contribution of the J 2 and
J 2

q terms. The force SkX [53] was constructed in an attempt to
improve the description of single-particle energies. BSk17 is
the force underlying our nuclear mass model HFB-17, based
on the Hartree-Fock-Bogoliubov method [41,42]. With this
model, we were able to fit with an rms deviation of 0.581 MeV
the 2149 measured masses of nuclei with N and Z � 8 given
in the 2003 Atomic Mass Evaluation [54], while at the same
time constraining the underlying Skyrme force to fit properties
of SNM and NeuM, as determined by many-body calculations
using realistic potentials. The values of the Landau parameters
in SNM and in NeuM are shown in Table IV, and the critical
densities for the onset of instabilities are shown in Table V.
For those few Skyrme forces which include the J 2 and J 2

q

terms, nuclear matter is therefore unstable because of the tight
correlations between the different coupling constants in the
energy density.

In order to illustrate the impact of the J 2 and J 2
q terms

and their time-odd counterparts on the stability of nuclear
matter, we have plotted in Fig. 2 the difference between the
energy per particle in fully polarized NeuM and in unpolarized
NeuM for the parametrizations SLy4 and BSk17. Both have
been fitted to a realistic equation of state of NeuM, but BSk17

TABLE IV. Landau parameters G0 and G′
0 in symmetric nuclear

matter and GNeuM
0 in neutron matter (at saturation density) for selected

Skyrme forces which were fitted with the J 2 and J 2
q terms. The

last line shows the Landau parameters predicted by microscopic
calculations using realistic interactions: Ref. [48] for symmetric
nuclear matter and Ref. [49] for neutron matter.

G0 G′
0 GNeuM

0

SkO′ −1.62 0.79 −1.43
SLy5 1.09 −0.16 0.09
SkP −0.23 0.06 −0.61
SkX −0.63 0.51 −0.50
BSk17 −0.69 0.50 −0.88
BSk17st −0.68 0.50 0.47
BSk18 −0.33 0.46 −0.57
Realistic 0.83 1.22 0.77

TABLE V. Critical densities above which nuclear matter becomes
unstable according to Landau’s criterion for selected Skyrme forces
which were fitted with the J 2 and J 2

q terms. The first two columns
are for symmetric nuclear matter, while the last column is for pure
neutron matter.

ρc(G0) (fm−3) ρc(G′
0) (fm−3) ρc(GNeuM

0 ) (fm−3)

SkO′ 0.12 0.97 0.14
SLy5 ∞ 0.33 0.57
SkP 0.74 0.30 0.19
SkX 0.22 0.40 0.19
BSk17 0.21 0.68 0.17
BSk17st ∞ ∞ ∞
BSk18 ∞ 0.62 ∞

includes the J 2 and J 2
q terms, while SLy4 does not. Removing

all instabilities requires that we impose Cs
t � 0 and CT

t = 0.
Since the first term in t0 of the Skyrme force is generally
associated with the long-range attractive part of the nucleon-
nucleon interaction while the density-dependent term in t3 is
related to the strongly repulsive short-range part, the coupling
constant Cs

0 can be made positive for any density by choosing
x0 < 1/2 and x3 > 0. With t0 < 0 and t3 > 0, the coefficient
Cs

1 will be positive, at least for not too high densities. Spin- and
spin-isospin instabilities thus generally arise mainly from the
coupling constants CT

0 and CT
1 , which in turn are generated by

the momentum-dependent terms in t1 and t2. Using Eqs. (60c)
and (60d), the conditions CT

t = 0 entail t1 = t2 and x1 = −x2.
Imposing these constraints would leave no degree of freedom
for adjusting surface properties of nuclei, which also depend on
the momentum-dependent t1 and t2 terms through the coupling
constants C

�ρ
t . This would also have an impact on the coupling

constants Cτ
t which determine the nucleon effective masses,

Eq. (18). There is little doubt that such a force would yield
poor results when applied to nuclei. Since thermal effects on
the spin polarization are rather small for temperatures found

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ [fm
-3

]
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SLy4

BSk17

BSk17

FIG. 2. (Color online) Difference between the energy per particle
in fully polarized neutron matter and in unpolarized neutron matter for
two Skyrme forces SLy4 and BSk17, with (dashed line) and without
(solid line) the J 2 and J 2

q terms and their time-odd part. The black
dots indicate the densities at which the difference vanishes.

045804-8



SPIN AND SPIN-ISOSPIN INSTABILITIES IN . . . PHYSICAL REVIEW C 82, 045804 (2010)

in protoneutron stars and supernova cores [17], one may be
tempted to require the stability of cold nuclear matter only.
But even in this case, it was shown in Refs. [7,8] that it is not
possible to avoid spurious transitions to spin-ordered phases
in nuclear matter above 2–3 times saturation density, and at
the same time giving reasonable properties of SNM. We have
found that the critical densities above which instabilities occur
are even lower when more nuclear data are included in the fit
of the effective interaction. In particular, conventional Skyrme
forces fitted to essentially all experimental nuclear mass data
predict a ferromagnetic transition in NeuM at a density slightly
above saturation density [13] (see also Table V).

The stability of cold nuclear matter can only be restored by
including additional components in the Skyrme interaction,
thereby inducing new terms in the energy density. Two
different extensions have been recently proposed. Margueron
and Sagawa [12] considered extended Skyrme forces with two
new t3 like terms depending on the nucleon spin densities sq

of the form

1
6 t s3

(
1 + xs

3Pσ

)
s(r)2δ(r ij ) + 1

6 t st3

(
1 + xst

3 Pσ

)
s1(r)2δ(r ij ).

(61)

In the energy density, Eqs. (2b) and (2c), these new terms
modify the coefficients Cs

t . The additional parameters were
adjusted so as to ensure the Landau stability conditions
G0 > −1, G′

0 > −1, and GNeuM
0 > −1. The nuclear mass

model HFB-17 [41,42] was thus refitted with these new terms
[55]. With this extended Skyrme force called BSk17st, it was
possible to maintain the quality of the HFB-17 mass model,
and at the same time the Landau parameters were adjusted
so as to remove the spin and spin-isospin instabilities present
in the original force BSk17. Unfortunately, instabilities were
still found for finite spin and spin-isospin polarizations [55].
The reason is that terms of the form given by Eq. (61) do
not change the coefficients CT

t , and consequently, Eq. (44)
is not guaranteed to remain positive for any spin and spin-
isospin polarizations. Moreover, as noted in Ref. [55], the
contributions of Eq. (61) to the energy density cancel in fully
polarized NeuM so that BSk17st still predicts a ferromagnetic
collapse of NeuM, as BSk17 does. The extension of Ref. [12]
does not affect the coefficients CT

t hence also the effective
masses of spin-up and spin-down nucleons are not affected,
as can be seen from Eq. (17). This means that if the original
Skyrme force violates the constraint (47), this will still be the
case for the extended version of this force.

Alternatively, instabilities can be avoided by introducing
into the force, density-dependent generalizations of the usual
t1 and t2 terms of the form [13]

1

2
t4(1 + x4Pσ )

1

h̄2

[
p2

ij ρ(r)βδ(r ij ) + δ(r ij )ρ(r)βp2
ij

]
+ t5(1 + x5Pσ )

1

h̄2 pij · ρ(r)γ δ(r ij ) pij . (62)

These new terms modify the coefficients Cτ
t , CT

t , C�ρ
t , and C�s

t

thus providing more flexibility to remove instabilities without
deteriorating the fit to nuclear data. We have constructed a new
nuclear mass model, labeled HFB-18, with such a generalized
Skyrme force [13]. The parameters t5, x5, and γ were chosen in

order to avoid a ferromagnetic collapse of neutron star matter.
For simplicity, the remaining parameters in Eq. (62) were fixed
by the equations

β = γ, (63a)

t4 = −1

3
t5(5 + 4x5), (63b)

x4 = −4 + 5x5

5 + 4x5
, (63c)

which ensure that the contributions of the new terms to the
coefficients Cτ

t vanish identically. As a result, the t4 and t5
terms cancel exactly in unpolarized homogeneous nuclear
matter. This new model yields almost as good a mass fit as our
previous model HFB-17, with the advantage that NeuM matter
is now stable with respect to any degree of spin polarizations.
Even though this new force still predicts an isospin instability
in SNM, this does not affect the interior of neutron stars, which
is now unpolarized. Moreover, we have found that this isospin
instability can be easily removed if the conditions (63a)–(63c)
are released, without deteriorating the quality of the mass
fit [56]. However, we did not succeed in constructing a nuclear
mass model that satisfies Eq. (47). As a consequence, nuclear
matter could still become unstable at finite temperatures even
though no phase transitions occur at zero temperature, as
shown in Ref. [17].

One might be tempted to enforce the stability conditions
CT

t = 0 by adding a zero-range tensor force to the conventional
Skyrme interaction (5) with suitable adjustments of the param-
eters, like the parametrization T22 of Ref. [38]. Unfortunately,
a tensor force introduces new terms in the functional which
also affect the stability of nuclear matter [57]. The stability of
41 different Skyrme interactions having a tensor component
has been recently studied in Ref. [58]. In particular, the recent
Skyrme forces from the Saclay-Lyon group [38] which include
tensor forces and which were fitted following the same protocol
as the older SLy family [35], still predict various spin and
spin-isospin instabilities. This is notably the case for the force
T22 for which CT

t = 0.

V. CONCLUSION

Nuclear energy density functional theory has been tradition-
ally restricted to very specific phenomenological semilocal
functionals of the form given by Eqs. (2a)–(2c), based on
effective forces [1,6]. However, the use of effective forces
introduces tight correlations between different terms of the
functional, which can generate various kinds of instabilities.
In particular, the time-odd terms st · T t induced by the
momentum-dependent part of Skyrme forces (which con-
tribute also to the coupling constants Cτ

t , C
�ρ
t , and C�s

t ) are
responsible for spurious spin and spin-isospin instabilities in
infinite homogeneous nuclear matter at densities encountered
in the interior of neutron stars. In some cases, instabilities
arise in symmetric nuclear matter below saturation densities
and could thus also contaminate calculations in finite nuclei.
(Note that the coupling constants C

�ρ
t alone were found to

drive finite-size instabilities [59].) These correlations between
different parts of the nuclear energy density functional hamper
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the development of more accurate functionals, since adding
one term in the effective force can induce several new
terms in the functional. Moreover, the coupling constants
of the time-odd terms are generally not directly fitted to
experimental data but are calculated a posteriori using the
parameters of Skyrme force. However, there is no guarantee
that the effects associated with the time-odd terms will be
correctly described in this way. As shown in Refs. [7,8], it
is not possible to avoid spurious transitions to spin-ordered
phases in nuclear matter above 2–3 times saturation density.
The critical densities above which these instabilities occur
decrease when more nuclear data are included in the fit of
the parameters of the Skyrme force [13]. For instance, for
our nuclear mass model HFB-17 [41,42], the ground state of
neutron matter becomes ferromagnetic above 0.17 fm−3. These
instabilities can be (at least partially) removed by suitable
extensions of the Skyrme force, as proposed, for instance,
in Refs. [12,13]. However an unphysical spin-ordering could
still occur at finite temperatures thus spoiling the application of
Skyrme forces to the hot nuclear matter found in protoneutron
stars and supernova cores. Alternatively the terms st · T t that
are responsible for spin and spin-isospin instabilities could
be canceled by suitable adjustments of an additional tensor
component to the Skyrme force [38]. Unfortunately, a tensor
force would also generate new terms in the energy density
which still lead to instabilities [58].

On the other hand, the concept of effective forces leads to
formal inconsistencies as recently discussed in Ref. [60]. Lots
of efforts are now devoted to the construction of nonempirical
functionals from realistic interactions directly without resort-
ing to effective forces [32]. If one adopts the point of view
that the nuclear functional is more fundamental than effective
forces, the different terms appearing in Eqs. (2b) and (2c)

can be treated independently (apart from the requirements of
gauge invariance and cancellation of self-interactions as will
be shown elsewhere). It is therefore perfectly legitimate to set
CJ

t = −CT
t ≡ 0. Actually the J 2 and J 2

q terms are dropped in
most Skyrme forces, not only because of simplicity but also
because it seems to be favored by global fits to nuclear data
and basic nuclear matter properties [61]. Moreover, the J 2 and
J 2

q terms might even lead to instabilities in the single-particle
spectra of finite nuclei, as discussed, for instance, in Ref. [38].
However, in all previous studies of spin and spin-isospin insta-
bilities in nuclear matter [7–14,17,18], the associated time-odd
terms s · T and (sn − s p) · (T n − T p) have been included in
the residual interaction, thus violating gauge symmetry. We
have therefore reexamined the stability of nuclear matter by
setting CT

t ≡ 0 for those Skyrme parametrizations which were
fitted without the J 2 and J 2

q terms. We have found that this
simple prescription not only improves the values of the Landau
parameters G0, G′

0, and GNeuM
0 . But this also generally removes

all kinds of instabilities in asymmetric nuclear matter both at
zero and finite temperatures. Nevertheless, this prescription
yields unrealistic values of the Landau parameters G1, G′

1, and
GNeuM

1 , hence also of the effective masses M∗
qσ in polarized

matter. Further improvements thus require extensions of
existing Skyrme functionals.
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[20] J. Navarro, E. S. Hernàndez, and D. Vautherin, Phys. Rev. C 60,

045801 (1999).
[21] M. Prakash, I. Bombaci, M. Prakash, P. J. Ellis, J. M. Lattimer,

and R. Knorren, Phys. Rep. 280, 1 (1997).
[22] G. H. Bordbar and M. Bigdeli, Phys. Rev. C 77, 015805 (2008).
[23] G. H. Bordbar and M. Bigdeli, Phys. Rev. C 78, 054315 (2008).
[24] M. Bigdeli, G. H. Bordbar, and Z. Rezaei, Phys. Rev. C 80,

034310 (2009).
[25] M. Modarres and T. Pourmirjafari, Nucl. Phys. A 836, 91 (2010).
[26] M. Bigdeli, G. H. Bordbar, and A. Poostforush, Phys. Rev. C

82, 034309 (2010).
[27] I. Vidaña and I. Bombaci, Phys. Rev. C 66, 045801 (2002).
[28] W. Zuo, U. Lombardo, and C. W. Shen, in Quark-Gluon Plasma

and Heavy Ion Collisions, edited by W. M. Alberico, M. Nardi,
and M. P. Lombardo (World Scientific, Singapore, 2002), p. 192.

045804-10

http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1016/0029-5582(58)90345-6
http://dx.doi.org/10.1086/146780
http://www.livingreviews.org/lrr-2008-10
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1103/PhysRevC.66.014303
http://dx.doi.org/10.1103/PhysRevC.66.014303
http://dx.doi.org/10.1103/PhysRevC.70.057302
http://dx.doi.org/10.1103/PhysRevC.70.057302
http://dx.doi.org/10.1103/PhysRevC.74.057301
http://dx.doi.org/10.1103/PhysRevC.77.065806
http://dx.doi.org/10.1088/0954-3899/36/12/125102
http://dx.doi.org/10.1088/0954-3899/36/12/125102
http://dx.doi.org/10.1103/PhysRevC.80.065804
http://dx.doi.org/10.1103/PhysRevC.80.065804
http://dx.doi.org/10.1016/0370-2693(94)90009-4
http://dx.doi.org/10.1046/j.1365-8711.1999.02655.x
http://dx.doi.org/10.1103/PhysRevC.71.055802
http://dx.doi.org/10.1103/PhysRevC.59.2888
http://dx.doi.org/10.1103/PhysRevC.59.2888
http://dx.doi.org/10.1103/PhysRevC.60.045801
http://dx.doi.org/10.1103/PhysRevC.60.045801
http://dx.doi.org/10.1016/S0370-1573(96)00023-3
http://dx.doi.org/10.1103/PhysRevC.77.015805
http://dx.doi.org/10.1103/PhysRevC.78.054315
http://dx.doi.org/10.1103/PhysRevC.80.034310
http://dx.doi.org/10.1103/PhysRevC.80.034310
http://dx.doi.org/10.1016/j.nuclphysa.2010.01.243
http://dx.doi.org/10.1103/PhysRevC.82.034309
http://dx.doi.org/10.1103/PhysRevC.82.034309
http://dx.doi.org/10.1103/PhysRevC.66.045801


SPIN AND SPIN-ISOSPIN INSTABILITIES IN . . . PHYSICAL REVIEW C 82, 045804 (2010)

[29] I. Bombaci, A. Polls, A. Ramos, A. Rios, and I. Vidaña, Phys.
Lett. B 632, 638 (2006).

[30] S. Fantoni, A. Sarsa, and K. E. Schmidt, Phys. Rev. Lett. 87,
181101 (2001).

[31] F. Sammarruca and P. G. Krastev, Phys. Rev. C 75, 034315
(2007).

[32] J. E. Drut, R. J. Furnstahl, and L. Platter, Prog. Part. Nucl. Phys.
64, 120 (2010).

[33] Y. M. Engel, D. M. Brink, K. Goeke, S. J. Krieger, and
D. Vautherin, Nucl. Phys. A 249, 215 (1975).

[34] J. Dobaczewski and J. Dudek, Phys. Rev. C 52, 1827 (1995);
55, 3177(E) (1997).

[35] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,
Nucl. Phys. A 635, 231 (1998).
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