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Equation of state of nuclear matter in a virial expansion of nucleons and nuclei
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We study the equation of state (EOS) of nuclear matter at subnuclear density in a virial expansion for a
nonideal gas. The gas consists of neutrons, protons, alpha particles, and 8980 species of nuclei with A � 12 and
masses from the finite-range droplet model. At very low density, the virial expansion reduces to nuclear statistical
equilibrium. At higher density, the virial results match smoothly to the relativistic mean field results discussed in
our previous paper. We tabulate the resulting EOS at over 73 000 grid points in the temperature range T = 0.158
to 15.8 MeV, the density range nB = 10−8 to 0.1 fm−3, and the proton fraction range YP = 0.05 to 0.56. In the
future we plan to match these low-density results to our earlier high-density mean field results, and generate a full
EOS table for use in supernova and neutron star merger simulations. This virial EOS is exact in the low-density
limit.
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I. INTRODUCTION

One of the main ingredients in simulations [1,2] of core
collpase supernovae and neutron star mergers is the equation
of state (EOS) for hot dense nuclear matter. The EOS, along
with detailed information on the composition of nuclear matter,
may play an important role in the neutrino-matter dynamics [3]
and supernova explosion mechanism. In a previous paper [4]
we used a relativistic mean field (RMF) model to calculate the
free energy of nonuniform matter at intermediate density and
uniform matter at high density.

Simulations of the core collapse and explosion of super-
novae depend heavily on the EOS at subnuclear density,
especially the detailed composition. In this work, we study
subnuclear-density nuclear matter in a virial expansion for
a nonideal gas, consisting of neutrons, protons, α particles,
and 8980 species of heavy nuclei (A � 12) with masses from
the finite-range droplet model (FRDM) [5]. The virial results
will cover the density range nB = 10−8 to 0.1 fm−3, the
temperature range T = 0.158 to 15.8 MeV, and the proton
fraction range YP = 0.05 to 0.56. (For temperature higher
than 15.8 MeV, matter is uniform and fully described in
the RMF model [4].) The distribution of nuclei for given
conditions is obtained in this approach, while the existing
EOS tables of Lattimer-Swesty (LS) [6] and H. Shen, Toki,
Oyamatsu and Sumiyoshi (SS) [7,8], use a single-heavy-
nucleus approximation. Our virial EOS will be matched, using
a thermodynamically consistent interpolation scheme, to the
RMF EOS obtained in our previous paper [4] to generate a full
EOS table for supernova.
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Detailed information on the distributions of nuclei in
the EOS table is important for neutrino-matter dynamics.
Neutrinos radiate 99% of the energy released in supernovae.
In addition to gravitational wave signals, neutrinos are the
only messenger through which one can directly probe the
EOS inside supernovae. The neutrinosphere is the surface of
last scattering before ν or ν̄ escape. The neutrinosphere is
expected to occur at a density around 1011 g/cm3 and this is
consistent with the available information from a handful events
in SN1987a [9]. The composition of matter at subnuclear
density constrains the position of the neutrinosphere and
influences the spectra of emitted neutrinos and antineutrinos.
For example, in a recent study [10], light nuclei with mass 2, 3,
and 4 were found to have an important influence on the spectra
of antielectron neutrinos.

For matter at subnuclear density and low entropy, heavy
nuclei tend to form. Nuclear statistical equilibrium (NSE)
models treat low-density nuclear matter as a system of
noninteracting nuclei in statistical equilibrium, taking into
account the binding properties of heavy nuclei. This has
been widely used in nuclear astrophysics [11]. Recently, there
have been several NSE-based studies of the supernova EOS;
see, for example, Refs. [12] and [13]. These studies use
modern mass tables with thousands of nuclei and include
excluded volume effects [13]. The NSE models have the
advantage of generating thermodynamically consistent EOS
tables. However, they also have several disadvantages. First,
NSE models themselves cannot be used to describe well the
nonuniform matter at nearly nuclear density, when exotic pasta
phases may appear. To generate a complete EOS table, NSE
models need to be matched to uniform matter models at
high density. Thus low- and high-density matter are usually
described with different models. Second, NSE models do not
provide a systematic way to include the strong interactions
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between nuclei. These interactions could be important as the
density increases. Moreover, neutron matter at low density is
closely analogous to a unitary gas, whose properties cannot be
described satisfactorily in either NSE models or normal mean
field approaches (see, for example, [14]). The virial expansion,
on the other hand, has been successfully used to describe the
properties of unitary gases [15] as well as neutron matter at
low density [16].

In a previous work [17] on low-density nuclear matter
consisting of neutrons, protons, and α particles, the virial
expansion has been used to systematically incorporate second
virial corrections from nucleon-nucleon (NN), Nα, and αα

elastic scattering. These light nuclei components are expected
to dominate in matter with high entropy. The effects of
second virial corrections are found to be important for the
composition and for the equation of state. In this work we use
the virial expansion for a nonideal gas consisting of neutrons,
protons, α particles, and thousands of heavy nuclei. The heavy
nuclei included in this work are from FRDM mass tables [5],
which have 8979 nuclei with A � 16. We also include 12C
in the mass table. As mentioned previously, the mass-2 and
-3 nuclei, and other A < 12 nuclei aside from 4He, may
be important for the spectra of antielectron neutrinos. The
inclusion of these light elements will require information on
second virial corrections among them and nucleons, which are
under current investigation [18]. In this work the light elements
are represented by α particles, which typically have the largest
abundance among the light elements in statistical equilibrium.
At very low density, the virial expansion agrees with nuclear
statistical equilibrium models. As the density rises, we find
that the virial gas matches smoothly to previous mean field
results.

In this work we include the second-order virial corrections
among nucleons and α particles as in Ref. [17]. Partition
functions for heavy nuclei are included using the recipes
of Fowler et al. [19]. In addition, some calculations are
presented using partition functions based on the recipe of
Rauscher et al. [20] for comparison. Equivalently, the partition
functions can be considered as the sum of successive high
orders of the virial expansion for heavy nuclei. There have
been many studies on the level density and partition functions
of hot nuclei in astrophysical environments. For large-scale
astrophysical applications, it is necessary to find both reli-
able and computationally practical methods for determining
the level density. Most of these studies [19–23] followed
the original noninteracting Fermi gas model of Bethe [24].
For astrophysical nuclear reactions with temperature below a
few times 1010 K [20,25], this phenomenological approach
gave excellent agreement with more sophisticated Monte
Carlo shell model calculations [26], as well as combinatorial
approaches [23,27]. This justifies the application of the Fermi-
gas description at and above the neutron separation energy.
For temperatures higher than a few times 1010 K, there are big
ambiguities in the values of the partition functions. However,
as suggested by some authors [12] and supported by our own
calculations, these uncertainties have only a small impact on
the thermodynamics of dense matter.

The effects of Coulomb interactions in the plasma can be
estimated by the plasma parameter �p = (Ze)2/akT , where

TABLE I. Range of temperatures, densities, and proton fractions
in the EOS table.

Parameter Minimum Maximum Number of grids

T (MeV) 10−0.8 101.2 20
log10[nB (fm−3)] −8.0 −1.0 71
YP 0.05 0.56 52

Z is the atomic number of the nucleus, T is the temperature,
and a is the spacing between nuclei. For matter at low
density, �p is smaller than 1 and the effect of Coulomb
corrections is small. However, for matter at higher density
and when the dominant species carry large charges, �p can
be much greater than 1 and the effect of Coulomb interactions
should be taken into account. The Coulomb correction to the
plasma has been studied analytically up to high �p by
the cluster expansion [28]. Generally, the correction due
to electron-ion interactions will reduce the free energy of
the plasma and eventually crystalize the matter at high
density. For simplicity, in this work the Coulomb interactions
between nuclei and electrons are included via a Wigner-Seitz
approximation with effective ion spheres for each species
of nuclei, wherein local electrical neutrality is maintained.
This Wigner-Seitz approximation for the Coulomb correction
will be compared with a more rigorous cluster expansion
method.

Based on the above virial expansion, we generate an
equation of state table which covers the range of temperatures,
densities, and proton fractions shown in Table I.

There are seven points in temperature (0.16, 0.26, 0.40,
0.63, 0.71, 0.79, and 0.89 MeV) for temperature below
1 MeV. For higher temperatures we use a spacing of 0.1 in
log10(T/[MeV]). This is a total of 20 different temperatures
from T = 0.16 to 15.8 MeV. We use a spacing of 0.1 in
log10(nB/[fm−3]), giving a total of 71 points in density for
nB = 10−8–0.1 fm−3. We use a linear step 0.01 in proton
fraction, giving a total of 52 points in proton fraction for
YP = 0.05 to 0.56. There is a total of 73 840 data points in
the virial gas calculation. This took 1000 CPU days in Indiana
University’s supercomputer clusters.

The paper is organized as follows: in Sec. II our virial
expansion for a nonideal gas is explained in detail. In Sec. III
we present the recipes for the nuclear partition function used in
the virial expansion. Section IV discusses the effect of different
mass tables on the EOS, and shows several examples for the
free energy and the distribution of nuclei in the virial EOS.
Section V presents a summary of our results and gives an
outlook for future work.

II. FORMALISM

We now describe our virial expansion formalism for a gas
consisting of neutrons (n), protons (p), α particles, and heavy
nuclei. The grand partition function Q for a gas at pressure
P and volume V is expanded to second order in the neutron
fugacity zn, the proton fugacity zp, and the α particle fugacity
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zα as follows:

logQ
V

= P

T
= 2

λ3
n

[
zn + zp + (

z2
p + z2

n

)
bn + 2zpznbpn

]
+ 1

λ3
α

[
zα + z2

αbα + 2zα(zn + zp)bαn

]
+

∑
i

1

λ3
i

zi�i, (1)

where �i is the partition function for nuclei and bn, bpn, bα,

and bαn are the second virial coefficients as defined in Ref. [17].
The sum on i runs over different heavy nuclei, for which we
use the FRDM mass table [5] for A � 16 and include 12C. The
thermal wavelength for species a is λa ,

λa =
√

2π/maT , a = n, p, α, nuclei. (2)

From now on i, j, . . . are used for sums over heavy nuclei and
a, b, . . . are used for sums over all species.

There exist several recipes for the nuclear partition function
�i . We will use that of Fowler et al. [19] in this work. We
also consider the choice of Rauscher et al. [20] as an option.
Different choices of partition functions change the matching
densities to our mean field results slightly, but the influence
on the thermodynamics is negligible. This is also discussed in
Ref. [12].

Chemical equilibrium between nucleons and a heavy
nucleus with Z protons and N neutrons ensures that

µi = Zµp + Nµn, (3)

where µi, µp, µn are chemical potentials of the heavy nucleus,
protons, and neutrons, respectively. Therefore the fugacity of
a heavy nucleus is readily obtained,

zi = exp(µi + Ei)/T = zZ
p zN

n eEi/T , (4)

where Ei is the binding energy of the heavy nucleus AZ.
We consider the Coulomb interaction between the electron

background and nucleus following Baym et al. [29], but
generalized to multiple species of nuclei. The total Coulomb
energy of a nucleus in an electron background is,

QC
i = 3

5

Z2
i α

rA

[
1 − 3

2

rA

ri

+ 1

2

(
rA

ri

)3 ]
, (5)

where rA = 1.16A1/3 fm is the nuclear radius (in accordance
with that in FRDM [5]), and ri is the average ion sphere radius
defined through

4

3
πr3

i

(∑
j

Zjnj

)
= Zi. (6)

We emphasize that the sum over j runs over heavy nuclei.
This definition ensures local charge neutrality inside each ion
sphere. The first term in Eq. (5) comes from the proton-proton
Coulomb energy in the nucleus and is also included in the
binding energy of the nucleus. When rA approaches ri the total
Coulomb energy in a heavy nucleus vanishes as expected. So
the Coulomb correction to the binding energy of nucleus is

EC
i = 3

5

Z2
i α

rA

[
− 3
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2

(
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)3 ]
. (7)

Adding this correction to the binding energy of a nucleus,
Eq. (4) becomes

zi = exp
(
µi + Ei − EC

i

)
/T = zZ

p zN
n e(Ei−EC

i )/T . (8)

The densities of each species can be obtained from

na = za

(
∂

∂za

logQ
V

)
V,T

. (9)

This gives
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n
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λ3
α
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]
, (12)

ni = 1

λ3
i

zi�i. (13)

The mass fraction of species a(A,Z) is defined as

Xa = Aana/nB. (14)

The two conditions used to determine the fugacities of the
neutrons and protons are that the total baryon density is
conserved,

nB = nn + np + 4nα +
∑

i

Aini, (15)

and that the proton fraction is given by

YP =
(

np + 2nα +
∑

i

Zini

)/
nB. (16)

Since the Coulomb correction is included, one extra loop is
needed to self-consistently determine the values of the ion
sphere radii ri for each species.

The entropy density s of the virial gas is obtained from
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(
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= 5
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, (17)

where the prime indicates a derivative with respect to temper-
ature. Note that the last term is the Coulomb correction to the
entropy, which it is nontrivial to evaluate directly. However,
the free energy of the virial gas can be obtained directly
(see the later discussion) so that we can evaluate the entropy
from the derivative of the free energy.

The energy density ε can be calculated from the entropy
density,

ε = T s +
∑

a

naµa − P, (18)
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where the sum on a runs over neutrons, protons, α particles,
and heavy nuclei.

The free energy density f is given by

f = ε − T s =
∑

a

naµa − P

= nnT log zn + npT log zp + nαT log zα − nαEα

+
∑

i

[
niT log zi − ni

(
Ei − EC

i

)] − P. (19)

From this equation we define an effective Coulomb correction
to the free energy per nucleon 	f/A,

	f/A =
∑

i E
C
i ni

nB

. (20)

The free energy per nucleon is

F/A = f/nB. (21)

The thermodynamic pressure P can be obtained from the
free energy,

Pth = n2
B

(
∂(F/A)

∂nB

)
T ,YP

, (22)

which can be rewritten as

Pth = P + nB

∑
i

ni

∂EC
i

∂nB

|T ,YP
. (23)

The second term in Eq. (23) is the correction to the thermo-
dynamic pressure due to the Coulomb interaction. We present
results for the virial equation of state in Sec. IV.

III. NUMERICAL DETAILS

In Sec. III A we describe some details of the evaluation of
the partition functions and then in Sec. III B we briefly describe
the parallel computations of the EOS for many different
temperatures, densities, and proton fractions.

A. Recipes for the partition function

Fowler et al. [19] proposed an efficient approximation for
the partition function of hot nuclei, which has a closed form,

�i = �d +
∫ Et

Ed

dEρ(E)exp(−E/T ) − �c, (24)

where �d is the contribution from known discrete states
and �c is the continuum subtraction. One could use �d =
(2J0 + 1) where J0 is the ground state spin. Inaccuracies from
this approximation will become progressively unimportant
beyond 1010 K. The continuum subtraction, on the other hand,
becomes important only beyond 1011 K (see also [30]); by this
temperature uniform matter will be more stable in most regions
of phase space, as will be shown in the following discussions.
So in the temperature range in which we are interested, one can
discard the latter term. Therefore the nuclear partition function
becomes

�i = (2J0 + 1) +
∫ Et

Ed

dEρ(E)exp(−E/T ), (25)

and its derivative versus temperature is

T �′
i =

∫ Et

Ed

dEρ(E)exp(−E/T )
E

T
. (26)

A widely used expression for the level density ρ(E) is the
backshifted Fermi-gas formula [24],

ρ(E) =
√

π

12

exp(2
√

aU )

a1/4U 5/4
, (27)

where a is the level spacing, and U = E − δ with δ a backshift
parameter related to pairing. Various prescriptions for these
two parameters are available, which reproduce more rigorous
results for the level density from Monte Carlo or combinatorial
calculations. We will use the prescription from Fowler et al.
[19] in our calculation and include that of Rauscher et al. [20]
as an option in our code.

The integral limits are determined by the following equa-
tions [19]:

Ed = 1
2 min(Sn, Sp), (28)

Et = min
(
Sn + ER, Sp + ER + 1

2Ec

)
. (29)

Sn and Sp are the single-neutron and single-proton separation
energies, which could be obtained from the mass table. ER

is the zero-point energy, ER = h̄2/2MR2 with R = 1.25(A −
1)1/3. The Coulomb barrier is Ec = (Z − 1)α/R. For unstable
nuclei (Sn or Sp < 0), the partition function is set to the ground
state value �d . There is still a large ambiguity regarding
the value of the integral upper limit Et , which is related
to the contribution of the continuum. This ambiguity will
introduce big changes in the partition function only when
the temperature is above several MeV (a few times 1010 K).
We compared results with different choices of Et and found
that the ambiguity changes the transition density to our
relativistic mean field EOS [4] slightly, but the influence on
the thermodynamics is negligible. This was also discussed in
a previous work [12].

When δ is larger than Ed , δ = Ed should be used. In this
case Eq. (27) is inapplicable because of the pole in the lower
integration limit. A constant-temperature formula,

ρ(E) = C exp(U/Tc), (30)

is used instead. The constants C and Tc are obtained by the
continuity of the level density and its first derivative when
matched to Eq. (27).

1. Choices of a and δ by Fowler et al. [19]

In our calculation we use the prescription of Fowler et al.
[19] for the level spacing parameter a (in MeV−1) and pairing
parameter δ (in MeV):

Z � 30 : a = 0.052A1.2, δ = δp − 80/A,
(31)

Z � 30 : a = 0.125A, δ = δp − 80/A − 0.5,

where δp = (11A−1/2 MeV) [1 + 1
2 (−1)Z + 1

2 (−1)N ]. When
δ > Ed , δ is set to Ed , and Eq. (30) is used below an energy
2Uc (Et > 2Uc > 0). By continuity of the level density and its
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derivative, the constants C and Tc are obtained,

1

Tc

= −5

4

1

Uc

+
√

a√
Uc

,

(32)

C =
√

π

12
a−1/4U−5/4

c exp

(
5

4
+

√
aUc

)
.

In our calculation Uc is chosen to be δ.

2. Choices of a and δ by Rauscher et al. [20]

In the parametrization of Rauscher et al., the level spacing
a depends on energy,

a(U,Z,N) = (αA + βA2/3)

[
1 + b

1 − e−γU

U

]
, (33)

where b = Emic describes properties of a nucleus differing
from the spherical macroscopic energy, which is already given
in the FRDM mass table. Based on the FRDM mass formula,
the best fitted values for α, β, and γ are obtained by comparing
the level densities with experimental analysis: α = 0.1337,
β = −0.065 71, γ = 0.048 84 [20].

The pairing parameter δ is given by

δ = 1
2 {	n(Z,N ) + 	p(Z,N)}, (34)

where the neutron pairing energy is

	n(Z,N )

= 1
2 [2EG(Z,N ) − EG(Z,N − 1) − EG(Z,N + 1)], (35)

and EG(Z,N ) is the binding energy of nucleus (Z,N). The
proton pairing energy 	p(Z,N) is calculated in a similar way.
The constants C and Tc are obtained as follows:

1

Tc

= −5

4

1

Uc

+
√

a

Uc

− 1

4

a′

a
+

√
Uc

a
a′,

(36)
C = ρ(Uc)e−Uc/Tc ,

where

a′ = (αA + βA2/3)
b

U 2
c

(−1 + e−γUc + γUce
−γUc ). (37)

B. Computational methodology

We calculate, in parallel, the points in parameter space
covered by the virial EOS, analogously to the way used in our
previous paper to perform relativistic mean field calculations
[4]. There are a total of 73 840 points in the three-dimensional
parameter space of temperature T , proton fraction YP , and
density nB . Each point takes up to 20 minutes to calculate.
The overall virial EOS took about 1000 CPU days in Indiana
University’s supercomputer cluster.

Each point in the parameter space was mapped to a unique
integer that we refer to as the job index. A file, runlist, was
prepared with a list of job indices for the whole parameter
space, and a single character (A = available, R = running,
r = rerunning, C = complete, T = time limited, and F =
failed) that gives the status of calculations for that job index.
A message passing interface (MPI) parallel wrapper code
manages the running of the many requested tasks. Typically,

one parallel job requests a set of compute cores (usually 256).
Each MPI rank, using a single CPU core, is assigned one job
index corresponding to one point in the parameter space and
evaluates the required quantities.

Initially, rank zero of the MPI job

(i) locks the job listing file runlist,
(ii) reads runlist until a list of available tasks is filled,

(iii) closes runlist and releases the lock,
(iv) passes a job index to each MPI rank and begins the

calculation for that job index.

When the calculation completes (or time-limits or fails)
for a given MPI rank, the status character for the job index
in runlist is modified appropriately. The now available MPI
rank will search runlist for the next available task and the
calculation restarts for the new job index. Since completion
occurs asynchronously, file locking is not used for this part of
the process.

A simple batch job runs through the points in parameter
space. A wall clock limit (48 h) is used. Each rank of the
MPI job can run a series of points using the above procedure,
efficiently using each available core for the requested wall
clock period. One job per core is running when the wall clock
limit is reached. These jobs are identified by being left in
the “R” state after the batch job completes. This procedure
allows us to calculate more than 99% of the points in the
runlist file.

IV. RESULTS

In this section we discuss the virial EOS in detail. First we
show the effect of different mass tables on the EOS and its
influence on the matching to the RMF results. We also discuss
the Coulomb correction and compare our results with some
analytical cluster expansion analysis. Second, we discuss the
matching between the virial EOS and RMF EOS for several
choices of temperature and proton fraction. Finally, we show
some examples of the distribution of nuclei obtained in the
virial EOS. We also compare some examples of mass fractions
of nuclear matter between the virial EOS and existing EOS
tables.

A. Effect of different mass tables

We use both the FRDM [5] and HFB14 [31] mass tables
in the virial expansion. Here we compare the free energy and
average charge number Z (average mass number A = Z/YP )
from the virial expansion with the two different mass tables.
We also match them to the relativistic mean field results from
our previous paper [4].

1. Free energy

In Fig. 1, free energies are shown as a function of density
for nuclear matter at T = 1 and 3.16 MeV and YP = 0.3.
Virial gas results are obtained from Eq. (21) for the FRDM
(black solid curve) and HFB14 (red dashed curve) mass tables.
Nonuniform (or Hartree) mean field calculations (circles)
and uniform matter calculations (dot-dashed curve) are also
shown [see Eqs. (10) and (18) in Ref. [4]]. These calculations
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FIG. 1. (Color online) Free energy per nucleon of nuclear matter at T = 1 (a) and 3.16 MeV (b) with YP = 0.3.

give lower free energies at high densities. The two different
mass tables in the virial expansion give very similar free
energies for nuclear matter. The difference between the black
curve (FRDM) and red curve (HFB14) is very small until
densities where the Hartree mean field results are more stable
than either mass formula. For these two cases, the transition
from virial to Hartree EOS occurs at a density of about
3.98 × 10−3 fm−3.

2. Average A and Z

Similar to Fig. 1, the lower panels in Fig. 2 give the
corresponding average charge number Z from the virial EOS
with either FRDM or HFB14 mass tables, and from Hartree
mean field results. Again the virial EOSs with the two mass
tables predict very similar values for Z. Moreover, the virial
EOS with either mass table gives very similar Z to that
from the Hartree mean field results at the transition density
3.98 × 10−3 fm−3 (blue dotted line). The fluctuation of Z in
Hartree results below the transition density (at T = 3.16 MeV)
is probably caused by a finite step error in the search of cell
size. In conclusion, the composition, free energy, and transition
density to Hartree mean field results depend little on the choice
of mass tables.

In the two upper panels in Fig. 2, we compare the Coulomb
energy correction in our virial expansion, Eq. (20), with an
analytic cluster expansion for the one-component plasma,
Eq. (22) in [28]. The overall agreement for densities below the
virial-Hartree transition is good, though at higher temperature
the differences become larger. The reason is probably that
we calculate the multicomponent contribution to the Coulomb
correction in the virial gas while we used only the average
charge number in the analytic formula for the one-component
plasma.

B. Free energy and phase boundaries

We show in Fig. 3 the transition densities between the virial
and RMF EOSs. We also show the free energy per nucleon
F/A as a function of density nB for T = 1, 3.16, 6.31, and
10 MeV. At low densities, F/A is obtained from Eq. (21)
in the virial expansion. The free energy per nucleon F/A is
also shown for Hartree mean field calculations at intermediate
densities, and from uniform matter at high densities. The latter
two were obtained in our first paper [4].

In most cases the transition (as density grows) is found
at the density when the Hartree or uniform matter calculation
gives a lower free energy compared to virial results. For matter
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FIG. 2. (Color online) Upper panels (a),(c) show Coulomb corrections; lower panels (b),(d) show average charge number of heavy nuclei
in nuclear matter at T = 1 MeV, left panels (a),(b) and T = 3.16 MeV, right panels (c),(d). The proton fraction is YP = 0.3.
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FIG. 3. (Color online) Free energy per nucleon of nuclear matter at temperatures of T = 1 (a), 3.16 (b), 6.31 (c), and 10 (d) MeV. The
proton fraction ranges from Yp = 0.05 to 0.5.

at very low temperature (not greater than ∼1 MeV) and low
proton fraction (not greater than ∼0.1), some matching points
are obtained at the density when the virial gas and Hartree
calculation give the closest free energy. The difference is below
hundreds of keV and is comparable to the mean deviation of
binding energy for nuclei (∼600 keV) in the FRDM mass
table [5].

In each panel in Fig. 3, the vertical red dashed curves
give the virial gas–Hartree Wigner-Seitz cell transition den-
sities, and the red solid curves give the transition densities
to uniform matter. As temperature increases, the second
transition may happen at lower density than that of the
first transition, which means the Hartree Wigner-Seitz cell is
energetically unfavorable for all densities. This indicates the
critical temperature for the nucleon liquid–virial gas transition.
We note here that the virial gas may still contain a small
amount of α particles and heavier nuclei even above this
transition temperature. As seen from the figures, for matter
at any temperature and proton fraction the virial–mean field
transition densities are larger than a few times 10−4 fm−3,
which is about the neutrinosphere density. So in almost all
regions around and below the neutrinosphere density, our EOS
is represented by the virial results, which include multiple
nuclei.

For matter at low density in the virial gas phase, the free
energy scales nicely with density. The reason is as follows.

Low-density matter is dominated by neutrons and protons,
and the interactions among them are not important because of
the large particle spacing, so the kinetic energy dominates
and scales as the logarithmic value of the density. As the
temperature rises, the scaling behavior extends to higher
densities until heavy nuclei appear, and electromagnetic and
strong interaction corrections become important. Formation of
nuclei greatly decreases the free energy, in both the virial gas
and Hartree mean field regimes.

C. Mass fractions of species

The virial expansion gives the distribution of heavy nuclei
[refer to Eqs. (13) and (14)], where 8980 species of nuclei
are in thermal and chemical equilibrium with free neutrons,
free protons, and α particles. This is an improvement over
the LS EOS and SS EOS, which both used a single-nucleus
representation.

Figure 4 shows mass fractions of different nuclei (Z,A) for
matter with T = 1 MeV, nB = 10−4 fm−3, and YP = 0.2. In
the upper panel different colors indicate the mass fraction using
a log10 scale. In the lower panel the different lines indicate the
contours of mass fraction on a log10 scale from −1 to −7.
The total mass fraction of heavy nuclei is 56.5% (the rest is
free neutrons). The majority of the mass fractions are centered
around Z = 25–30, with a wide range of other nuclei with
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T=1 MeV, YP=0.2, nB=10-4 fm-3
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FIG. 4. (Color online) Mass fraction of nuclei in the nuclear chart
for matter at T = 1 MeV, nB = 10−4 fm−3, and YP = 0.2. Upper
panel: different colors indicate the mass fraction using a log10 scale.
Lower panel: different lines indicate the contours of mass fraction on
a log10 scale from −1 to −7.

smaller abundances. In Fig. 5 for a higher YP = 0.4, the total
mass fraction of heavy nuclei is 99.1% (free neutrons and
protons have 0.8% and 0.1%, respectively). The majority mass
fractions are centered around Z = 30–35.

In Fig. 6 we show mass fractions of different nuclei for
matter with T = 1 MeV, YP = 0.4, and nB = 10−3 fm−3. The
total mass fraction of heavy nuclei is near 1 and the distribution
is centered around Z = 35 and 50. The mass distribution of
heavy nuclei in this high-YP case is a double-peaked Gaussian
distribution, as shown in Fig. 8, where n(Z) is the sum of the
abundances of heavy nuclei with the same proton number Z.
At a higher T = 3.16 MeV shown in Fig. 7, the total mass
fraction of heavy nuclei is 22.3% (free neutrons, protons, and
α particles have 24.3%. 6.3%, and 47.1%, respectively). Here
the distribution of heavy nuclei is centered around a lower-Z
region and has multiple peaks in n(Z) as plotted in Fig. 8. It
is also interesting to note that in this case there is an odd-even
effect in the value of Z for the abundances n(Z).

It is instructive to compare the composition of matter in
the virial EOS with the existing EOS tables of Lattimer and
Swesty and Shen et al. The location of the neutrinosphere
in a supernova is sensitive to the composition of matter and is
important for the emitted neutrino spectra. Studies of collective
flavor oscillations of neutrinos during their streaming outside
the neutrinosphere have already indicated a sensitivity of
neutrino oscillations to the emitted neutrino spectra from the
neutrinosphere [32]. Below we will compare some examples
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FIG. 5. (Color online) Mass fraction of nuclei in the nuclear chart
for matter at T = 1 MeV, nB = 10−4 fm−3, and YP = 0.4. Upper
panel: different colors indicate the mass fraction using a log10 scale.
Lower panel: different lines indicate the contours of mass fraction on
a log10 scale from −2 to −7.

for the composition of matter around the neutrinosphere from
the virial EOS, the LS EOS, and SS EOS.

Figure 9 shows the mass fractions of neutrons, protons,
α particles, and nuclei in matter at densities from 10−6 to
10−2 fm−3. The matter has a temperature of 3.16 MeV and a
proton fraction of 0.1 (a) or 0.3 (b), respectively. In Fig. 9(a) for
a proton fraction of 0.1, free neutrons and protons dominate
until the density reaches 10−4 fm−3 in all three EOSs. Free
nucleons dominate at low densities because of the high entropy.
Above 10−4 fm−3, α particles appear. The SS EOS is close
to our virial results at densities below roughly 10−3 fm−3.
The LS EOS significantly underestimates Xα and this may be
caused by an error in the α particle binding energy. α particles
have larger abundances and exist up to higher densities in
our virial EOS than in the other EOSs. This is partly because
the attractive interactions between neutrons and α particles
in the virial expansion favors more α particles [17]. Heavy
nuclei begin to appear around 4 × 10−4 fm−3 in the LS EOS,
and at higher densities in the SS EOS and our virial EOS.
Moreover, the LS EOS predicts the largest abundance for
heavy nuclei, while ours predicts the smallest abundance. Free
neutrons have the largest abundance in our virial EOS. This is
because of the strong attractive interaction between neutrons
in the virial expansion which lowers the energy and enhances
the abundance of neutrons. Note that in the YP = 0.1 case
the virial-Hartree transition happens at 0.0158 fm−3. The right
panel of Fig. 9, for a different proton fraction of 0.3, has
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T=1 MeV, YP=0.4, nB=10-3 fm-3

 0  10  20  30  40  50  60

Z

 0

 20

 40

 60

 80

 100

 120

 140

 160

A

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

T=1 MeV, YP=0.4, nB=10-3 fm-3

      -6
      -5
      -4
      -3

 0  10  20  30  40  50  60

Z

 0
 20
 40
 60
 80

 100
 120
 140
 160

A

FIG. 6. (Color online) Mass fraction of nuclei in the nuclear chart
for matter at T = 1 MeV, nB = 10−3 fm−3, and YP = 0.4. Upper
panel: different colors indicate the mass fraction using a log10 scale.
Lower panel: different lines indicate the contours of mass fraction on
a log10 scale from −3 to −6.

similar characteristics. However, here, α particles and heavy
nuclei have much larger abundances than for the YP = 0.1
case, since a higher proton fraction favors formation of nuclei.
In this YP = 0.3 case, the transition density from Virial gas to
Hartree mean field calculations occurs at 6.3 × 10−3 fm−3 as
indicated by the dotted line in the figure.

In future work [33] we will carefully interpolate the free
energy results of this paper in a thermodynamically consistent
way in order to accurately determine derivatives of the free
energy with respect to temperature or density. From these
derivatives we will calculate a number of additional quantities
such as the pressure or entropy.

V. SUMMARY AND OUTLOOK

In this paper we present our model for nuclear matter at
subnuclear density, the virial expansion for a nonideal gas
consisting of neutrons, protons, α particles, and thousands of
heavy nuclei. We include second-order virial corrections for
light elements A � 4, nuclear partition functions for heavy
nuclei, and Coulomb corrections. At very low density, the
virial expansion reduces to nuclear statistical equilibrium. We
calculate the free energy and tabulate the resulting EOS at
over 73 000 grid points in the temperature range T = 0.158
to 15.8 MeV, the density range nB = 10−8 to 0.1 fm−3,
and the proton fraction range YP = 0.05 to 0.56. These
calculations took over 1000 CPU days. This parameter space is

T=3.16 MeV, YP=0.4, nB=10-3 fm-3

 5  10  15  20  25  30  35  40  45  50

Z

 0

 20

 40

 60

 80

 100

 120

A

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

T=3.16 MeV, YP=0.4, nB=10-3 fm-3

      -7
      -6
      -5
      -4
      -3
      -2

 5  10  15  20  25  30  35  40  45  50

Z

 0

 20

 40

 60

 80

 100

 120

A

FIG. 7. (Color online) Mass fraction of nuclei in the nuclear chart
for matter at T = 3.16 MeV, nB = 10−3 fm−3, and YP = 0.4. Upper
panel: different colors indicate the mass fraction using a log10 scale.
Lower panel: different lines indicate the contours of mass fraction on
a log10 scale from −2 to −7.

complementary to that of the relativistic mean field results in
our previous paper [4].

The treatment of Coulomb corrections in Wigner-Seitz
approximation agrees reasonably with an analytical cluster
expansion. Our results do not appear to be very sensitive to the
mass table employed, or to the form of the partition function
for heavy nuclei. However, results at higher densities for mean
field calculations are sensitive to the interaction employed.
In the future, we intend to match the virial results of this
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FIG. 8. (Color online) Mass fractions of nuclei n(Z) for nuclei
proton number Z, for the cases in Figs. 4, 5, 6, and 7. The triplet of
values in the parentheses are (T /[MeV], YP , nB/[fm−3]).
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FIG. 9. (Color online) Mass fractions of matter at T = 3.16 MeV and YP = 0.1 (a) and 0.3 (b). The solid curves show our virial EOS
results, while the dashed lines show the Lattimer-Swesty EOS results, and the Shen et al. EOS results are shown by the dot-dashed curves.
For YP = 0.3, the dotted line indicates the transition density between virial EOS and Hartree mean field results. For YP = 0.1, the transition
density between virial EOS and Hartree is 0.0158 fm−3.

paper to mean field calculations using a number of different
interactions; see, for example, [34].

Our EOS includes broad distributions of nuclei, which
are not included in two commonly used EOS tables. These
distributions of nuclei make the composition of nuclear matter
in our EOS different from those in the LS and SS EOS
tables. These differences may be important for neutrino
interactions.

This paper provides the second part of our results for a
complete EOS table that will cover a broad range of temper-
atures, densities, and proton fractions for use in supernova
and neutron star merger simulations. In the future we will
use a thermodynamically consistent interpolation scheme to
match the virial EOS in this paper and the RMF EOS from
our previous paper, or similar RMF models, and generate
a complete EOS table [33]. Our virial EOS is exact in the
low-density limit. Finally, the virial expansion also provides a

suitable framework for future work that includes other modern
mass tables, such as HFB14 [31] or KTUY05 [35].
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