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Warm stellar matter within the quark-meson-coupling model
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In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model
for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free
matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in
terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear
Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC
has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
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I. INTRODUCTION

Understanding the complete quantum chromodynamics
(QCD) phase diagram and being able to reproduce all states of
matter that it describes is the final goal toward the explanation
of the evolution of the universe from its primordial times.
Unfortunately, solving the QCD is still far from possible and
physicists are left with effective theories and lattice QCD.

Effective models can be successfully applied to the de-
scription of compact-star properties in nuclear astrophysics as
well as to nuclear matter and finite nuclei properties, these
studies taking place at low and moderate temperatures. The
knowledge of the equation of state (EOS) of nuclear matter
under exotic conditions, including high-isospin asymmetries,
finite temperatures, and a wide density range, is essential for
our understanding of the evolution of the stars and of the
nuclear force underlying the calculations. One of the most
common effective models is the nonlinear Walecka model
(NLWM) [1] that reproduces the nuclear binding energy
at the correct saturation density by imposing that nucleons
exchange scalar and vector mesons. In this model, the nucleons
have no internal structure. The quark-meson-coupling (QMC)
model [2] is another effective model that bears a philosophy
similar to the NLWM, with the advantage that the internal
structure of the nucleon is introduced explicitly. Within the
QMC model, matter at low densities and temperatures is a
system of nucleons interacting through meson fields, with
quarks and gluons confined within MIT [3] bags. For matter
at very high density or temperature, one expects that baryons
and mesons dissolve and that the entire system of quarks and
gluons becomes confined within a single, big, MIT bag.

The energy of the nucleonic MIT bag is identified with the
effective mass of the nucleon. This identification is natural
at zero temperature, but if one wants to describe a system at
finite temperature, it has important implications: while in the
NLWM model the nucleon mass always decreases with tem-
perature, in the QMC it increases and may become higher than
the free mass [4]. This difference arises due to the explicit
treatment of the internal structure of the nucleon in the QMC.
When the bag is heated up, quark-antiquark pairs are excited
in the interior of the bag, increasing the internal energy of
the bag.

In the present article, instead of identifying the effective
mass of the nucleon with the bag energy, it is identified with the
free energy of the bag, and a direct consequence is the recovery
of the behavior of the NLWM for the effective mass; that is,
it decreases with increasing temperature and never becomes
higher than the corresponding free mass. This prescription
was already employed successfully in the calculation of
particle production yields on a Au + Au collision at the BNL
Relativistic Heavy Ion Collider (RHIC) [5].

QMC has been used to describe cold stellar matter.
In particular, it was used to investigate the properties of
neutron stars with the inclusion of hyperons, quarks, and
kaon condensation [6–9] as well as stellar matter subject to
very strong magnetic fields [10,11]. Pure hadronic compact
stars, above a threshold value of their gravitational mass, are
metastable to the conversion to quark stars (hybrid or strange
stars). In Ref. [12], a systematic study of the metastability of
pure hadronic compact stars using different relativistic models
for the equation of state, including QMC, was performed. It
was shown that the QMC model has a very narrow region of
metastability for pure hadronic stars. This was due to the fact
that the nucleonic EOS for QMC is very soft and, therefore,
the onset of hyperons occurs at quite high densities, which
gives rise to large critical masses. The conversion to a quark
star will occur only for a small value of the bag constant. It
was also pointed out that QMC limiting masses may be as high
as 1.9 M�.

In Refs. [13,14] it was shown that the density dependence
of the symmetry energy at saturation; namely, the symmetry
energy slope and the symmetry term of the incompressibility
of the nuclear EOSs at saturation, are within the constraints
imposed by isospin diffusion in heavy-ion collisions [15].
Moreover, in Ref. [14], results obtained with QMC were
compared thoroughly with those arising from several Skyrme,
relativistic effective models, and a microscopic Brueckner
Hartree-Fock calculation and the values of the parameters char-
acterizing the QMC equation of state of isospin asymmetric
nuclear matter were shown to fall within the trends predicted
by those other models.

Other constraints coming from both heavy-ion collisions
and the phenomenology of compact stars have been proposed
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[16–18]. QMC satisfies some of these constraints. The EOS at
intermediate or high densities falls within the limits imposed
by heavy-ion collisions [19]. Another constraint is the one
imposed by the pulsar B in the double-pulsar system J0737-
3039 with a mass equal to 1.249 ± 0.001 M� [16]. The low
mass of this pulsar seems to indicate that it was formed in a
type-I supernova of an ONeMg white dwarf, in which case we
predict a baryon mass of MB = 1.366 − 1.375 M�, assuming
no loss of matter, or MB = 1.353 − 1.362 M� for 1% mass
loss. QMC predicts 1.356 M� within this last mass interval.
QMC fails to obey the constraint imposed by compact-star
cooling observations. Within QMC, the direct Urca process
occurs for densities larger than 1.04ρ0, which are smaller than
the value 1.35ρ0 obtained from observation of compact-star
cooling. This result is expected because the isovector channel
within QMC is described too simply, giving rise to a hard
symmetry energy. The QMC symmetry energy could be easily
corrected by including a nonlinear ωρ term as in Ref. [20],
which would soften the symmetry energy and shift the direct
Urca onset to larger densities. In Ref. [17], a constraint on
the radius of neutron stars (T = 0) is imposed by microscopic
calculations based on chiral effective-field theory. The authors
show that, for a star with M = 1.4 M�, the radius should be
R = 11.8 ± 2.1 km. QMC predicts 13.6 km, well inside the
predicted interval. Constraints on the mass-radius relation for
neutron stars and on the pressure-density relation of dense
matter are also imposed in Ref. [18], where an empirical
dense-matter equation of state is obtained from a set of seven
neutron stars with well-determined distances (three type I
x-ray bursters, three transient low-mass x-ray binaries, and
one isolated cooling neutron star, RX J18563754). From the
analysis of these seven objects, the authors predict a radius
of 11–12 km for a star with a mass 1.4 M�, which QMC
does not satisfy, and conclude that the maximum mass is, in
general, larger than 1.8 M�. QMC predicts a the maximum
star mass of 1.78 M�, only slightly smaller than this value.
Some of these constraints (i.e., the ones coming from the
observation of compact stars) should still be considered
with care either because the of the small number of studied
objects or due to the uncertainty on the interpretation of the
observations.

The QMC model was never applied before to describe warm
stellar matter, present in protoneutron stars and, therefore, this
is in this direction. We consider both neutrino-free matter and
neutrino-trapped matter. The largest temperatures are attained
after the neutrinos leave the star [21]. In Ref. [8], the effect
of neutrino trapping on hybrid stars was studied, but only
at zero temperature. Although one does not expect that the
temperature of matter inside compact stars is uniform, these
results are important in the calculations of stellar evolution. A
more probable possibility for stellar matter is that the entropy
is constant in the interior of compact stars and the temperature
varies [21,22]. This calculation is also performed next. All
results are compared with the ones obtained with the NLWM.

This article is organized as follows: In Sec. II, we give a
brief review of the QMC model and its generalization for finite
temperatures; in Sec. III, we present some results dealing with
the description of warm nuclear matter within the QMC; in
Sec. IV, we draw our final conclusions.

II. FORMALISM

In the QMC model, the nucleon in nuclear medium is
assumed to be a static spherical MIT bag in which quarks
interact with the scalar and vector fields σ , ω, and ρ; and
these fields are treated as classical fields in the mean-field
approximation [2,4]. The quark field ψq(r, t) inside the bag
then satisfies the Dirac equation[

iγ · ∂ − (mq0 − Vσ ) − γ 0
(
Vω + 1

2τ3qVρ

)]
ψq(r, t) = 0,

(1)

with q = u, d, s, where Vσ = g
q
σ σ0, Vω = g

q
ωω0, and Vρ =

g
q
ρρ03 with σ0, ω0, and ρ03 being the classical meson fields.

The quantities g
q
σ , g

q
ω, and g

q
ρ are the quark-meson couplings

with the σ , ω, and ρ mesons, respectively, and m0
q is the current

quark mass. The normalized ground state for a quark in the
bag is given by

ψq(r, t) = Nq exp(−iεq t/RB)

(
j0

( xq r

RB

)
iβq �σ · r̂j1

( xqr

RB

)
)

χq√
4π

,

(2)

where r̂ = r/|r| and

εq = �q + RB

(
Vω + mq

τ Vρ

)
,

(3)

βq =
√

�q − RB m∗
q

�q + RB m∗
q

,

with the normalization factor given by

N−2
q = 2R3

Bj 2
0 (xq)[�q(�q − 1) + RBm∗

q/2]/x2
q , (4)

where �q ≡ √
x2

q + (RB m∗
q)2, m∗

q = m0
q − g

q
σ σ0, RB is

the bag radius of baryon B, χq is the quark spinor,
and m

q
τ = 1/2(−1/2) for quark u (d). The quantities

ψq, εq, βq, Nq, �q , and m∗
q all depend on the baryon

considered.
The boundary condition at the bag surface is given by

iγ · n̂ψq = ψq, (5)

where n̂ is the unit vector normal to the surface. For this, the
ground state reduces to

j0(xq) = βq j1(xq), (6)

which determines the dimensionless quark momentum xq .
At finite temperatures, the three quarks inside the bag can be

thermally excited to higher angular momentum states and, in
addition, quark-antiquark pairs can be created. For simplicity,
we assume that the bag describing the nucleon continues to
remain in a spherical shape with radius R, which is now
temperature dependent. The single-particle energies in units
of R−1 are given as

εnκ
q = �nκ

q + RB

(
Vω + mq

τ Vρ

)
, (7)

for the quarks and

εnκ
q̄ = �nκ

q − RB

(
Vω + mq

τ Vρ

)
, (8)
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for the antiquarks, where the + sign is for u quarks and − for
d quarks, and

�nκ
q =

√
x2

nκ + R2
Bm∗

q
2. (9)

In the above, the quark eigenvalues xnκ for the state character-
ized by n and κ are determined by the boundary condition at the
bag surface. Thus, the quark eigenvalues xnκ become modified
from the surrounding nucleon medium at finite temperature.
The total energy from the quarks and antiquarks at finite
temperature is

Etot
B =

∑
q,n,κ

�nκ
q

RB

(
f q

nκ + f q̄
nκ

)
, (10)

where

f q
nκ = 1

e(�nκ
q /RB−νq )/T + 1

,

(11)

f q̄
nκ = 1

e(�nκ
q /RB+νq )/T + 1

,

with νq being the effective quark chemical potential, related to
the quark chemical potential µq as

νq = µq − Vω − mq
τ Vρ. (12)

For a given temperature T , the effective quark chemical
potentials νq are determined from the total number of quarks,
isospin density, and strangeness:

n
j

0 =
∑
q,n,κ

(
f q

nκ − f q̄
nκ

) ≡ 3, (13)

n
j

3 =
∑
q,n,κ

2mq
τ

(
f q

nκ − f q̄
nκ

) ≡ 2m(j )
τ , (14)

rj
s =

∑
q,n,κ

rs(q)
(
f q

nκ − f q̄
nκ

)
. (15)

The energy of a static bag describing baryons consisting of
three ground-state quarks can be expressed as

E
bag
B = Etot

B − ZB

RB

+ 4

3
π R3

B BB, (16)

where ZB is a parameter which accounts for zero-point motion
and BB is the bag constant. The entropy of the bag is
defined as

Sbag
B = −

∑
q,n,κ

[
f q

nκ ln f q
nκ + (

1 − f q
nκ

)
ln

(
1 − f q

nκ

)
+ f̄ q

nκ ln f̄ q
nκ + (

1 − f̄ q
nκ

)
ln

(
1 − f̄ q

nκ

)]
, (17)

and the free energy for the bag is given by

F
bag
B = E

bag
B − T S

bag
B . (18)

The set of parameters used in the present work is given in
Ref. [7]. The effective mass of a nucleon bag at rest is taken
to be

M∗
B = F

bag
B , (19)

differently from Ref. [4] where the bag energy was considered
instead of the free energy to define the effective mass.
The equilibrium condition for the bag is then obtained by

minimizing the effective mass M∗
B with respect to the bag

radius:

d M∗
B

d R∗
B

= 0. (20)

Once the bag radius is obtained, the effective baryon mass is
immediately determined. The total energy density of baryonic
matter at finite temperature T and at finite baryon density ρ is

E = 2

(2π )3

∑
B

∫
d3k[ε∗(fB + f̄B) + V0B(fB − f̄B)]

+ 1

2
m2

σ σ 2 − 1

2
m2

ωω2 − 1

2
m2

ρρ
2
03

+
∑

l

γl

(2π )3

∫
d3k

(
k2 + m2

l

)1/2
(fl + f̄l), (21)

where γl = 2 (1) for electrons and muons (neutrinos), fB and
f̄B are the thermal distribution functions for the baryons and
antibaryons and fl and f̄l are the distribution functions for the
leptons:

fB = 1

e(ε∗−νB )/T + 1
, f̄B = 1

e(ε∗+νB )/T + 1
,

(22)

fl = 1

e(εl−µe)/T + 1
, f̄l = 1

e(εl+µe)/T + 1
,

where ε∗ = (�k2 + M∗
B

2)1/2 is the effective nucleon energy,
νB = µB − V0B is the effective baryon chemical potential,
and V0B = gωBω + I3B gρBb03 (I3B is the isospin projection
of the baryon species B) and εl = (k2 + m2

l )1/2. The couplings
of the mesons with the baryons gωB and gρB will be discussed
below. The thermodynamic grand potential density and the
free-energy density are defined as

� = F −
∑
B

µBρB, F = E − T S, (23)

with the entropy density S = S/V is given by

S = −
∑
B

2

(2π )3

∫
d3k[fB ln fB + (1 − fB) ln(1 − fB)

+ f̄B ln f̄B + (1 − f̄B) ln(1 − f̄B)]. (24)

The baryon density (of each baryon species) is given by

ρB = 2

(2π )3

∫
d3k(fB − f̄B), (25)

so that the total baryon density is ρ = ∑
B ρB . The pressure is

the negative of � which, after an integration by parts, can be
written as

P = 1

3

∑
B

2

(2π )3

∫
d3k

k2

ε∗ (fB + f̄B)

− 1

2
m2

σ σ 2 + 1

2
m2

ωω2 + 1

2
m2

ρρ
2
03

+ 1

3

∑
l

γl

(2π )3

∫
d3k

k2(
k2 + m2

l

)1/2 (fl + f̄l). (26)

From the above expression, the pressure depends explicitly
on the meson mean fields σ , ω, and ρ03. It also depends on
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the baryon effective mass M∗
B which, in turn, also depends on

the sigma field [see Eqs. (10)–(20)]. At a given temperature
and for a given baryon density, the effective mass is known
for given values of the meson fields, once the bag radius RB

and the effective quark chemical potentials νq are calculated
by using Eqs. (13)–(15). The meson fields σ , ω0, and ρ03 are
determined through

∂P

∂σ
=

(
∂P

∂M∗
N

)
µi,T

∂M∗
N

∂σ
+

(
∂P

∂σ

)
M∗

N

= 0, (27)

m2
ωω0 =

∑
B

gωBρB, (28)

m2
ρρ03 =

∑
B

gρBI3BρB. (29)

The hyperon couplings are not relevant to the ground-state
properties of nuclear matter, but information about them can
be available from the levels in hypernuclei [23–28]:

gσB = xσBgσN, gωB = xωBgωN, gρB = xρBgρN,

and xσB , xωB , and xρB are equal to 1 for the nucleons and
acquire different values in different parametrizations for the
other baryons. Note that the s-quark is unaffected by the sigma
and omega mesons (i.e., gs

σ = gs
ω = 0).

We have fixed the xωB value from the hyperon potentials in
nuclear matter, UB = −(M∗

B − MB) + xωBgωNω0, for B = �,
�, and � to be −28, 30, and −18 MeV, respectively. We found
that xω� = 0.743, xω� = 1.04, and xω� = 0.346. We fixed the
xρB = 1 for all the baryons.

The composition of the stelar matter is determined by the
requirements of the charge neutrality and chemical equilibrium
under the weak processes for trapped neutrinos:

µB = µn − qB(µe − µνe
), (30)

where qB is the baryon electric charge. For charge neutrality,
we must have ∑

B

qBρB +
∑

l

qlρl = 0, (31)

where ql is the lepton charge. In neutrino-free matter, µνe
is

set to zero in the above equation.
For the bag radius, we take RN = 0.6 fm. The two

unknowns ZN and BN are obtained by fitting the nucleon mass
M = 939 MeV and enforcing the stability condition for the
bag at free space. The values obtained are ZN = 4.005 06 and
B

1/4
N = 210.854 MeV for mu = md = 5.5 MeV. Next, we fit

the quark-meson coupling constants g
q
σ , gω = 3g

q
ω, and gρ =

g
q
ρ for the nucleon to obtain the correct saturation properties

of the nuclear matter, EN ≡ E/ρ − M = −15.7 MeV at
ρ = ρ0 = 0.15 fm−3, asym = 32.5 MeV, K = 257 MeV and
M∗ = 0.774M . We next present our results.

III. RESULTS

In this section, we discuss the effect of temperature on
the EOS of warm stellar matter both neutrino free and with
trapped neutrinos. We consider a fixed temperature and also a
fixed entropy as suggested by supernova simulations [22]. The

FIG. 1. (Color online) EOS for (a) different temperatures, (b) T =
10 MeV and different lepton fractions, and (c) fixed entropy per
baryon (S = 1 and 2) and different lepton fractions. QMC was used
for all temperatures and entropies. For comparison, some results
obtained with the GM1 parametrization of NLWM are also included.

effect of temperature on the particle yields is also discussed.
Finally, we present the mass and radius properties of stars
described by the EOS we have obtained.

In Fig. 1, the EOS is shown for different cases. In Fig. 1(a)
four temperatures are considered for neutrino-free matter in
β equilibrium. One can see that the EOS does not vary
considerably up to T = 20 MeV, but it becomes much harder
at T = 50 MeV. The softening that occurs in the range
2 < E < 3 fm−4 is due to the onset of hyperons at lower
densities for finite temperatures. In Fig. 1(b) three EOS are
shown for T = 10 MeV: one for neutrino-free matter and the
others for matter with neutrinos and different lepton fractions.
The neutrinos make the EOS harder above E = 2.5 fm−4 after
the onset of hyperons. This happens because the onset of
hyperons occurs with a reduction of the electron fraction and,
therefore, a strong increase in neutrinos. However, below that
energy density, when only nucleonic degrees of freedom are
present, the EOS is softer. This occurs because the presence of
neutrinos lowers the fraction of neutrons [21] and, therefore,
the neutron pressure. In Fig. 1(c), the EOS for neutrino-free
matter and matter with a lepton fraction equal to 0.4 are
displayed for fixed entropies per baryon S = 1 and S = 2.
There is not a large difference between S = 1 and S = 2 EOS:
at low densities the S = 1 EOS is softer but, for the larger
densities, the opposite occurs because of an earlier onset of
the hyperons for the larger entropy. The amount of leptons is
more important than the entropy in establishing the softness
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d
M

∗ B
d
σ

d
M

∗ B
d
σ

FIG. 2. (Color online) Baryons’ effective mass: (a) effective mass
of the baryons at T = 10 MeV; (b) derivative of the effective mass
with respect to sigma versus baryon density at T = 10 MeV (top)
and at T = 0 MeV (bottom).

or hardness of the EOS. The presence of neutrinos shifts the
onset of hyperons to larger densities.

In Fig. 2(a), the baryon effective masses are shown for T =
10 MeV. Contrary to what was found in Ref. [4], they never
reach values above their free masses. The differences are due
to the choice of the bag free energy (instead of the bag energy)
in defining the effective masses. The curves for the effective
masses at zero temperature are practically indistinguishable
from the ones at 10 MeV (differences are of the order of
1 MeV) and hence they are not shown. A figure with the
effective masses at different temperatures is shown in Ref. [5],
from where we can see that the masses do not vary much up
to 50 MeV but, for higher temperatures, the decrease in the
mass is quite large. In Ref. [29], the same prescription given in
Ref. [4] was used and, even so, the effective masses came out
below the free masses. This is a result we do not understand

and did not obtain when the quark-medium-dependent energy
levels are determined self-consistently. In the present work,
we have made a completely self-consistent calculation using
all the internal levels necessary to get convergence in the sums
that involve the quark degrees of freedom.

In Fig. 2(b), we show the derivative of the effective mass
with respect to the sigma field at T = 0 and T = 10 MeV. For
low densities, the derivative seems to be proportional to the
number of u and d quarks: 7.5 (n), 5 (�, �), and 2.5 (�).
For larger densities, there is a deviation from this trend. These
derivatives indicate that the effective masses are not linear
in the sigma field or, equivalently, that the sigma coupling
constant decreases with density. We have verified that the ratio
between the hyperon masses and the nucleon masses is almost
constant: 0.66 for � and � and 0.32 for �. Only a slight
decrease of the order of 4% (8%) is observed for �/� (�) in
the range 0 < ρ < 0.8 fm−3. A smaller decrease rate of the
hyperons at large densities does not favor their formation as
much as in the NLWM at high densities, as can be confirmed
from Fig. 8, where it is seen that the slope of the NLWM
curves (strangeness fraction versus density) are larger than the
corresponding QMC curves.

In Fig. 3, we display the effective baryon radii at T =
10 MeV. It is seen that they decrease with density. The larger
differences occur for the lighter baryons. The same behavior
was obtained at zero temperature. In Ref. [30], a swelling of the
nucleons in the nuclear medium was predicted. This swelling
is due to the medium modification of the meson cloud of the
nucleon. However, as referred to in Ref. [31], the swelling
is due to the presence of a bath of pions which surrounds
the nucleon. Models that do not consider dressed nucleons,
like QMC, do not predict nucleon swelling. In Ref. [5], it
was shown that the radii increase with increasing temperature.
However, for T = 20 MeV or below, the differences are
negligible.

In Figs. 4, 5, 6, and 7, we show the particle fractions in
four different situations. In Fig. 4, baryon fractions are shown
for neutrino-free matter at T = 0 and 10 MeV. Due to the
hyperon-meson coupling constants chosen, the onset of the

FIG. 3. Effective radius of the baryons at T = 10 MeV.
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FIG. 4. (Color online) QMC particle yields at finite temperature:
(a) at T = 0 MeV and (b) at T = 10 MeV.

� is shifted to larger densities and so is not shown on the
plot. � is the first hyperon to appear, immediately followed by
�−. The negative charge of this hyperon compensates for its
large mass. The onset of the heavier baryons occurs at lower
densities as the temperature increases. Below, we discuss how
the strangeness fraction depends on the temperature.

In Fig. 5, the baryon fractions are shown for matter with
trapped neutrinos at a fixed temperature and two different
lepton fractions: 0.3 and 0.4. The larger the lepton fraction, the
later the onset of hyperons takes place. Different fixed lepton
fractions influence the particle yields through the chemical
potentials. The appearance of negatively charged hyperons

FIG. 5. (Color online) QMC particle yields at T = 10 MeV for
fixed lepton fraction (a) yl = 0.3 and (b) yl = 0.4.

FIG. 6. (Color online) QMC particle yields for fixed entropy of
(a) S = 1 and (b) S = 2.

reduces the electron fraction and, therefore, increases the
neutrino fraction.

In Fig. 6, the baryon fractions are shown for neutrino-free
matter at fixed entropy per baryon (S = 1 and 2). The effect of
increasing the entropy is similar to the effect of increasing the
temperature, as can be checked in Fig. 4 (i.e., hyperons appear
at lower densities for higher entropies). For S = 2, even the
�− is present, although in very small amounts.

Finally, in Fig. 7 we display the particle yields in matter
with trapped neutrinos at fixed entropy per particle. We have
considered a lepton fraction of 40% and the entropies per
particle S = 1 and S = 2. As already discussed for a fixed

FIG. 7. (Color online) QMC particle yields for fixed entropy and
lepton fractions of (a) S = 1 and yl = 0.4 and (b) S = 2 and yl = 0.4.
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FIG. 8. (Color online) QMC strangeness fraction versus density
for different entropies and temperatures. For comparison, some GM1
results are also included.

temperature, the presence of neutrinos shifts the hyperon onset
to larger densities. It is also seen that a larger entropy favors
the onset of hyperons at smaller densities and a larger hyperon
fraction.

The effect of temperature on the strangeness fraction is best
discussed analyzing Fig. 8. In this figure, we have plotted, for
fixed entropy and fixed temperature, the fraction of strangeness
in the system

rs =
∑

B qsBρB

3ρ
, (32)

where qsB is the strangeness charge. At fixed entropy, one
can see that a system with S = 2 carries more strangeness
than a system with S = 1, and the strange particles appear
at lower densities. This reflects the particle yields already
discussed in Figs. 6 and 7. Although the onset of strangeness
occurs at lower densities for the larger entropy per baryon,
for the larger densities the differences between different
entropy values decrease. For comparison we have also included
the strangeness fraction obtained for S = 1 with the GM1
parametrization [25] of the NLWM and the hyperon-meson
couplings fitted to the same hyperon potentials in nuclear
matter [28]. It is seen that, within QMC, less strange particles
are produced and they appear at higher densities. This is due
to the fact that the EOS with only nucleon degrees of freedom
is softer for QMC than GM1.

If fixed temperatures are considered [see Fig. 8(a)], one
concludes that strangeness is enhanced with the increase of
temperature and its onset occurs at smaller densities. However,
comparing T = 0 with T = 10 MeV neutrino-free matter, it
is seen that, for ρ ∼ 0.5 fm−3 and above, the strangeness
fractions almost coincide. For T = 10 MeV, GM1 predicts
a much larger strangeness fraction. We also observe that
neutrino-free systems carry more strangeness than systems

FIG. 9. (Color online) Neutrino yields for fixed lepton fraction.

with fixed lepton fractions, and the higher the lepton fraction,
the less strange particles are present. Figure 8 summarizes the
conclusions taken from Figs. 4–7 with the particle yields.

The strangeness fraction for matter with trapped neutrinos
is closely related with the neutrino fraction: larger strangeness
fractions imply smaller electron fractions and, therefore, larger
neutrino fractions when the total lepton fraction is fixed. This is
seen in Fig. 9, where the neutrino fractions for a fixed yl = 0.4
and different situations; namely, S = 1 and 2 with QMC, and
T = 10 MeV and S = 1 within QMC and GM1, are shown.
The neutrino fraction is larger for a higher fixed entropy since
there are also more hyperons for the larger entropy. For a fixed
entropy of S = 1, the neutrino fraction reaches a minimum at
higher densities for QMC as compared with the NLWM and
retains smaller values for densities above the minimum. This
is again due to the fact that, for QMC, the strangeness onset
occurs at larger densities and remains smaller. The behavior
below the minimum reflects the properties of the nucleonic
EOS: a larger proton fraction corresponds to a larger electron
fraction and a smaller neutrino fraction. Similar conclusions
are obtained when comparing QMC and GM1 at the same
temperature (T = 10 MeV).

In Fig. 10, the temperature of the system is shown for fixed
entropies S = 1 and S = 2 both for neutrino-free and neutrino-
trapped matter. A system with higher entropy reaches higher
temperatures, but never higher than 35 MeV for the densities
shown and S � 2. The full green curves are obtained for
neutrino-free matter. They show a softening when the hyperons
set on: for fixed entropy, temperature cannot rise so fast when
the number of degrees of freedom increases. The softening of
the temperature curve is larger for GM1 and occurs at smaller
densities because the strangeness fraction is larger and its onset
occurs at smaller densities. This softening does not occur, or
is much smaller, for matter with trapped neutrinos due to the
late onset of hyperons. A comparison of GM1 and QMC at
small densities shows that temperature rises more steeply for
GM1 both for neutrino-free and neutrino-trapped matter. This
mainly reflects the differences between the nucleonic QMC
and GM1 EOS; namely, the larger effective masses predicted
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FIG. 10. (Color online) Temperature versus density. For compar-
ison, some GM1 results are also included.

by QMC. The temperature of a multicomponent Fermi gas
system at fixed entropy is given by [32]

T = S

π2

∑
i

p3
Fi

pFi

√
p2

Fi + M∗
Fi

2
.

Larger effective masses correspond to smaller temperatures.
From this expression it is also seen that increasing the
degrees of freedom makes the temperature increase more
slowly because the Fermi momenta of the system compo-
nents decrease. The temperature oscillates differently in the
QMC model from the NLWM, but the overall numbers are
similar.

Neutrino chemical potentials are shown for different situa-
tions in Fig. 11. The values of the neutrino chemical potentials
reflect their abundances: for a fixed temperature the NLWM
produces neutrinos with much higher chemical potentials for
densities above hyperon onset. For S = 2, below hyperon
onset, neutrino fractions are smaller due to larger proton and,
therefore, electron fractions. This is reflected in the smaller

FIG. 11. (Color online) Neutrino chemical potential versus den-
sity. For comparison, some GM1 results are also included.

TABLE I. Stellar properties at different temperatures and en-
tropies per baryon. QMC and the GM1 parametrization of the NLWM
have been used.

Model Mmax(M�) Mb(M�) R(km) ε0(fm−4)

QMC (T = 0) 1.78 2.02 12.65 4.63
QMC (T = 10 MeV) 1.78 2.01 12.89 4.49
QMC (T = 20 MeV) 1.79 2.00 14.48 4.52
QMC (S = 1) 1.78 1.98 12.81 4.61
QMC (S = 2) 1.78 1.95 13.22 4.60
QMC (S = 1, yl = 0.4) 1.92 2.04 11.68 4.38
QMC (S = 2, yl = 0.4) 1.94 2.01 11.85 4.78
NLWM (T = 0 MeV) 1.77 2.00 12.02 5.65
NLWM (T = 10 MeV) 1.78 2.00 12.20 5.63
NLWM (T = 20 MeV) 1.79 2.01 13.42 5.31
NLWM (S = 1) 1.78 2.00 12.13 5.52
NLWM (S = 2) 1.80 1.98 12.37 5.27
NLWM (S = 1, yl = 0.4) 2.06 2.28 12.13 5.37
NLWM (S = 2, yl = 0.4) 2.06 2.23 12.31 5.18

neutrino chemical potentials obtained (dotted line). We also
compare neutrino chemical potentials for different lepton
fractions, namely 0.3 and 0.4. A smaller lepton fraction implies
a smaller neutrino fraction and, therefore, smaller neutrino
chemical potentials.

The radii, gravitational, and baryonic masses of com-
pact stars are calculated by the integration of the Tolman-
Oppenheimer-Volkoff (TOV) equations, which use as input
the EOS obtained with the QMC model. The results are shown
in Table I and Figs. 12–14. We also include the corresponding
results obtained with the GM1 parametrization of the NLWM
for comparison.

Temperature does not strongly effect the maximum grav-
itational mass and the baryonic maximum mass decreases
slightly with temperature or entropy. Similar conclusions were
obtained in Ref. [21]. For a neutrino-free star, the radius of
the maximum mass increases with temperature. This occurs
because the EOS becomes harder when temperature increases.
Central energy densities of maximum-mass configurations are
∼1 fm−4 smaller in QMC than GM1: the larger hyperon

FIG. 12. (Color online) Neutron star radius versus mass at T = 0,
10, and 20 MeV for QMC and GM1.
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fraction in the core of the star for GM1 is the reason for this
behavior. This is also the cause of the larger radius in QMC.

One important difference between QMC and GM1 is the
window of metastability. If we consider that the star evolves
from a configuration with S = 1 and trapped neutrinos to
a warmer neutrino-free configuration with S = 2 before it
cools, we see that a set of stars close to the maximum-mass
configuration with trapped neutrinos will decay to a low-mass
blackhole during cooling. For GM1, this is a window with
0.3 M� baryonic mass, whereas for QMC it is smaller,
∼0.1 M�. This is a consequence of the much smaller hyperon
fraction and, therefore, neutrino fraction in QMC stars with
trapped neutrinos. In fact, a star with no hyperons has a smaller
maximum mass in a configuration with trapped neutrinos than
in a neutrino-free configuration [21].

Next, we first discuss the effect of temperature on the
mass-radius graph of compact stars for fixed temperature,
although supernova simulations seem to show that it is a good
approximation to consider that stars have a uniform entropy
per baryon and not a uniform temperature [22]. QMC stars
show a similar behavior to GM1 stars, although there are
some differences. QMC model predicts smaller radii for stars
with masses below 1.7 M�, because QMC has a softer EOS.
However, this is no longer the case for the most massive stars
because these have a core with a smaller fraction of hyperons
within QMC.

The trend is the same for a fixed entropy per baryon, as seen
in Fig. 13, where the mass-radius graph of the families of stars
obtained with QMC and GM1 for an entropy per baryon S = 1
and 2 is shown. Except for the most massive stars, the radii
of the QMC stars are smaller. It is only above 1.5 M� masses
that GM1 stars have a core which contains hyperons, while
for QMC stars this occurs for mass larger than 1.6 M�. The
larger fraction of hyperons in the core of GM1 maximum-mass
configurations gives rise to larger central-energy densities and
smaller radii.

Figure 14 allows a clearer discussion on the metastability of
QMC stars with hyperons. In order for metastability to occur,
a stable star that cools down should end up in a configuration
with the same baryonic mass which is not stable. Comparing

FIG. 13. (Color online) Neutron star radius versus mass for S = 1
for QMC and GM1.

FIG. 14. (Color online) Baryonic mass versus gravitational mass
of neutron star for QMC model.

the neutrino-free configurations for S = 0, 1, and 2, it is seen
that the maximum baryonic mass configuration occurs at S = 0
and, therefore, no metastability occurs during the cooling down
of a neutrino-free star. However, the same is not true for stars
with trapped neutrinos: there is a set of configurations for
S = 1 with trapped neutrinos that have a larger baryonic mass
than the maximum stable baryonic mass of a neutrino-free star
with S = 2. These are the metastable stars that will decay into
a low-mass blackhole during cooling.

In Ref. [33], the threshold densities for the appearance
of the hyperons in neutrons stars (T = 0) were obtained.
The underlying calculation was based on effective single-
particle potentials in the Hartree-Fock approximation and a
set of available hyperon-nucleon interactions. It was shown
that, although the results are model dependent, strangeness
always appears around twice the saturation density. In their
calculation, �− was always the first hyperon to appear.
However, from an experimental point of view, the �-nucleon
interaction is better constrained. For this hyperon, they have
obtained a larger onset density 2 � ρ � 3.5 fm−3. In our case,
the first hyperon (�) appears at 2.66ρ0 and the second one
to appear is the � because we have considered a repulsive
potential for the �−. Moreover, the authors of Ref. [33] claim
that strangeness cannot be ignored in the interior of neutron
stars and confirm the already well-known consequences on
their mass and radius. However, contrary to the calculation
presented in Ref. [33], we predict much larger maximum
star masses. These could be a consequence of the fact that
three-body hyperon forces were not included.

IV. CONCLUSIONS

In the present work, we have investigated warm stellar
matter present in protoneutron stars in the framework of
the QMC model at finite temperatures. The EOS for warm
hadronic matter with hyperon degrees of freedom was cal-
culated at fixed temperatures and fixed entropy per particle
(variable temperature) and the respective matter properties,
particle fractions, and strangeness content were obtained and
discussed both for neutrino-free matter and matter with trapped
neutrinos.
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A prescription for the calculation of the baryons effective
masses in terms of the free energy was used, which enabled
us to apply the QMC model for finite temperature once the
baryon effective masses turned out to behave as expected.

The hyperon potentials in nuclear matter have been used to
fix the coupling constants of the hyperons to the ω meson. The
σ meson couplings are determined self-consistently from the
effective-hyperon-mass calculation. For the hyperon potentials
in nuclear matter we took U = −28, 30, and −18 MeV,
respectively, for �, �, and �. We considered the same
coupling constant to the ρ meson for all baryons.

All results were compared with the ones obtained with the
GM1 parametrization of the nonlinear Walecka model. The
differences between both models are mainly due to the softer
QMC EOS and the larger effective masses it predicts. As
a consequence, the hyperon onset occurs at larger densities
for QMC and a smaller neutrino fraction is obtained for
matter with trapped neutrinos at a fixed lepton fraction. These

differences certainly influence the development of the neutron
star during cooling. In particular, it was shown that the window
of metastability for the conversion into a low-mass blackhole
during cooling is much smaller than the one obtained with the
NLWM.

Similar conclusions had already been found at zero tem-
perature in Ref. [14], where it was shown that the softness of
the QMC model gave rise to high critical masses and a small
window for metastability to conversion to a quark star.
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