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Role of mesons in the electromagnetic form factors of the nucleon
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The roles played by mesons in the electromagnetic form factors of the nucleon are explored using as a basis
a model containing vector mesons with coupling to the continuum together with the asymptotic Q2 behavior of
perturbative QCD. Specifically, the vector dominance model (GKex) developed by E. L. Lomon is employed, as
it is known to be very successful in representing the existing high-quality data published to date. An analysis is
made of the experimental uncertainties present when the differences between the GKex model and the data are
expanded in orthonormal basis functions. A main motivation for the present study is to provide insight into how
the various ingredients in this model yield the measured behavior, including discussions of when dipole form
factors are to be expected or not, of which mesons are the major contributors, for instance, at low Q2 or large
distances, and of what effects are predicted from coupling to the continuum. Such insights are first discussed in
momentum space, followed by an analysis of how different and potentially useful information emerges when
both the experimental and theoretical electric form factors are Fourier transformed to coordinate space. While
these Fourier transforms should not be interpreted as “charge distributions,” nevertheless the roles played by the
various mesons, especially those which are dominant at large or small distance scales, can be explored via such
experiment–theory comparisons.
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I. INTRODUCTION

Whether one uses hadronic language involving some set
of baryons and mesons or QCD language with quarks and
gluons, the nucleon is not a point Dirac particle, but has spatial
extension. Its properties may be described, in a large part, in
terms of a set of elastic electric and magnetic form factors, Gp

E ,
Gn

E , G
p

M , and Gn
M , arising in electromagnetic elastic electron

scattering from protons and neutrons, GA arising when the
weak interaction plays a role, together with Gs

E and Gs
M , the

strangeness form factors that may play a role in parity-violating
elastic electron scattering. In this article we focus on the first
four, the electric and magnetic form factors of the proton
and the neutron. Clearly having a detailed understanding of
all of the form factors of the nucleon constitutes a major
goal in physics. These are central to our understanding of
strongly coupled QCD and form the building blocks for much
of what is done in exploring the electroweak structure of
nuclei.

In experimental studies the electromagnetic form factors
of the proton have traditionally been extracted using the
Rosenbluth equation for elastic electron scattering from hy-

drogen, that is, with no polarization information (no polarized
electrons, no polarized hydrogen target, no measurement of
the recoiling proton polarization). The Rosenbluth differential
cross section may be written as

dσ0

d�
(Ee, θe) = σMott(Ee, θe)

(1 + τ )ε

{
ε
[
G

p

E(τ )
]2 + τ

[
G

p

M (τ )
]2}

,

(1)
where τ ≡ |Q2|/4m2

p is the dimensionless four-momentum
transfer and

ε ≡ [1 + 2(1 + τ ) tan2 θe/2]−1 (2)

is the so-called virtual photon polarization, governing the
balance between longitudinal and transverse responses. The
factor σMott is the Mott cross section [1], that is, the cross
section for scattering from structureless fermions. In deriving
Eq. (1) it has been assumed that the one-photon-exchange
approximation is valid. In principle, by varying the electron
scattering angle θe at fixed τ , one can separate G

p

E from
G

p

M . At low Q2 this is the usual procedure; however, at high
Q2 typically the term involving the magnetic form factor
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dominates, with the term involving the electric form factor
contributing only at the few percent level.

Effects beyond the one-photon-exchange approximation
are thought to play a significant role [2–4] and thereby
modify Eq. (1) from its standard Rosenbluth form. At low Q2

the present understanding is that such contributions provide
relatively small corrections, and thus Eq. (1) is a reasonably
good approximation. In contrast, at high Q2 this is not believed
to be the case, making relatively large corrections necessary
before G

p

E can be extracted using the Rosenbluth cross section.
A simple estimate can help to make this clear. Defining the ratio

ξp ≡ G
p

E√
τG

p

M

= Rp

µp

√
τ

, (3)

where Rp ≡ µpG
p

E/G
p

M (see discussions in Sec. III), the
Rosenbluth cross section in Eq. (1) is seen to be proportional
to 1 + εξ 2

p . Using either the model to be discussed in the next
section or the data in the following section, one finds that at
Q2 = 1(5) (GeV/c)2 one has ξp ∼ 0.6(0.1). Accordingly, in
the latter case the second term [the one containing (Gp

E)2] is
only about 1% of the first term, namely, about α; as a conse-
quence it is not surprising that higher-order QED corrections
play a role. This issue will be definitively resolved when new
measurements are made using both electrons and positrons
to exploit the sign change that occurs in the interference
between one- and two-photon-exchange contributions when
the lepton sign is reversed. Experiments are planned or in
progress to address these issues at JLab, Novosibirsk, and
DESY(OLYMPUS) [5–7].

In recent decades new approaches have been used to
separate G

p

E from G
p

M , namely, by using polarized electrons
and either polarized hydrogen targets, 1 �H (�e, e′p), or by
measuring the recoil polarization of the proton in the final
state after the elastic scattering, 1H (�e, e′ �p). For instance, for
the polarized electron/polarized target case one has

dσ

d�
(Ee, θe; θ∗, φ∗)

= dσ0

d�
(Ee, θe)[1 + pe �pT · �A(τ, ε; θ∗, φ∗)], (4)

where pe is the longitudinal electron polarization, �pT is a
vector pointing in the direction characterized by the angles
(θ∗, φ∗) in a coordinate system with the z axis along the virtual
photon direction and with the normal to the electron scattering
plane lying along the y axis (see Ref. [8]). The polarization
information is contained in the product

�pT · �A(τ, ε; θ∗, φ∗) ∼
√

2εG
p

E(τ )Gp

M (τ ) sin θ∗ cos φ∗

+
√

τ (1 + ε)
[
G

p

M (τ )
]2

cos θ∗ (5)

and clearly by flipping the electron’s helicity and/or the target’s
spin and choosing the target polarization to lie in at least
two different directions it is possible, at least in principle, to
separate the interference G

p

EG
p

M from the term having (Gp

M )2.
Experimentally it is clearly advantageous to form a ratio of the
result given above for two choices of polarization directions,
say (θ∗

1 , φ∗
1 ) and (θ∗

2 , φ∗
2 ):

�pT · �A(τ, ε; θ∗
1 , φ∗

1 )

�pT · �A(τ, ε; θ∗
2 , φ∗

2 )
=

√
2εG

p

E(τ )Gp

M (τ ) sin θ∗
1 cos φ∗

1 + √
τ (1 + ε)

[
G

p

M (τ )
]2

cos θ∗
1√

2εG
p

E(τ )Gp

M (τ ) sin θ∗
2 cos φ∗

2 + √
τ (1 + ε)

[
G

p

M (τ )
]2

cos θ∗
2

(6)

=
√

2ε√
τ (1+ε)

G
p

E (τ )
G

p

M (τ )
sin θ∗

1 cos φ∗
1 + cos θ∗

1
√

2ε√
τ (1+ε)

G
p

E (τ )
G

p

M (τ )
sin θ∗

2 cos φ∗
2 + cos θ∗

2

. (7)

When, as is typically done, the choice is made to employ
parallel (‖: θ∗

2 = 0) and perpendicular (⊥: θ∗
1 = π/2, φ∗

1 = 0)
kinematics, this provides a way to determine the ratio of the
form factors: √

τ (1 + ε)

2ε
· A⊥

A‖
= G

p

E(τ )

G
p

M (τ )
. (8)

Similar expressions occur when measuring the recoil polariza-
tion (see, for example, Refs. [8,9]).

Analogous studies whose goal is to extract the form factors
of the neutron must generally be undertaken by electron scat-
tering from few-body nuclei. In particular, inclusive quasielas-
tic scattering of polarized electrons from polarized 3He,
namely, 3 �He(�e, e′)X, and semi-inclusive quasielastic scatter-
ing of polarized electrons from either polarized deuterons or
3He, namely, 2 �H (�e, e′n)p and 3 �He(�e, e′n)X, respectively, or

with polarization transfer to final-state neutrons, 2H (�e, e′ �n)p,
have all been used to provide effectively elastic electron
scattering from neutrons, that is, �e + �n → e′ + n and �e + n →
e′ + �n. Naturally, in these cases some corrections for nuclear
physics effects must be made. The separation of the neutron
electromagnetic form factors benefits in two ways from the
use of polarized data. Not only is the sensitivity to two-photon
corrections decreased, but also some of the nuclear model
dependence cancels in the form factor ratio.

Note that, because the form factors occur as interferences
in Eq. (5) and therefore one is not at high Q2 comparing a
very small contribution (G2

E) with a very large contribution
(G2

M ) as occurs in the Rosenbluth cross section, it is believed
that one is not as sensitive to higher-order corrections beyond
the one-photon-exchange approximation. This is borne out in
modeling of the two-photon effects [2–4] which indicate that
the Rosenbluth cross section is problematic in this regard,
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as mentioned before, but that these corrections are relatively
much less important for the extraction of the form factor ratio
using polarization observables and that, accordingly, using
polarization degrees of freedom in elastic ep scattering can
provide a clean separation of the form factors. Again, to make
this clear, let us use the simple estimate as above. The result
in Eq. (5) is proportional to

�pT · �A(τ, ε; θ∗, φ∗) ∼
√

2ε

1 + ε
ξp sin θ∗ cos φ∗ + cos θ∗, (9)

and thus, even at Q2 = 5 (GeV/c)2 where ξp was seen to be
about 0.1, the first term (for ε not too small) is typically 10% of
the second- and higher-order O(α). QED corrections probably
make less of an impact on the extraction of the form factor ratio.

On the theoretical side, exact ab initio QCD calculations
of G

p,n

E,M using lattice techniques will eventually be possible.
However, despite the fact that very encouraging results
have been obtained in recent work [10], a fully quantitative
understanding of the entire set of form factors is lacking
at present. Given this, alternative approaches are typically
taken. For example, light-front methods, quark descriptions,
and chiral invariance have been employed by Miller et al. to
obtain qualitative relations and semiquantitative descriptions
of various aspects of the form factors in both momentum and
configuration space [11–18].

In the present work we draw upon results from form
factor models that use as hadronic building blocks vector
mesons together with coupling to the ππ , πππ , and KK̄

continua as given by dispersion relation calculations—the so-
called vector meson dominance plus dispersion relation based
models (VMD + DR) [11,19–26]. The most recent versions
of these models have been quite successful in representing
the momentum-space content in the form factors, that is, the
behaviors of the form factors as functions of four-momentum
transfer squared, especially the models that also incorporate
ingredients that provide the correct asymptotic behavior as
Q2 → ∞ (see Sec. II). For instance, as discussed in more
detail later, one sees that, in some cases, cancellations of
various vector meson contributions can lead to a dipole-like Q2

dependence, which is in good agreement with the nucleon’s
magnetic form factors for Q2 < 5 (GeV/c)2. The proton’s
electric form factor is known to fall faster than dipole form
factors and, in fact, even the earliest VMD + DR models
[19,20] showed this behavior although the available data did
not. At low Q2 the neutron’s electric form factor has a different
form from the proton’s, because the net charge in the neutron is
zero; again the polarization data and VMD + DR approaches
yield a Q2 dependence for Gn

E that is only in rough accord
over the current experimental range with the commonly used
dipole-type approximation, namely, the Galster form [27]. In
the most recent fits, such as in Refs. [26,28] where the high-Q2

behavior predicted by perturbative QCD is enforced, all four
of the nucleon’s electromagnetic form factors are very well
represented, showing the experimentally indicated deviations
from the dipole or Galster forms. This is discussed in more
detail in Sec. II. Additionally, a few remarks are made there
concerning the differences between the VMD + DR approach
with hadronic form factors used here for comparison with

data [26] and a version without such form factors where instead
one adds effective vector mesons [28].

In addition to discussing the form factors in Sec. II, both
the measured quantities and the VMD + DR modeling, that
is, the momentum-space content, we also discuss results in
coordinate space (see Sec. V) with the goal being to obtain
additional insights both into the various representations of the
data (p versus n, GE versus GM , isoscalar versus isovector, up
quark versus down quark) and into the roles being played by the
various ingredients in the VMD + DR approach (the different
vector mesons, the role of the coupling to the continuum, the
nature of terms that yield the asymptotic behavior).

The article is organized in the following way: following
this introduction, in Sec. II the reference model is discussed in
some detail. The basic formalism is summarized, together with
a brief discussion of the data-fitting procedure. Results from
the reference model, the Gari-Krümpelmann extended model
denoted GKex, are presented in Sec. III, followed by a brief
discussion where the GKex reference model is compared with
another recent model of Belushkin, Hammer, and Meissner’s
[28] denoted BHM. In Sec. IV the reference model is
used to attempt to gain some insights into how the various
contributions work with or against each other to produce the
observed form factors. The Breit-frame Fourier transforms of
G

p,n

E are discussed in Sec. V, beginning with some general
caveats on the meaning and relevance of representing results
in coordinate space and proceeding in Sec. V A to discuss the
procedures used to obtain the Fourier transfers starting with
data in momentum space and to estimate the uncertainties on
the resulting coordinate-space representations. In Sec. V B the
resulting Breit-frame densities are presented and discussed,
and alternative representations are given (isoscalar/isovector,
up quark/down quark). Again in this section the reference
model is employed to help in understanding how the various
ingredients enter in producing the Breit-frame Fourier trans-
forms. Finally, in Sec. VI conclusions resulting from this study
are summarized.

II. THE GKex MODEL

Given the brief introductory discussions in Sec. I to place
the general problem in context, let us now summarize the
ingredients in the basic model employed in the present work.
We consider only the VMD + DR approach, as this provides
a reasonably successful representation of the nucleon’s elec-
tromagnetic form factors. We start by summarizing some of
the basic formulas needed in the discussions to follow. In
particular, the electromagnetic form factors of a nucleon are
defined via the expression for the electromagnetic current
matrix element

〈N (p′)|Jµ|N (p)〉
= u(p′)

[
γµFN

1 (Q2) + i

2mN

σµνq
νFN

2

]
u(p), (10)

where qµ ≡ pµ − p′
µ, Q2 ≡ −q2

µ � 0 (in the spacelike
regime) is the square of the invariant momentum transfer; N

is the neutron, n, or proton, p; and FN
1 (Q2) and FN

2 (Q2) are,
respectively, the Dirac and Pauli form factors, normalized at
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Q2 = 0: Fp

1 (0) = 1, Fn
1 (0) = 0, Fp

2 (0) = κp, and Fn
2 (0) = κn,

where κp and κn are the anomalous magnetic moments for the
proton and neutron, respectively. The Sachs form factors, most
directly obtained from experiment, are then

GN
E (Q2) = FN

1 (Q2) − τFN
2 (Q2), (11)

GN
M (Q2) = FN

1 (Q2) + FN
2 (Q2), (12)

and the combinations measured by the polarization experi-
ments are

RN ≡ GN
E

/(
GN

M

/
µN

)
. (13)

The isoscalar and isovector form factors are, respectively,

F
(0)
1,2(Q2) ≡ F

p

1,2(Q2) + Fn
1,2(Q2), (14)

F
(1)
1,2(Q2) ≡ F

p

1,2(Q2) − Fn
1,2(Q2). (15)

Electrons couple through photons to the electromagnetic
currents provided by the hadron and quark distributions
within the nucleons, yielding the form factors introduced
previously. Because the photon is a vector particle, at any
parity-conserving vertex where it couples with hadrons it must
connect to these hadrons with unit total angular momentum and
negative parity. The photon does not conserve isospin and so
these systems of hadrons may be isoscalar or isovector. The
simplest such vertex connects the photon to a single vector
meson (ρ, ω, φ, . . .). It can also couple to systems of two or
three pions or KK̄ in a 1− state, which in turn may couple
to a ρ-, ω-, or φ-type meson. Since the latter are resonances
of the multimeson systems, the strength of the interaction is
largest close to the masses of the vector mesons. In leading
order this is the VMD limit of the photon-hadron interaction
[29] that will be seen to give a good representation of the
data over most of the present range of momentum transfers
(see later in this article). However, small but significant
corrections can be expected from multipion correlations in
the continuum, such as those that give the ρ meson its
width. These contributions can be calculated using dispersion
relations with input from meson-meson scattering. At suf-
ficiently high momentum transfers, as perturbative quantum
chromodynamics (pQCD) becomes a better approximation
than effective hadrons, photons coupling to quarks provide
a better description and the models must asymptotically have
a pQCD behavior. This transition is handled in various ways
by the models, as discussed later.

The earliest reasonable fit to the available nucleon form
factor data was a VMD model of Iachello, Jackson, and Lande
[19] with ρ, ω, and φ vector meson poles. They incorporated
a single meson/nuclear vertex form factor for all terms, using
various forms that cut off at high momentum transfer (but
none decreased as rapidly as pQCD). The width of the ρ

meson was included by modifying the pole term with a form
suggested by Frazer and Fulco [30]. A more recent article
by Bijker and Iachello [31] adds an asymptotic term to the
Pauli isovector current and modifies the hadronic form factor
to include the asymptotic logarithmic Q dependence. After
refitting parameters to a larger set of data, the neutron form
factors are substantially improved at the expense of a small
worsening in the fit to the proton form factors compared with
earlier fit [19].

Shortly after Iachello, Jackson, and Lande [19], Höhler
and collaborators [20] used dispersion relations to obtain
the contribution of the ππ continuum giving the ρ meson
its width, which they fitted with a simple function of the
mass [Eq. (4.2) of that reference]. The ω and φ mesons and
several phenomenological vector mesons were represented by
simple poles. They did not introduce form factors at the strong
vertices. Instead the phenomenological constants (pole masses
and residues) were restricted by conditions of superconvergent
behavior at asymptotic momentum transfers in addition to
being optimized to fit the data. This required the addition of
unknown vector meson pole terms.

Recently Meissner and collaborators [28,32] have extended
the Höhler-type model by considering, in addition to the
ππ continuum, the KK and ρπ continua, which they have
found are adequately represented by simple poles. They also
added phenomenological vector meson poles and a broad
phenomenological contribution to each isovector form factor
at higher masses. As before, there are no strong vertex form
factors and the asymptotic momentum transfer behavior is
obtained by requiring a cancellation amongst all of the terms
to obtain superconvergence in one fit and an explicit pQCD
behavior in another version.

Gari and Krümpelmann (GK) [33] proposed a model in
which VMD at low momentum transfers was replaced by
pQCD at high momentum transfers, using differing conver-
gence rates of hadronic and quark form factors [also Ref. [21]
from earlier]. They obtained a good fit to the data then available
using only the ρ, ω, and φ vector meson poles. The hadronic
(quark) form factors are required by the strong renormalization
corrections at the vector meson/nucleon (quark) vertices. The
φ-meson-nucleon hadronic form factor has been constructed
imposing the Zweig rule required by the ss quark structure
of that meson. The inclusion of these vertex form factors
was crucial in enabling the evolution with momentum transfer
to the pQCD behavior without an artificial constraint on the
relation between the vector meson pole parameters. As an
added indication of the validity of this approach, there was no
need for adding several phenomenological vector meson poles
at masses in disagreement with available data.

The physical realism of this model was enhanced by Lomon
[23,24,26] by incorporating the following modifications.

(i) The width of the ρ meson was included using the
dispersion calculation of [28].

(ii) The observed ρ ′ (1.45 GeV) [23] and ω′ (1.419 GeV)
[24] vector meson poles were included.

(iii) In Ref [24] and later the quark-nucleon vertex form
factor uses the quark-nucleon cutoff, instead of the
meson-nucleon cutoff used by GK. Also the vector
meson-hadron form factors of GK (model 1) were used
as being more consistent with the helicity flip in the
Pauli terms. In both cases the logarithmic dependence
is determined by �QCD, which is fixed near the value
determined by high-energy data.

These yielded the so-called GKex (Gari-Krümpelmann
extended) models used in the present work. In particular,
we employ the model given in Ref. [26] as the basis for the
present studies. Note that our motivation in the present work
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is not so much to elaborate the fitting procedures discussed in
Ref. [24], but to take as given that study and use the model
discussed there to gain a deeper understanding of some of
the systematics seen in the data. No attempt is made in the
present work to provide new fits to the data after 2005, because
the world database is soon to be extended—the form factor
representations are frozen, using the one specific contemporary
VMD + DR model denoted GKex [26]. Specifically, we wish
to obtain better insight into why the G

p,n

M form factors are
roughly dipole in character, while G

p

E is not, and fall faster than
dipole. We shall see that this difference in behavior emerges
naturally in the context of the models discussed. Furthermore,
the most modern models of the type employed here are actual
hybrids containing hadronic ingredients as well as terms that
have the correct pQCD behaviors when Q2 becomes large.
Within these models one can ask where the crossover to this
asymptotic behavior occurs.

The GKex model of [24,26] is summarized in the following.
Specifically, the form factors in that model are given by

F
(0)
1 (Q2) ≡ gω

fω

f em(mω; Q2)f had
1 (Q2)

+ gω′

fω′
f em(mω′ ; Q2)f had

1 (Q2)

+ gφ

fφ

f em(mφ ; Q2)f had,s
1 (Q2)

+
[

1 − gω

fω

− gω′

fω′

]
f

had,pQCD
1 (Q2), (16)

F
(0)
2 (Q2) ≡ κω

gω

fω

f em(mω; Q2)f had
2 (Q2)

+ κω′
gω′

fω′
f em(mω′ ; Q2)f had

2 (Q2)

+ κφ

gφ

fφ

f em(mφ ; Q2)f had,s
2 (Q2)

+
[
κs−κω

gω

fω

−κω′
gω′

fω′
− κφ

gφ

fφ

]
f

had,pQCD
2 (Q2),

(17)

F
(1)
1 (Q2) ≡ gρ

fρ

f em(mρ1 ; Q2)f had
1 (Q2)

×
[

(1 − α1) + α1(
1 + Q2

/
Q2

1

)2

]
+ gρ ′

fρ ′
f em(mρ ′ ; Q2)f had

1 (Q2)

+
[

1 − gρ

fρ

− gρ ′

fρ ′

]
f

had,pQCD
1 (Q2), (18)

F
(1)
2 (Q2) ≡ κρ

gρ

fρ

f em(mρ2 ; Q2)f had
2 (Q2)

×
[

(1 − α2) + α2(
1 + Q2

/
Q2

2

)]
+ κρ ′

gρ ′

fρ ′
f em(mρ ′ ; Q2)f had

2 (Q2)

+
[
κv − κρ

gρ

fρ

− κρ ′
gρ ′

fρ ′

]
f

had,pQCD
2 (Q2). (19)

In these expressions the anomalous magnetic moments are
κs = κp + κn and κv = κp − κn, and the κx are the analogous
quantities associated with the vector mesons x = ρ, ρ ′, ω, ω′,
and φ. The pole corresponding to a vector meson of mass mx

yields the monopole form

f em(mx ; Q2) ≡
[

m2
x

m2
x + Q2

]
, x = ρ, ρ ′, ω, ω′, φ, (20)

and the coupling constant of each pole is gx/fx , x = ρ, ρ ′, ω,
ω′, and φ, where gx is the coupling of meson to the nucleon
and fx is given by the coupling of the meson to the photon.
The value of fx is experimentally determined from the meson
decay to e+e−.

For completeness we briefly summarize the procedures
used in Refs. [23,24,26] to determine the model parameters.
Specifically, the 2001 version of the GKex model, which did
not include the ω′ meson, was fitted to all of the unpolarized,
Rosenbluth-separated cross-section data and included the
then-available Rp polarization data, although in the absence
of Rn data. The 2002 GKex model includes the then-available
polarization Rp and Rn data, some of which were not final.
The present 2005 GKex model—the one used as a basis for
the present study—differs from the 2002 version only due
to the substitution of the final polarization data, inclusion
of the few new Rn and Gn

M points, and the exclusion of
the higher Q2 G

p,n

E data from the Rosenbluth separation of
differential cross-section data. For completeness we list the
parameters obtained using the last model [26]. Given the
fact that new data will soon be available, no refitting has
been done for the present study, although it is anticipated
that this will be performed in the near future. The masses of
the known vector mesons are fixed: mρ = 0.776 GeV, mω =
0.784 GeV, mρ ′ = 1.45 GeV, mω′ = 1.419 GeV, and mφ =
1.019 GeV. The ratios g/f are as follows: gρ/fρ = 0.5596,
gω/fω = 0.7021, gρ ′/fρ ′ = 0.007 2089, gω′/fω′ = 0.164, and
gφ/fφ = −0.1711. The vector mesons’ anomalous magnetic
moments are κρ = 5.515 64, κω = 0.4027, κρ ′ = 12.0, κω′ =
−2.973, and κφ = 0.01, and one finds that µφ = 0.2.

Defining

Q̃2 ≡ Q2
ln

[(
�2

D + Q2
) /

�2
QCD

]
ln

[
�2

D

/
�2

QCD

] , (21)

with �D = 1.181 GeV and �QCD = 0.150 GeV (fixed),
thereby incorporating the logarithmic momentum transfer
behavior of pQCD, the hadronic vector meson to nucleon
form factors for those vector mesons dominantly consisting
of nonstrange quarks (ρ, ω, ρ ′, and ω′) are given by

f had
1 (Q2) ≡ f (�1; Q̃2)f (�2; Q̃2), (22)

f had
2 (Q2) ≡ f (�1; Q̃2)f (�2; Q̃2)2, (23)

where

f (�i ; Q̃
2) ≡

[
�2

i

�2
i + Q̃2

]
, (24)

that is, functionally the same (monopole) expression as
Eq. (20), now with mx → �i and Q2 → Q̃2. From the fit one
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has �1 = 0.93088 GeV and �2 = 2.6115 GeV.1 The spin-flip
nature of the Pauli term in the current is the origin of the extra
power of f (�2; Q̃2) in Eq. (23).

For the φ meson, which is dominantly composed of strange
quarks, the hadronic form factors are given by

f
had,s
1 (Q2) ≡ f had

1 (Q2)

[
Q2

�2
1 + Q2

]3/2

, (25)

f
had,s
2 (Q2) ≡ f had

2 (Q2)

[
µ2

φ + Q2

µ2
φ

�2
1

�2
1 + Q2

]3/2

. (26)

The form factor f
had,s
1 vanishes at Q2 = 0, and it and f

had,s
2

decrease more rapidly at large Q2 than the other meson form
factors. This conforms to the Zweig rule imposed by the ss

structure of the φ meson [34]. Only 10 of the 12 parameters
listed above are independent, because κφ/µφ and κρ ′gρ ′/fρ ′

are constrained to be very close to 0.05 and 0.08, respectively.
The fit has little sensitivity to �QCD, which is fixed at 0.150 in
its experimental range.

All of the terms but two in the above isoscalar and isovector
form factors are of the pole form representing a vector meson
exchange. However, the first term in each of the isovector form
factors is an approximate analytic form for a ρ meson with a
width derived from a dispersion integral of the ππ continuum.
For later discussions, we have written these expressions using
parameters α1 (α2) for the F

(1)
1 (F (1)

2 ) expressions, respectively,
where α1 = 0.0781808 and α2 = 0.0632907 when the widths
are included, with αi = 0, i = 1 and 2 when the effect from
coupling to the continuum is ignored. In addition, when the
contributions from the continuum are included, the effective
ρ mass is shifted down slightly from the physical mass:
mρi

= mρ − δi , with δ1 = 34.65 MeV and δ2 = 43.74 MeV.
When the ρ contributions are taken to occur only at the pole,
of course these shifts are also neglected and the physical mass
used in the previous expressions. The momentum cutoffs in
the terms that occur when the width is included are Q2

1 =
0.3176 (GeV/c)2 and Q2

2 = 0.1422 (GeV/c)2. All of these
constants are determined by a dispersion calculation and we
use the results obtained by Ref. [32]. Note that turning off the
width and using only the ρ-pole form is not fully consistent:
one should refit the data with the αi = 0 to do this correctly.
However, for our present purposes simply turning the width
off gives us some indication of where one might expect
the coupling to the ππ continuum to play a role, either in
momentum space or in coordinate space.

For the asymptotic terms, the form factors due to the
coupling of the mesons to the nucleons at the quark level
are given by

f
had,pQCD
1 (Q2) ≡ f (�D; Q̃2)f (�2; Q̃2), (27)

f
had,pQCD
2 (Q2) ≡ f (�D; Q̃2)f (�2; Q̃2)2. (28)

1The constants used in the GKex model are given here to high
precision not because they are so well known, but because they will
allow others to program the formulas in this section and check their
results against the results found in the present study.

The coefficients of these terms impose the constraints at
Q2 = 0,

F
(0)
1 (0) = F

(1)
1 (0) = 1,

F
(0)
2 (0) = κs, F

(1)
2 (0) = κv, (29)

and when Q2 → ∞ have the asymptotic forms

F
(0,1)
1 → 1

Q2 ln
(
Q2

/
�2

QCD

) ,

(30)

F
(0,1)
2 → 1

Q4 ln
(
Q2

/
�2

QCD

) ,

as required by pQCD.
The GKex model employed in the present study is the one

of Ref. [26] with the parameters fitted to a large data set,
for which the low-Q2 BLAST data were not yet available.
Included in the data set were G

p

M and Gn
M from Rosenbluth

separations of unpolarized cross sections and Rp and Rn

obtained from polarization measurements, over the whole
experimental energy range. The G

p

E and Gn
E results obtained

by Rosenbluth separation of the unpolarized cross sections
were only included at lower Q2 where they are more than a
few percent of the magnetic cross section and therefore are
not too sensitive to the two-photon contributions discussed in
Sec. I. At higher Q2 the G

p,n

E from the Rosenbluth separations
are systematically larger than those obtained by multiplying
the polarization observables, Rp,n by the G

p,n

M obtained from
the unpolarized cross sections. A recent higher-accuracy
measurement [35] of the unpolarized cross section confirms
this result.

In detail, the data from Refs. 7–14 and 16–36 cited in
Ref. [23] were used, with the omission of the G

p

E values
for Q2 � 1.75 (GeV/c)2 of Ref. 7 and the Gn

E values for
Q2 � 0.779 (GeV/c)2 of Refs. 9, 17, and 18 there. Reference
[26] used the Rp values of Ref. 5, the Rn values of Refs. 4 and
6, and the recent Gn

M data of Ref. 7. It should be emphasized
that the form factor data sets were all fit simultaneously.
Another datum used is the slope dGn

E/dQ2(Q2 = 0) = 0.0199
± 0.0003 fm2, as determined by thermal neutron scattering
[36,37]. Although this is the most accurate Gn

E information, it
is often not considered in model fitting.

III. RESULTS IN MOMENTUM SPACE AND
COMPARISONS WITH DATA

Figure 1 shows Rp as represented by the GKex model [26]
(fitted to the data listed at the end of Sec. II) together with the
polarization data [38–41]. The Rp data used in the fit were the
polarization measurements of Refs. [38,39] and (not shown)
the ratio extracted from a Rosenbluth separation [42], while
the results presented in Refs. [40,41] were not used in the fit.
The model fits the polarization data well while not conforming
to the results obtained from Rosenbluth separations. Moreover,
as shown, this fit predicted the new BLAST low momentum
transfer results [40,41] well and is in excellent agreement with
the very recent results at higher Q2 from JLab [43]. The
deviation from unity is substantial for Q2 > 0.8 (GeV/c)2;
indeed, as stated in the previous section, this has always been a
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FIG. 1. (Color online) Form factor ratio Rp showing the GKex
universal fit [26] together with the fitted data (Gayou et al. [38],
Punjabi et al. [39], and Ron et al. [40]; see the end of Sec. II) and
recent measurements from BLAST (Crawford et al. [41]) and JLab
(Puckett et al. [43]).

feature of the VMD class of models in that from their inception
they have typically led to a falloff with Q2 of G

p

E compared
with the dipole form factor.

Figure 2 displays the model result for G
p

M/µpGD , where
GD is the standard dipole form. The model was fitted to all the
Rosenbluth determinations of G

p

M data [42,44–50]. In addition
the data from Ref. [34] and the more recent precision data [35]
are shown. The momentum transfer range is greater than that
for the other form factors. The ratio is relatively close to unity
until Q2 ≈ 1 when it increases before decreasing rapidly for
Q2 > 7 (GeV/c)2.

Figure 3 shows the model results for G
p

E/GD . The
model was fitted to the low-Q2 G

p

E differential cross-section
data of [44–46,51]. For the reasons given previously (small
contribution to the unpolarized cross section and two-photon
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FIG. 2. (Color online) The ratio G
p

M/µpGD with the GKex
universal fit [26] and the fitted data (Berger et al. [44], Bartel
et al. [42], Hanson et al. [45], Borkowski et al. [46], Bosted et al. [47],
Sill et al. [48], Walker et al. [49], and Andivahis et al. [50]; see the
end of Sec. II). In addition the data from Christy et al. [34] and the
more recent precision data Qattan et al. [35] are shown.
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FIG. 3. (Color online) The ratio G
p

E/GD with the GKex universal
fit [26]. Because the higher momentum transfer values obtained from
the Rosenbluth separation are not considered reliable, only the lower
momentum transfer values from Rosenbluth separation (Berger et al.
[44], Hanson et al. [45], Borkowski et al. [46], and Murphy et al. [51])
were included in the fitting. However, the higher momentum transfer
values (Walker et al. [49], Andivahis et al. [50], and Qattan et al. [35];
see the end of Sect: II) are also plotted. The fitted Rp data of Gayou
et al. [38] and Punjabi et al. [39] were translated to G

p

E by multiplying
by the GKex G

p

M/µp . Data from Christy et al. [34] are also shown.

corrections) the higher-Q2 data displayed [35,49,50] were not
included in the fitting procedure. Also shown are data from
Ref. [34] and the G

p

E values given by the polarization values
of Rp [38,39] multiplied by the model G

p

M/µp. Above 1.8
(GeV/c)2 the model fits the polarization values, but not those
obtained from Rosenbluth separations.

The extraction of the neutron form factors from quasielastic
electron-deuteron or electron-3He scattering, with their depen-
dence on the nuclear wave function and hadronic final-state
interactions, leads to greater uncertainties and a more restricted
momentum transfer range than for the proton form factor.
There is also some evidence at the highest available momentum
transfers of the deviation from the dipole form for the magnetic
form factor and from the modified dipole (Galster) form for
the electric-to-magnetic ratio.

Figure 4 shows Rn given by the GKex model [26]. In that
model only the polarization data of Refs. [52,53] were fitted,
but not the more recent low-Q2 BLAST data [54] nor the
preliminary higher-Q2 JLab data [55]. Nevertheless, the 2005
fit agrees very well with the BLAST results and with the
preliminary data (not shown). The Galster form (dashed curve)
is also shown, the slope of which at Q2 = 0 is known to be
larger than that obtained from cold neutron scattering. As seen
in the figure this results in the Galster curve being above the
BLAST data and the model curve up to 0.4 (GeV/c)2. Above
that momentum transfer the Galster expression drops below
the data and the model curve.

All of the Gn
M data [36,56–66], except the recent JLab

data [67,68], were used in the 2005 fit. As seen in Fig. 5,
below 1 (GeV/c)2 the data are inconsistently scattered even
within individual data sets. The model tracks an average of
the scattered data and fits the higher-Q2 data well, dropping
below the dipole values above Q2 = 4 (GeV/c)2. The newer
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FIG. 4. (Color online) Form factor ratio Rn with the GKex
universal fit [26] and the Galster et al. [27] parametrization with
the fitted data (Madey et al. [52] and Warren et al. [53]; see the end
of Sec. II) and recent results from BLAST (Geis et al. [54]).

data [68] are a little lower in the midrange and this reinforces
the tendency to go below the dipole fit.

Figure 6 shows that Gn
E , just as G

p

E/GD in Fig. 3, fits
the data derived from the polarization results of Fig. 4 very
well. The values obtained from Rosenbluth separations [45,
56,57,59,69–77] would be much higher than those, but are not
plotted because of their greater sensitivity to the two-photon
corrections and the nuclear target model dependence.

Figures 1–6 show not only the data at low Q2, the main
focus of this study, but also over an expanded range to see the
small structures in the data and models better. It is noteworthy
that, while the parameters of this model were fitted using the
whole momentum transfer region of the available data, the
model reproduces the low momentum transfer BLAST data
recently obtained (after the model fit) for Q2 between 0.1 and
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FIG. 5. (Color online) The ratio Gn
M/µnGD with the GKex

universal fit [26] and the fitted data (Bartel-69 [56], Bartel-72 [57],
Esaulov et al. [58], Lung et al. [59], Markowitz et al. [60], Anklin
et al. [61], Bruins et al. [62], Kopecky et al. [36], Anklin et al. [63],
Gao [64], Xu et al. [65], Kubon et al. [66]; see the end of Sec. II)
together with new results from JLab (Anderson et al. [67] and
Lachinet et al. [68]).
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FIG. 6. (Color online) Gn
E with the GKex universal fit [26]. The

inconsistent Gn
E data from the unpolarized differential cross section

fitted in Ref. [26] are not plotted here. The data points are translated
from Fig. 4 through multiplication of Rn by Gn

M/µn.

0.6 (GeV/c)2 [41,54]. These new data do not confirm possible
“bump” structures near 0.2 (GeV/c)2 suggested by earlier
measurements, and the invocation of a phenomenological pion
cloud [78] is not required. In VMD + DR models, such as
the ones discussed here, the pion cloud is represented by
pion pairs and triplets largely clustered into vector mesons.
This is consistent with the analysis of Hammer, Drechsel,
and Meissner [79], which shows that, after the imposition of
unitarity, the addition of ππ continuum to that given by the ρ

is insufficient to provide a substantial bump structure.
Finally, a few words are in order concerning the full GKex

form factors and their pQCD terms. Because �QCD is �
200 MeV, it was initially expected that the asymptotic pQCD
region would be approached at momentum transfers not much
larger than 1 GeV/c [80,81]. This may apply to inclusive
reactions, but it was pointed out [82–84] that for exclusive
processes the momentum transfer had to be shared among
several exchanged gluons. It was then estimated that pQCD
may not be approached for elastic form factors until the order
of 1000 GeV/c. In fact for elastic proton-proton scattering the
strong persistence of polarization effects [85] (which vanish
in pQCD) at Tlab = 28 GeV involves much larger momentum
transfers, up to 8 (GeV/c)2.

For this model and its normalization of the pQCD limit,
the magnetic form factors and pQCD are about 10% different
at Q2 ∼ 10 (GeV/c)2. While Rp is within 10% of pQCD
near 2 (GeV/c)2, Rn is only 80% of pQCD at 50 (GeV/c)2.
Separating the isovector and isoscalar and the Dirac and Fermi
terms gives a more specific indication of the slow approach to
pQCD, because doing so minimizes accidental cancellations
between terms. The isovector form factors F

(1)
1,2 are both

relatively large. One finds that for Q2 < 5 (GeV/c)2 three
of the four form factors are very different from the pQCD
results alone—only F

(1)
1 is relatively similar to the pQCD

contribution down to about 2 (GeV/c)2. As Q2 increases
beyond about 5 (GeV/c)2 the pQCD contribution begins to
saturate the total; specifically, at 10 (GeV/c)2 the ratio of
the pQCD contribution to the total is 96% for F

(1)
1 and 83%
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FIG. 7. (Color online) The isoscalar Pauli form factor normalized
to GD with the GKex universal fit [26] (solid) and the pQCD term of
that fit (dashed).

for F
(1)
2 . The corresponding numbers at 20 (GeV/c)2 are

98% and 88%, respectively. The isoscalar form factor F
(0)
1

is somewhat smaller than the isovector form factors and again
shows saturation of the pQCD contribution with increasing
Q2, although somewhat more slowly than for the isovector
form factors. The ratio of the pQCD contribution to the total
result for F

(0)
1 is 79% at 10 (GeV/c)2 and 88% at 20 (GeV/c)2.

Finally, the isoscalar form factor F
(0)
2 is relatively small and

slower to converge to the pQCD result (see Fig. 7). It should
also be noted that the model curve for F

(0)
2 has a substantial

dip near 1 (GeV/c)2 that can be attributed to the opposite signs
of the large ω and ω′ magnetic contributions. In Sec. IV we
show the individual contributions to the form factors, including
those from the pQCD terms discussed here. The convergence
is similar for the previous GKex model [24]. However, the
pQCD normalization is expected to depend on possible major
modifications of the model such as the addition of non-pQCD
terms above the vector meson resonance region.

Finally, recently Belushkin, Hammer, and Meissner [28]
[BHM] have extended the Höhler-type model by considering
the KK and 3π continua in addition to the 2π continuum
and conclude that the first two are adequately represented
by including only simple poles and adding a broad phe-
nomenological contribution to each isovector form factor at
higher masses. The asymptotic momentum transfer behavior is
restricted by a superconvergent requirement in one fit, but by an
explicit pQCD behavior in another version. Because there are
no hadronic form factors, the required asymptotic behavior is
obtained by a restriction on the sum of all terms in the fit to the
coupling strengths and masses. This results in requiring vector
mesons with unobserved masses. The BHM-pQCD asymptotic
behavior model requires fewer extra vector mesons than the
BHM-superconvergent (SC) model.

Overall the GKex model agrees with the data better than
do either the BHM-pQCD or BHM-SC models. Figure 8
illustrates the above remarks for Rp, where the GKex model
follows the behavior of the data up to the highest available
values of Q2, whereas in the high-Q2 regime the other models
differ substantially from the data.
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FIG. 8. (Color online) Rp compared to the GKex [26] and BHM
[28] superconvergent and asymptotically pQCD curves with the data
as in Fig. 1.

Note that the BHM model is further constrained to fit
timelike data. The previous version of the GKex model [24]
was shown to provide a qualitative fit to the timelike data by
Tomasi-Gustafsson et al. [86], and a combined fit of the model
to space- and timelike data is under way [87].

IV. INSIGHTS IN MOMENTUM SPACE WITHIN
THE VMD + DR MODEL

In Figs. 9–12 the four types of form factors divided by
the standard dipole form factor GD are shown as functions of

FIG. 9. (Color online) G
p

E normalized to GD showing the relative
contributions of the various vector mesons from the GKex model
together with the pQCD contribution.
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FIG. 10. (Color online) Gn
E normalized to GD showing the

relative contributions of the various vector mesons from the GKex
model together with the pQCD contribution.

Q2 over the range 0–2 (GeV/c)2. Each is broken down into
the individual contributions from the vector mesons and from
the term that carries the asymptotic behavior, labeled pQCD.
Several insights emerge from this GKex model representation.
First, the φ and ρ ′ mesons do not play very important roles
in this region of momentum transfer for any of the four types
of form factors. Second, the ω′ contribution is important for
the electric form factors (Figs. 9 and 10), but less so for the
magnetic form factors (Figs. 11 and 12). The ρ, ω, and pQCD
contributions are important in all cases. Note that for the
electric form factors the ρ has a crossing at Q2 ∼ 0.7 (GeV/c)2

that leads to interesting interplay with the other mesons, being
constructive or destructive interferences depending on the
region of momentum transfer of interest. The magnetic form
factors in Figs. 11 and 12 yield a final result that is roughly
dipole in shape over the region of momentum transfer shown
in the figures (the results presented there are divided by the
dipole form factor and so being dipole corresponds to having
a flat curve). However, upon looking in more detail at the
breakdown into the individual contributions, one sees that this
arises essentially from the opposing behavior of the ρ and
pQCD pieces. The ρ alone, for example, is more monopole
in character, as discussed in Sec. II. The compensation is not
complete, however, and the ω also plays a role in yielding the
total. This leads to the total curves being flat at roughly the
5%–8% level. In contrast, for G

p

E (Fig. 9) the ρ contribution
wins and the net result falls faster than dipole, an explicit
demonstration of what all VMD-type approaches have always
predicted and now appears in the results obtained using
polarization observables, as discussed above. Finally, for Gn

E

shown in Fig. 10 the situation is even different: the ω and ω′

FIG. 11. (Color online) G
p

M normalized to GD showing the
relative contributions of the various vector mesons from the GKex
model together with the pQCD contribution.

compensate almost exactly to yield a dipole behavior, as they
do for G

p

E , because these are isoscalar contributions and hence
the same in the two cases; the pQCD contribution is flatter
than in the other cases; and accordingly the ρ drives the rising
behavior of Gn

E/GD .
Finally, let us discuss the role of the ρ width. In Fig. 13

the ρ contributions are shown for G
p

E and G
p

M (for Gn
E and

Gn
M the results are the same magnitude, but opposite signs,

because the ρ is an isovector). The solid curves repeat the
results shown in Figs. 9 and 11, while the dashed curves display
what happens when the ρ width is set to zero and the mass
is set to the physical mass of the ρ. In Sec. V A we return
to see what consequences this has for the coordinate-space
representations of the charge form factors.

V. REPRESENTATIONS IN COORDINATE SPACE

The discussion in this section is centered on transforming
both what has been measured and the results from the GKex
model for the electric form factors into coordinate space.
Several motivations exist for doing this.

(i) We hope to obtain some insights into how charge is
distributed in the nucleon.

(ii) We are interested in how the various ingredients of
the VMD + DR approach are manifested differently in
coordinate space than they are in momentum space.

(iii) In particular, we wish to explore the role played by the
coupling to the continuum and thereby to gain some
insights into, for instance, what roles pions play in
determining the nucleon’s form factors.
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FIG. 12. (Color online) Gn
M normalized to GD showing the

relative contributions of the various vector mesons from the GKex
model together with the pQCD contribution.

(iv) When characterizing the structure in coordinate space
in terms of some set of basis functions the correlations
that occur are different from those that enter when doing
the characterization in momentum space and we hope
to clarify this issue.

All of these are discussed in more detail below.
In context, note that a compromise is sometimes employed,

that of Fourier transforming to coordinate space only with
respect to the transverse directions (orthogonal to the boost),
but leaving the third dimension in momentum space, thereby

FIG. 13. (Color online) G
p

E normalized to GD and G
p

M normal-
ized to µpGD showing the ρ contributions from the GKex model with
and without the widths and mass shifts.

having a mixed representation [15]. While avoiding some
of the inevitable problems discussed below, the nucleon’s
properties are harder to envision in this approach.

When choosing to represent the nucleon’s properties
one may choose any frame of reference, for instance, the
initial-state rest frame, the final-state rest frame, choices in
between, or frames boosted to the light-cone. Inevitably,
however, the initial state, the final state, or both states must
be moving and therefore boosts are required when attempting
to relate to properties in the nucleon rest frame. This makes the
problem a relativistic one. Indeed, at high momentum transfers
this makes the interpretation in terms of coordinate-space
structure of the nucleon notoriously difficult, although at
low enough momentum transfers it may be possible to make
some connections between momentum and coordinate space.
Problems occur in various guises, depending on the approach
taken; for instance, rest frame models may be very difficult to
boost and light-cone models can have troubles when boosting
from the infinite momentum frame back to physical frames of
reference.

Clearly it is important to choose the least relativistic frame
of reference to optimize one’s chances. This choice is the
so-called Breit frame, as may be seen simply by minimizing
the product of the boost factors,

γi = Ei/mN,
(31)

γf = Ef /mN,

for the boosts involved in relating the moving initial and final
nucleon states to their rest frames. One has

pf = −pi = q/2, (32)

ω = 0 ↔
√

|Q2| = |q|, (33)

γf = γi ≡ γBreit = √
1 + τ , (34)

that is, the resulting Breit frame has the initial- and final-state
nucleons moving with ∓q/2, where q is the three-momentum
of the virtual photon involved in the electron scattering process.
The energy transfer that results is zero and hence Q2 = |q|2 =
q2. One may then define the Breit-frame electric distributions
as the Fourier transforms:

4πr2ρ
p,n

Breit(r) ≡ 2

π

∫ ∞

0
dq qr sin qr G

p,n

E (Q2)
∣∣
Breit. (35)

Note that this is only a definition. For the reasons mentioned
previously, the resulting functions are not generally to be
interpreted as the proton and neutron charge distributions,
although they are perfectly well-defined quantities.

To obtain some feeling for where the interpretations as
charge distributions clearly should be invalid (and therefore
for where they may be reasonable) it helps to compare the
Compton wavelength λC = h̄c/Mc2 ∼= 0.21 fm, where M

is the mass of the nucleon, with the characteristic scale
probed at a given momentum transfer λ(q) ∼ h̄c/q. These
become equal when q ∼ 1 GeV/c, and thus one must expect
functional dependence at even higher momentum transfers or,
correspondingly, smaller distance scales to lie beyond simplis-
tic nonrelativistic intuition. At lower momentum transfers—
corresponding to distance scales significantly larger than the
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FIG. 14. (Color online) 4πr2ρ
p

Breit(r) showing the relative contri-
butions of the various vector mesons from the GKex model together
with the pQCD contribution.

nucleon’s Compton wavelength—there may be some validity
to the interpretation of the coordinate-space distributions as
charge or spin distributions. An insightful discussion of what
toy models have to offer in this long-wavelength regime is
contained in Ref. [88].

A. Insights obtained using the Breit-frame Fourier
transform of the GKex model

In Figs. 14 and 15 we show the Breit-frame Fourier
transforms of the charge (electric) form factors of the pro-
ton and neutron, respectively, together with the individual
contributions from the vector mesons and the asymptotic
(pQCD). That is, the figures show the Fourier transform of
the GKex model results discussed in Sec. IV. For the totals
(the entire GKex model form factors) one has results that
integrate to 1 (0) for the proton (neutron), because what is
plotted is 4πr2 times the Breit-frame Fourier transforms. For
the neutron, one sees a positive contribution at small distances
and a negative one at large distances, which is consistent
with the fact that the mean-square radius for the neutron is
〈r2〉En = −0.115 ± 0.0035 fm2 [36]. This is also consistent
with a simple picture where isovector mesons such as the π

and ρ extend to large distances and form the “meson cloud.”
For example, although unrealistically simple, a model where
a neutron spends part of its time as a “proton + negative pion”
would yield just such a charge polarization, and not the reverse
with a negative “core” and a positive “cloud.” Again, one is

FIG. 15. (Color online) 4πr2ρn
Breit(r) showing the relative contri-

butions of the various vector mesons from the GKex model together
with the pQCD contribution.

cautioned not to interpret these distributions as charge or spin
distributions, except perhaps for their large-distance behavior.
The issue of interpreting the rms charge radius of the neutron
is discussed in Ref. [88].

Let us now discuss the individual contributions in somewhat
more detail. As before the ρ ′ and φ contributions are seen to be
very small, while the rest of the contributions play important
roles. For the Breit-frame Fourier transform of G

p

E (Fig. 14)
these mostly add together to form the total, whereas for the
Breit-frame Fourier transform of Gn

E (Fig. 15) the isoscalar
mesons “fight” against the isovector mesons and the pQCD
term to yield a relatively small net result. In both cases the
longest-range effects arise from the ρ and next from the ω,
while the ω′ and pQCD contributions lie at small distances.
Indeed, beyond about 0.7 fm most of the Breit-frame Fourier
transform of G

p

E is contained in the ρ and ω alone (the neutron
case is more complicated, due to the delicate cancellations
seen in the figure).

The effect of “turning off” the ρ width was discussed in
Sec. IV for the momentum-space GKex model results. Here
we consider the Breit-frame Fourier transform as well. In
Fig. 16 curves are shown for the ρ contributions in the proton
both with the width included (solid curve, as in Fig. 14) and
with it set to zero and the mass of the ρ set to its physical value
(dashed curve). The latter is seen to have a bit more strength
at smaller distances, although the effect is not pronounced. In
the GKex representation of the form factors the only place that
contributions from pions appear explicitly is via the width the
ρ takes on, that is, through connections to the ππ continuum.
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FIG. 16. (Color online) 4πr2ρ
p

Breit(r) showing the ρ-meson con-
tribution from the GKex model with the width included (solid curve)
and with the width turned off and the mass set to the physical ρ mass
(dashed curve).

Otherwise only vector mesons and the asymptotic form occur
in the model. Thus, turning off these ρ-width contributions
effectively eliminates explicit pions from the problem, and
one must conclude that the latter are relatively unimportant.

B. Results in coordinate space

Again, given the caveats discussed in the introduction to this
section, the world data for G

p,n

E may be Fourier-transformed
using Eq. (35). To obtain Fourier transforms of the experimen-
tal data, the world data of G

p

E and Gn
E were fit to various

parametrizations that were then transformed numerically.
Earlier work presented in the DOE/NSF NSAC Long Range
Plan [89] was based on the data and parametrization used
in Refs. [41,54]. For the proton, this was the six-parameter
phenomenological fit function of Ref. [78] fit to the published
world data as of 2008 from Refs. [38,40,41,44,45,90–95]. Note
the addition of early polarization measurements [92–94] to
the data set of Sec. III. Higher-Q2 unpolarized data were
again omitted. The lower-Q2 data were not corrected for
two-photon exchange effects, which are not negligible even
at low Q2 [96]. For the polarized data, G

p

E was obtained by
combining the form factor ratio with the Kelly [97] fit of
G

p

M . For the neutron the fit function was reduced to the sum
of two dipoles, fit to the world polarized data as of 2008 of
Refs. [53,54,70,71,73–75,77,98–101]. Again note the addition
of early polarized measurements to the data set of Sec. III. The
charge of the neutron was constrained to zero, leaving three
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FIG. 17. (Color online) Breit-frame Fourier transform of G
p

E , as
appeared in the Long Range Plan [89], with both the calculated and
the smoothed error bands.

free parameters. The rms charge radius squared of Ref. [36]
was included in the fit as an extra datum, not as a constraint.
Figures 17 and 18 show the Fourier transforms of these fits.

The error bands in Figs. 17 and 18 were obtained by
combining the variation from each fit parameter with the full
covariance matrix. The calculated error bands, shown with
dotted lines, have large oscillations in width, even dropping to
δρBreit ∼ 0 around r = 0.37 fm for the proton and r = 0.75 fm
for the neutron. The calculated uncertainty for the proton also
gets significantly smaller around r = 0.75 fm. This is clearly
model dependence: the Fourier transform of this particular
model has no flexibility at that point to respond to variations
in the data. The shaded error bands in Figs. 17 and 18 were
smoothed out to account for the model dependence, producing
the error bands, which appeared in Ref. [89].

This surprising behavior illustrates an interesting point, that
a family of curves that fit the data well in momentum space may
contain very little information or coverage of coordinate space.
In choosing an appropriate model, one typically searches
for the smoothest family of curves that fit the data with a
reasonable χ2. In contrast, the Fourier transform inherently
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FIG. 18. (Color online) Breit-frame Fourier transforms of Gn
E , as

appeared in the Long Range plan [89], with both the calculated and
the smoothed error bands.
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includes information on all frequencies, not just smooth
low frequencies. For example, the fit to a constant function
f (k) = a only determines a single point at the origin of the
Fourier transform f̃ (x) = aδ(x). Even arbitrary fit functions in
one parameter can often be approximated by f (k) = g(k) + a

for a fixed function g(k). In momentum space, that function
will have a uniform error-band over the entire domain, but that
error is completely correlated along the entire function. The
Fourier transform has nonzero error bars only at the origin in
position space.

To obtain a reasonable Fourier transform with meaningful
error bands, it is necessary to fit a function that spans
both position and momentum space. This can be done by
expanding the form factors in an orthogonal set of basis
functions

∑N
n=0 f̃n(k), using the simple prescription Q2 =

h̄2k2. The kernel of the Fourier transform is unitary, ensuring
an expansion

∑N
n=0 fn(r) in orthogonal basis functions in

position space also. Following Kelly [102], Eqs. ((27), (29))],
we fit the data to two orthogonal basis functions. The first is
the Fourier-Bessel expansion (FBE), the wave functions of an
infinite spherical well of radius Rmax in position space,

fn(r) = j0(knr)�(Rmax − r), (36)

f̃n(k) = (−1)nRmax

k2 − k2
n

j0(kRmax). (37)

These functions are localized in frequency, peaking at kn =
nπ/Rmax, with a hard cutoff at the nth zero of the l = 0
spherical Bessel function j0(x) at Rmax. The second is the
Laguerre-Gaussian expansion (LGE), the wave functions of
a spherical harmonic oscillator of frequency ω = 2h̄/mb2 for
fixed parameter b,

fn(r) = e−x2
L1/2

n (2x2), (38)

f̃n(k) =
√

π

4
b3(−1)ne−y2

L1/2
n (2y2), (39)

where x = r/b, y = kb/2, and L
1/2
n is a generalized Laguerre

function. These functions are localized in neither position nor
momentum. The width of the basis functions is not fixed in
coordinate space, but increases with n as b

√
n. Higher-order

functions emphasize larger values of both r and k. These two
basis sets have quite complementary features; so it should be
clear by comparing results from the two expansions which
parts depend on the particular basis set used and which are
model independent. In this article, relativistic corrections to
the form factors or to Q2 = h̄2k2 are not considered as they
were in Ref. [102].

There are a number of sources of uncertainty in the fits,
which are interrelated. The maximum value of Q2 of the data
limits the maximum number, N , of basis functions which can
be fit for fixed Rmax or b. The Q2 range of each basis function
depends on R or b so a larger number of basis functions can be
used by increasing the size of the box. However the box size
is limited by the Q2 gaps in the G

p

E and Gn
E database. With

the appropriate box size, N is ultimately limited by the finite
number of form factor measurements at independent values of
Q2. If one tries to use more basis functions, the fit parameters
will become highly correlated, manifest by a large error band.

Even below this limit, as N increases there are fewer data per fit
parameter, and so the error should grow as

√
N . This increase

in error is offset by the extra information obtained in higher
spatial frequencies. The truncation error from omitting higher
frequencies is represented below with a horizontal error bar
of width δr = h/4

√
Q2, a quarter wavelength of the highest

frequency basis function. This is an overestimate, because the
form factors fall off rapidly with Q2.

With the small number of basis functions (N = 7–8)
afforded by the data, it is difficult to obtain convergence
to G

p,n

E (Q2). Better convergence can be obtained while
retaining the model independence by fitting only the residual
form factors after subtracting an arbitrary base function that
reproduces the general features of the data. We used the GKex
model as the base function. The FBE or LGE is used to fit the
small correction to GKex from the data and mainly to calculate
the model-independent error band of the Fourier transform.
The quality of the base function can be assessed by comparing
the residual fit with the size of the error band. The model
independence can be shown by comparing the FBE and the
LGE and by using different base functions.

In general, the widths of the error bands of the fits to
4πr2ρBreit(r) were linear in r , superimposed with an oscil-
lation due to truncation after a finite number of the basis func-
tions. The oscillations were approximately the frequency of the
highest basis function. The linear part was consistent between
the FBE and LGE residual fits, but not the oscillations. The
oscillations were small for reasonable values of N , but started
to dominate as too many basis functions were used. Only the
linear part of the error bands were used in the final plots.

The complete procedure used to determine the optimal val-
ues of the nonfit parameters (Q2

max, N,Rmax) or (Q2
max, N, b)

in the Fourier transform of the data is as follows. The residual
G

p,n

E (Q2) data after subtracting the GKex model were fit to
a series of N basis functions, either FBE or LGE. The width
of the error band was fit to the linear function δρ(r) = ρ1r/1
fm, and then ρ1(N ) was plotted as a function of the number of
basis functions used each fit. A series of such plots ρ1(N ; Q2

max)
was generated for data subsets with different cuts of the form
0 < Q2 < Q2

max. The values Q2
max = 0.1, 0.4, 0.7, 1.0, 1.5, 2.0,

3.0, and 6.0 (GeV/c)2 for the proton and Q2
max = 0.2, 0.3, 0.5,

1.0, and 1.5 (GeV/c)2 for the neutron were used to generate
the series of plots. At small N , δρ(N ) was the same for each
value of Q2

max. As N increased, δρ(N ) began to diverge for data
sets with lower values of Q2

max. The threshold of N where the
fits began to diverge indicated the maximum number of basis
functions feasible for each Q2 range, N (Q2

max). The Q2 range
was fixed at Qmax = 1.5 (GeV/c)2 for comparison of ρ

p

Breit(r)
and ρn

Breit(r) and to avoid issues of two-photon contributions.
The entire procedure was repeated with different box sizes
Rmax (FBE) or b (LGE). The values Rmax and b were chosen
to minimize δρ1(N,Q2

max). As one would expect, the optimal
box size was the same for the proton and the neutron. The best
value of Rmax was the same as that in Kelly [102]; however,
the best value for b was about twice as large. The parameters
obtained using this procedure are listed in Table I.

In Figs. 19 and 20, ρBreit(r) for the GKex model is compared
with fits to the world data with smoothed error bars ob-
tained through the aforementioned procedure. The differences
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TABLE I. Fixed parameters used in the fits of the FBE
and LGE basis functions to the residual G

p,n

E (Q2) after
subtracting the GKex model.

FF Q2
max N Rmax b

G
p

E 1.5 (GeV/c)2 8 4 fm 1.05 fm
Gn

E 1.5 (GeV/c)2 7 4 fm 1.11 fm

between the solid curve and the two other curves are the LGE
and FBE residuals fitted to the data. The residuals are small,
but statistically significant. Although they deviate from the
GKex model, the FBE and LGE residuals are consistent with
each other within error. This is an important confirmation of
the model independence of the residual fit, because the two
basis functions are very different, as described previously. To
check for coverage of the basis functions, fits to the residuals
of different parametrizations such as the F-W or two dipole
forms described prevously were compared with GKex + FBE
and GKex + LGE and found to be consistent within error. We
conclude that the Fourier transforms of G

p

E and Gn
E world

data are robust with realistic error bands. To place these
Breit-frame distributions in context with other work, note that
when representing results in the light-cone frame, for instance,
that different (but not incompatible) behaviors may emerge,
showing that one’s perceptions must be keyed to what frame
of reference is chosen. Examples of this type may be found
in the work of Refs. [16,25,103] where the light-cone-frame
neutron distribution may even be negative at the origin.

The Breit coordinate-space electric distributions discussed
previously may be combined to yield two different quantities.
First, by taking sums and differences the isoscalar and
isovector Breit-frame electric distributions shown in Fig. 21
may be constructed:

ρs
Breit(r) ≡ ρ

p

Breit(r) + ρn
Breit(r), (40)

ρv
Breit(r) ≡ ρ

p

Breit(r) − ρn
Breit(r). (41)

Because the neutron electric distribution shown in Fig. 20 is
positive at small distances and negative at large distances one
sees that the isovector distribution lies outside the isoscalar
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FIG. 19. (Color online) Coordinate-space representation
4πr2ρ
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Breit(r) obtained using Eq. (35) with G
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E(Q2) together with the
GKex VMD model of Lomon [26].
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FIG. 20. (Color online) Coordinate-space representation
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Breit(r) obtained using Eq. (35) with Gn
E(Q2).

one, apparently consistent with isovector mesons playing an
important role in determining the large-distance behavior
(compare Fig. 21 with Figs. 14 and 15 where one sees the
ρ contribution extending beyond the ω contribution).

Second, note that the proton and neutron Breit-frame
electric distributions may be written in terms of Breit-
frame electric up- and down-quark distributions (neglecting
strange-quark contributions), involving the appropriate num-
bers of quarks (1 or 2) and quark charges (−1/3 and 2/3), both
for the proton and for the neutron:

ρ
p

Breit(r) ≡ 2

[
2

3
ρu

Breit(r)

]
+

[
−1

3
ρd

Breit(r)

]
, (42)

ρn
Breit(r) ≡ 2

[
−1

3
ρu

Breit(r)

]
+

[
2

3
ρd

Breit(r)

]
. (43)

Here ρu (ρd ) denote up (down)-quark distributions in the
proton; by charge symmetry these are assumed to be the same
as the down (up)-quark distributions in the neutron to obtain
Eq. (43); that is, we have assumed that

ρu ≡ ρu(p) = ρd(n), (44)

ρd ≡ ρd(p) = ρu(n). (45)
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FIG. 21. (Color online) Isoscalar and isovector coordinate-space
electric Breit-frame distributions obtained using Eqs. (40) and (41).
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FIG. 22. (Color online) Up- and down-quark coordinate-space
Breit-frame electric distributions obtained using Eqs. (46) and (47).

Inverting, one may construct the corresponding up- and
down-quark distributions in terms of the proton and neutron
distributions

ρu
Breit(r) ≡ ρ

p

Breit(r) + 1
2ρn

Breit(r), (46)

ρd
Breit(r) ≡ ρ

p

Breit(r) + 2ρn
Breit(r), (47)

shown in Fig. 22.

VI. CONCLUSIONS

The goal of the present study has been to gain insight into
the roles played by mesons in the electromagnetic form factors
of the nucleon. A basic reference model, the GKex model
of Lomon, has been assumed; since it is very successful in
representing the Q2 dependence of the published high-quality
data available to date. This approach is based on VMD together
with coupling to the continuum which yields widths for the
vector mesons and with asymptotics devised in such a way
that the high-Q2 behavior of pQCD is attained for very high
momentum transfers—just how high is determined by the fit
made to the data. No attempt has been made to refit the model to
the most recent experimental results. Rather the model is taken
to be “frozen” in the form in which it was presented in 2005
and thus the excellent agreement with more recent data may be
taken as a test of its predictive power. The model is summarized
in some detail in Sec. II together with discussions of which
specific data were fit and the fit results are presented in Sec. III.

In Sect. IV this reference model has been used to gain
some insights into how the various contributions contained in
it yield the observed behavior of the form factors. Specifically,
it is shown in some detail how having a dipole form for
a form factor is not natural in this approach, but rather arises
from compensating effects where the more natural monopole
form factors conspire effectively to yield roughly the dipole
behaviors of the magnetic form factors at least at modest values
of Q2. Such compensations do not occur for the electric form
factor of the proton, in accord with the data where the ratio
G

p

E/[Gp

M/µp] falls with Q2. All of the ingredients in the
GKex model are displayed in some detail to ascertain which
mesons are dominant and which are less important, at least
for modest momentum transfers. Also, the effects arising from

the inclusion of coupling to the continuum (in this model,
only in the ρ meson contributions) are explored by comparing
the form factors obtained with the width present or with only
the ρ pole: these do not differ very significantly, indicating the
relatively minor role played by such effects.

Using the GKex model as a basis, the differences between
it and the data have been analyzed using sets of orthonormal
functions to assess the level of uncertainty in the experimental
results. In Sec. V both the data for the electric form factors
with their uncertainties and the model for these quantities
are Fourier transformed to coordinate space, obtaining the
so-called Breit-frame distribution. It has been emphasized in
the discussions in the body of the article that, although these are
well defined mathematically, such Fourier transforms should
not be interpreted as charge distributions. One might ask what
use they are, given this statement. The point of view taken
in the present study is that when one Fourier transforms both
the data and the model form factors new insights into the
roles played by the various mesons emerge. Specifically, it
is clearly seen that at large distances (i.e., for large Breit-
frame Fourier components) the ρ and the ω are dominant. As
in momentum space, the width of the former may be turned
on or off; the result is only a minor change, indicating that
coupling to the continuum is not a major effect, at least for such
Fourier components. In addition to obtaining the Breit-frame
distributions as discussed previously, in the same section the
isoscalar/isovector and up-quark/down-quark distributions are
also extracted for completeness.

The worldwide program over the last two decades to
determine the elastic nucleon form factors using high duty
factor electron accelerators to measure precisely polarization
observables has been highly successful. It has yielded a data
set of unprecedented precision and consistency for the nucleon
elastic form factors at low and medium Q2. Although the
BLAST low-Q2 polarized data constitute a very small part of
the whole data set, they have cast doubt on indications seen in
earlier data of structure at this low momentum transfer. These
were attributed to a ‘pion cloud. Such structure is not present
in the GKex representation, and indeed the coupling to explicit
continuum pions is a relatively minor effect in this model, as
discussed in the body of the article. Further, very-high-quality
measurements at low Q2 may help in reaching a definitive an-
swer to the question of how much structure is actually present.

In this article, we have used the vector meson dominance
model and this new data set to understand the role of mesons in
the electromagnetic form factors of the proton and the neutron.
Studies in both momentum space (for all four form factors) and
in coordinate space (for the Breit-frame distributions that come
from the nucleon’s electric form factors) have yielded valuable
insights. In a forthcoming article, the study will be extended
to include new data for the nucleon magnetic form factors and
to investigate the corresponding coordinate-space Breit-frame
distributions.
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