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J/ψ and ηc masses in isospin asymmetric hot nuclear matter: A QCD sum rule approach
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We study the in-medium masses of the charmonium states J/ψ and ηc in the nuclear medium using the QCD
sum rule approach. These mass modifications arise owing to modifications of the scalar and the twist-2 gluon
condensates in the hot hadronic matter. The scalar gluon condensate 〈 αs

π
Ga

µνG
aµν〉 and the twist-2 tensorial

gluon operator 〈 αs

π
Ga

µσ Ga
ν
σ 〉 in the nuclear medium are calculated from the medium modification of a scalar

dilaton field introduced to incorporate trace anomalies of QCD within the chiral SU(3) model used in the
present investigation. The effects of isospin asymmetry, density, and temperature of the nuclear medium on the
in-medium masses of the lowest charmonium states J/ψ and ηc mesons are investigated in the present work.
The results of the present investigation are compared with the existing results on the masses of these states. The
medium modifications of the masses of these charmonium states (J/ψ and ηc) seem to be appreciable at high
densities and should modify the experimental observables arising from the compressed baryonic matter produced
in asymmetric heavy-ion collision experiments at the future facility of Facility for Antiproton and Ion Research,
GSI.
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I. INTRODUCTION

The study of in-medium hadronic properties is of con-
siderable interest, both experimentally and theoretically in
present-day strong-interaction physics. The study of the
in-medium properties of hadrons has direct relevance in
experiments where hadronic matter is probed at high densities
and/or temperatures. The compressed baryonic matter (CBM)
experiment at the Facility for Antiproton and Ion Research
(FAIR), GSI Helmholtz Centre for Heavy Ion Research (GSI),
is planned to produce dense matter at high densities and
moderate temperatures. The medium modifications of the
strange and charm mesons and their effects on the experimental
observables are among the topics that are intended to be studied
extensively in these experiments. Therefore, the topic of
the study of charm mesons in the medium has gotten consid-
erable interest in the recent past. The medium modifications
of the properties of the charm mesons D and D̄, as well as the
excited charmonium states, can have important consequences
on the production of open charm and the suppression of the
J/ψ in heavy-ion collision experiments. The suppression of
J/ψ in heavy-ion collisions may lead to the signature of
quark-gluon plasma (QGP) [1,2]. Also, it is observed that the
effect of hadron absorption of J/ψ is not negligible [3–5].
In Ref. [6], it was reported that the charmonium suppression
observed in Pb + Pb collisions in the NA50 experiment cannot
be simply explained by nucleon absorption, but needs some
additional density-dependent suppression mechanisms. It was
suggested in these studies that the comover scattering [6–8]
can explain the additional suppression of charmonium. An
important difference between J/ψ suppression pattern in
comovers interaction model and in a deconfining scenario is
that, in the former case, the anomalous suppression sets in
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smoothly from peripheral to central collisions rather than in
a sudden way when the deconfining threshold is reached [7].
The J/ψ suppression in nuclear collisions at Super Proton
Synchrotron (SPS) energies has been studied in the covariant
transport approach hadron-string dynamics (HSD) in Ref. [8].
The calculations show that the absorption of J/ψ’s by both
nucleons and produced mesons can explain reasonably not
only the total J/ψ cross section but also the transverse
energy dependence of J/ψ suppression measured in both
proton-nucleus and nucleus collisions. In Ref. [9], the cross
section of J/ψ dissociation by gluons is used to calculate the
J/ψ suppression in an equilibrating parton gas produced in
high-energy nuclear collisions. The large average momentum
in the hot gluon gas enables gluons to break up the J/ψ , while
hadron matter at reasonable temperature does not provide
sufficiently hard gluons. The multigluon exchange can lead
to an attractive potential between a cc̄ meson and a nucleon,
such that, for example, the ηc could form bound states even
with light nuclei [10,11].

The D (D̄) mesons are made up of a light (u or d) antiquark
(quark) and one heavy charm quark (charm antiquark). In
QCD sum rule calculations, the mass modifications of D(D̄)
mesons in the nuclear medium arise owing to interactions of
light antiquark (quark) present in the D(D̄) mesons with the
light quark condensate [12,13]. There is appreciable change
in the light-quark condensate in the nuclear medium and,
hence, D(D̄) meson mass, owing to its interaction with the
light-quark condensate, changes appreciably in the hadronic
matter. The medium modifications of the D mesons modify
the decay widths of the charmonium states, which have
been studied in Ref. [13]. The charmonium states are made
up of a heavy charm quark and a charm antiquark. Within
QCD sum rule calculations, it is suggested that these heavy
quarkonium states interact with the nuclear medium through
the gluon condensates [10], unlike the interaction of the light
vector mesons with the nuclear medium, which is through
the light-quark condensates [14]. This is because all the
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heavy-quark condensates can be related to the gluon conden-
sates via heavy-quark expansion [15]. Also in the nuclear
medium there are no valence charm quarks to leading order in
density and any interaction with the medium is gluonic. The
medium modifications of the gluon condensates are seen to
be small and this leads to the mass modifications of J/ψ and
ηc mesons, which are the lowest charmonium states, to be small
in the nuclear medium [10]. The leading-order perturbative
calculations [16] in the study of the charmonium states
also shows that the mass of J/ψ is reduced slightly in the
nuclear medium. In Ref. [17], the mass modifications of the
charmonium states have been studied using QCD second-order
Stark effect and the linear density approximation for the gluon
condensate in the nuclear medium. This shows a small drop
for the J/ψ mass at the nuclear-matter density, but there
is seen to be significant shift in the masses of the excited
states of charmonium [ψ(3686) and ψ(3770)]. Using QCD
second-order Stark effect, the masses of the charmonium states
were also studied [18] in the asymmetric nuclear medium
at finite temperatures. These medium modifications were
investigated by computing the scalar gluon condensate in
the hot nuclear medium from the medium modification of
a scalar dilaton field within a chiral SU(3) model, which was
introduced to incorporate broken scale invariance of QCD.
This investigation showed a small drop in the J/ψ mass in the
medium, whereas the masses of the excited charmonium states
were observed to have appreciable drop at high densities.

In the present investigation, we study the in-medium
modifications of the vector meson, J/ψ and the pseudoscalar
meson, ηc, using QCD sum rules [10] and an effective chiral
SU(3) model [19]. To apply the QCD sum rules for the study of
in-medium modifications of J/ψ and ηc mesons, we consider
the contributions of the scalar gluon condensates 〈αs

π
Ga

µνG
aµν〉

and twist-2 tensorial gluon operator 〈αs

π
Ga

µσGa
ν
σ 〉 up to

dimension four [10]. The scalar gluon condensate, as well
as the twist-2 gluon operator in the nuclear medium, are
calculated from the medium modification of a scalar dilaton
field, χ , introduced within a chiral SU(3) model [19] through
a scale symmetry-breaking term in the Lagrangian density
leading to the QCD trace anomaly. The chiral SU(3) model [19]
has been used successfully to study the medium modifications
of kaons and antikaons in isospin asymmetric nuclear matter
in Ref. [20] and in hyperonic matter in Ref. [21]. The chiral
SU(3) model was generalized to SU(4) to study the mass
modifications of D mesons arising from their interactions with
the light hadrons in isospin symmetric hot hadronic matter in
Ref. [22] and in isospin asymmetric nuclear matter at zero
temperature [23] and finite temperatures [18], respectively.
The in-medium properties of the vector mesons have also been
studied within the model [24,25]. In the present investigation,
we study the in-medium masses of the J/ψ and ηc mesons,
calculated from the medium modifications of the dilaton
field, χ , in the isospin asymmetric nuclear matter at finite
temperatures within the chiral SU(3) model.

The outline of the article is as follows. In Sec. II, we
give a brief introduction of the chiral SU(3) model used to
study the in-medium masses of charmonium states J/ψ and
ηc in the present investigation. The medium modifications of

these charmonium states, J/ψ and ηc mesons, arise from the
medium modification of the scalar gluon condensate in the
nuclear medium, simulated by a scalar dilaton field introduced
in the hadronic model to incorporate broken scale invariance
of QCD leading to QCD trace anomaly and also owing to the
medium modification of the expectation value of the twist-2
gluon operator. Section III discusses briefly the QCD sum
rule approach used to calculate the masses of the charmonium
states J/ψ and ηc. In Sec. IV, we discuss the results of the
present investigation. Section V summarizes the conclusions
of the present work.

II. THE HADRONIC CHIRAL SU(3) × SU(3) MODEL

We use an effective chiral SU(3) model for the present
investigation [19]. The model is based on the nonlinear
realization of chiral symmetry [26–28] and broken scale
invariance [19,24,25]. This model has been used successfully
to describe nuclear matter, finite nuclei, hypernuclei and
neutron stars. The effective hadronic chiral Lagrangian density
contains the following terms:

L = Lkin +
∑

W=X,Y,V,A,u

LBW + Lvec + L0 + LSB. (1)

In Eq. (1), Lkin is the kinetic-energy term, LBW is the baryon-
meson-interaction term in which the baryon–spin-0–meson
interaction term generates the vacuum baryon masses. Lvec

describes the dynamical mass generation of the vector mesons
via couplings to the scalar mesons and contains additionally
quartic self-interactions of the vector fields. L0 contains
the meson-meson interaction terms inducing the spontaneous
breaking of chiral symmerty, as well as a scale-invariance-
breaking logarthimic potential. LSB describes the explicit
chiral symmetry breaking.

To study the hadron properties at finite temperature and
densities in the present investigation, we use the mean-field
approximation, where all the meson fields are treated as
classical fields. In this approximation, only the scalar and
vector fields contribute to the baryon-meson interaction LBW

because for all the other mesons the expectation values are
zero. The interactions of the scalar mesons and vector mesons
with the baryons are given as

LBscal + LBvec

= −
∑

i

ψ̄i[m
∗
i + gωiγ0ω + gρiγ0ρ + gφiγ0φ]ψi. (2)

The interaction of the vector mesons and of the scalar
fields and the interaction corresponding to the explicit
symmetry breaking, in the mean field approximation, are
given as

Lvec = 1

2

(
m2

ωω2 + m2
ρρ

2 + m2
φφ2)χ2

χ2
0

+ g4(ω4 + 6ω2ρ2 + ρ4 + 2φ4), (3)
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L0 = −1

2
k0χ

2(σ 2 + ζ 2 + δ2) + k1(σ 2 + ζ 2 + δ2)2

+ k2

(
σ 4

2
+ δ4

2
+ 3σ 2δ2 + ζ 4

)
+ k3χ (σ 2 − δ2)ζ

− k4χ
4 − 1

4
χ4ln

χ4

χ4
0

+ d

3
χ4ln

[(
(σ 2 − δ2)ζ

σ 2
0 ζ0

) (
χ

χ0

)3
]
,

(4)

and

LSB = −
(

χ

χ0

)2 [
m2

πfπσ +
(√

2m2
kfk − 1√

2
m2

πfπ

)
ζ

]
.

(5)

The effective mass of the baryon of species i is given as

m∗
i = −(gσiσ + gζiζ + gδiδ). (6)

The baryon-scalar meson interactions, as can be seen from
Eq. (6), generate the baryon masses through the coupling of
baryons to the nonstrange σ , the strange ζ scalar mesons, and
the scalar-isovector meson δ. In analogy to the baryon-scalar
meson couplings, there exist two independent baryon-vector
meson interaction terms corresponding to the F -type (anti-
symmetric) and D-type (symmetric) couplings. Here antisym-
metric coupling is used because the universality principle [29]
and vector meson dominance model suggest small symmetric
couplings. Additionally, we choose the parameters [19,20] so
as to decouple the strange vector field φµ ∼ s̄γµs from the
nucleon, corresponding to an ideal mixing between ω and
φ mesons. A small deviation of the mixing angle from ideal
mixing [30–32] has not been taken into account in the present
investigation.

The concept of broken scale invariance leading to the trace
anomaly in (massless) QCD, θµ

µ = βQCD

2g
Ga

µν Gµνa , where Ga
µν

is the gluon field strength tensor of QCD, is simulated in the
effective Lagrangian at tree level [33] through the introduction
of the scale-breaking terms

Lscale breaking = −1

4
χ4ln

(
χ4

χ4
0

)

+ d

3
χ4ln

[(
I3

det〈X〉0

)(
χ

χ0

)3
]

, (7)

where I3 = det〈X〉, with X as the multiplet for the scalar
mesons. These scale-breaking terms, in the mean-field ap-
proximation, are given by the last two terms of the Lagrangian
density, L0 given by Eq. (4) [34]. Within the chiral SU(3)
model used in the present investigation, the scalar gluon
condensate 〈αs

π
Ga

µν Gµνa〉, as well as the twist-2 gluon operator
〈αs

π
Ga

µσ Gσa
ν 〉, are simulated by the scalar dilaton field, χ .

These are obtained from the energy momentum tensor

Tµν = (∂µχ )

(
∂Lχ

∂(∂νχ )

)
− gµνLχ , (8)

derived from the Lagrangian density for the dilaton field, given
as

Lχ = 1

2
(∂µχ )(∂µχ ) − k4χ

4 − 1

4
χ4ln

(
χ4

χ4
0

)

+ d

3
χ4ln

[(
(σ 2 − δ2)ζ

σ 2
0 ζ0

)(
χ

χ0

)3
]

. (9)

In massless QCD, the energy momentum tensor can be written
as [35,36]

Tµν = −ST
(
Ga

µσ Ga
ν
σ
) + gµν

4

βQCD

2g
Ga

σκG
aσκ

, (10)

where the first term is the symmetric traceless part and second
term is the trace part of the energy momentum tensor. Writing〈αs

π
Ga

µσ Ga
ν
σ
〉
=

(
uµuν − gµν

4

)
G2, (11)

where uµ is the four velocity of the nuclear medium, taken as
uµ = (1, 0, 0, 0), we obtain the energy momentum tensor in
QCD as

Tµν = −
(

π

αs

) (
uµuν − gµν

4

)
G2 + gµν

4

βQCD

2g
Ga

σκ Gaσκ
.

(12)

Equating the energy-momentum tensors given by Eqs. (8)
and (12) and multiplying by (uµuν − gµν

4 ), we obtain the
expression for G2 as

G2 = −αs

π

[
(∂αχ )

(
∂Lχ

∂(∂αχ )

)
+ 4

3
(∂iχ )(∂iχ )

]
. (13)

We note here that by multiplying the energy momentum
tensor of QCD given through Eq. (12), by (uµuν − gµν

4 ),
we project out the traceless part given by the first term of
the energy momentum tensor, described by the function G2.
This is because gµν(uµuν − gµν

4 ) = 0, and, hence, there is no
contribution from the trace part of the energy momentum
tensor in QCD, when we multiply the same by (uµuν − gµν

4 ).
Similarly, by multiplying the energy momentum tensor given
by Eq. (12) by gµν , the first part gives zero and only the second
term contributes to the trace of the energy momentum tensor.
The effect of the logarithmic terms in the chiral SU(3) model,
given by Eq. (9), is to break the scale invariance. Multiplying
Eq. (8) by gµν , we obtain the trace of the energy momentum
tensor within the chiral SU(3) model as

T µ
µ = (∂µχ )

(
∂Lχ

∂(∂µχ )

)
− 4Lχ . (14)

Using the Euler-Lagrange’s equation for the χ field, the trace
of the energy momentum tensor in the chiral SU(3) model can
be expressed as [18,34]

T µ
µ = χ

∂Lχ

∂χ
− 4Lχ = −(1 − d)χ4. (15)

Multiplying Eq. (12) by gµν , we obtain the trace of the energy
momentum tensor in QCD as

T µ
µ =

〈
βQCD

2g
Ga

σκ Gaσκ

〉
. (16)
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Using the Euler-Lagrange equation for χ and dropping a total
divergence term in Eq. (13), the expression for G2 can be
written as

G2 = αs

π

[
χ

∂Lχ

∂χ
− 4

3
(∂iχ )(∂iχ )

]

= αs

π

{
−(1 − d + 4k4)χ4 − χ4ln

(
χ4

χ0
4

)

+ 4

3
dχ4ln

[(
(σ 2 − δ2)ζ

σ 2
0 ζ0

) (
χ

χ0

)3
]

− 4

3
(∂iχ )(∂iχ )

}
.

(17)

The twist-2 gluon operator has a contribution only in
the nuclear medium and is zero in vacuum [10]. Hence
(G2)vac = 0, which implies that

−(1 − d + 4k4)χ0
4 − 4

3 〈(∂iχ )(∂iχ )〉vac = 0. (18)

Assuming the glueball field χ to be nonrelativistic, and
hence assuming that 〈(∂iχ )(∂iχ )〉medium � 〈(∂iχ )(∂iχ )〉vac and
using Eq. (18), the expression for G2 is obtained from
Eq. (17) as

G2 = αs

π

{
−(1 − d + 4k4)(χ4 − χ0

4) − χ4ln

(
χ4

χ0
4

)

+ 4

3
dχ4ln

[(
(σ 2 − δ2)ζ

σ 2
0 ζ0

)(
χ

χ0

)3
]}

. (19)

The scalar gluon condensate and the twist-2 gluon operator,
described in terms of the function G2 given by Eqs. (15) and
(19), are thus related to the χ field, which is solved from the
coupled equations of motion of the scalar fields within the
chiral SU(3) model.

The coupled equations of motion for the nonstrange scalar
field σ , the strange scalar field ζ , the scalar-isovector field δ,
and the dilaton field χ are derived from the Lagrangian density
and are given as

k0χ
2σ − 4k1(σ 2 + ζ 2 + δ2) σ − 2k2(σ 3 + 3σδ2) − 2k3χσζ

− d

3
χ4

(
2σ

σ 2 − δ2

)
+

(
χ

χ0

)2

m2
πfπ −

∑
gσiρ

s
i = 0,

(20)

k0χ
2ζ − 4k1(σ 2 + ζ 2 + δ2)ζ − 4k2ζ

3 − k3χ (σ 2 − δ2)

− d

3

χ4

ζ
+

(
χ

χ0

)2 [√
2m2

kfk − 1√
2
m2

πfπ

]

−
∑

gζiρ
s
i = 0, (21)

k0χ
2δ − 4k1(σ 2 + ζ 2 + δ2) δ − 2k2(δ3 + 3σ 2δ) + k3χδζ

+ 2

3
dχ4

(
δ

σ 2 − δ2

)
−

∑
gδiρ

s
i = 0, (22)

k0χ (σ 2 + ζ 2 + δ2) − k3(σ 2 − δ2)ζ

+χ3

[
1 + ln

(
χ4

χ4
0

)]
+ (4k4 − d)χ3

− 4

3
dχ3ln

[(
(σ 2 − δ2)ζ

σ 2
0 ζ0

) (
χ

χ0

)3
]

+ 2χ

χ2
0

[
m2

πfπσ +
(√

2m2
kfk − 1√

2
m2

πfπ

)
ζ

]
= 0.

(23)

In the preceding, ρi
s are the scalar densities for the baryons,

given as

ρs
i = γi

∫
d3k

(2π )3

m∗
i

E∗
i (k)

×
(

1

e[Ei
∗(k)−µi

∗]/T + 1
+ 1

e[Ei
∗(k)+µi

∗]/T + 1

)
, (24)

where Ei
∗(k) = (k2 + mi

∗2)1/2 and µi
∗ = µi − gωiω −

gρiρ − gφiφ are the single-particle energy and the effective
chemical potential for the baryon of species i and, γi = 2 is
the spin degeneracy factor [20].

The preceding coupled equations of motion are solved to
obtain the density- and temperature-dependent values of the
scalar fields (σ , ζ , and δ) and the dilaton field, χ , in the isospin
asymmetric hot nuclear medium. As has been mentioned, the
value of the χ is related to the scalar gluon condensate, as well
as the twist-2 gluon operator in the hot hadronic medium, and
is used to compute the in-medium masses of charmonium
states in the present investigation. The isospin asymmetry
in the medium is introduced through the scalar-isovector
field δ and therefore the dilaton field obtained after solving
the preceding equations is also dependent on the isospin
asymmetry parameter η, defined as η = (ρn − ρp)/(2ρB),
where ρn and ρp are the number densities of the neutron
and the proton and ρB is the baryon density. In the present
investigation, we study the effect of isospin asymmetry of the
medium on the masses of the charmonium states J/ψ and ηc.

The comparison of the trace of the energy momentum tensor
arising from the trace anomaly of QCD with that of the present
chiral model given by Eqs. (15) and (16) gives the relation of
the dilaton field to the scalar gluon condensate. We have, in
the limit of massless quarks [37],

T µ
µ =

〈
βQCD

2g
Ga

µνG
µνa

〉
≡ −(1 − d)χ4. (25)

In the case of finite quark masses, Eq. (25) gets modified to

T µ
µ =

∑
i

mi q̄iqi +
〈
βQCD

2g
Ga

µνG
µνa

〉
≡ −(1 − d)χ4, (26)

where the first term of the energy-momentum tensor within
the chiral SU(3) model is the negative of the explicit chiral
symmetry-breaking term LSB given by Eq. (5).
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The parameter d in Eq. (26) originates from the second
logarithmic term of Eq. (7). To get an insight into the value
of the parameter d, we recall that the QCD β function at the
one-loop level for Nc colors and Nf flavors is given by

βQCD(g) = −11Ncg
3

48π2

(
1 − 2Nf

11Nc

)
+ O(g5). (27)

In the preceding equation, the first term in the parentheses
arises from the (antiscreening) self-interaction of the gluons
and the second term, proportional to Nf , arises from the
(screening) contribution of quark pairs. For massless quarks,
Eqs. (25) and (27) suggest the value of d to be 6/33 for three
flavors and three colors, and for the case of three colors and
two flavors, the value of d turns out to be 4/33, consistent with
the one-loop estimate of the QCD β function. These values
give the order of magnitude about which the parameter d can
be taken [34] because one cannot rely on the one-loop estimate
for βQCD(g). In the present investigation of the in-medium
properties of the charmonium states owing to the medium
modification of the dilaton field within chiral SU(3) model, we
use the value of d = 0.064 [23]. This parameter, along with
the other parameters corresponding to the scalar Lagrangian
density L0 given by Eq. (4), are fitted so as to ensure extrema
in the vacuum for the σ , ζ , and χ field equations to reproduce
the vacuum masses of the η and η′ mesons, the mass of the σ

meson around 500 MeV, and pressure, p(ρ0) = 0, with ρ0 as
the nuclear-matter saturation density [19,23].

The trace of the energy-momentum tensor in QCD, using
the one-loop β function given by Eq. (27) for Nc = 3 and
Nf = 3, and accounting for the finite quark masses [37] is
given as

T µ
µ = −9

8

αs

π
Ga

µν Gaµν

+
(

χ

χ0

)2 [
m2

πfπσ +
(√

2m2
kfk − 1√

2
m2

πfπ

)
ζ

]
.

(28)

Using Eqs. (25) and (28), we can write

〈αs

π
Ga

µν Gaµν
〉
= 8

9

{
(1 − d)χ4 +

(
χ

χ0

)2 [
m2

πfπσ

+
(√

2m2
kfk − 1√

2
m2

πfπ

)
ζ

]}
. (29)

We thus see from Eq. (29) that the scalar gluon condensate
〈αs

π
Ga

µνG
µνa〉 is related to the dilaton field χ . For massless

quarks, because the second term in Eq. (29) arising from
explicit symmetry breaking is absent, the scalar gluon conden-
sate becomes proportional to the fourth power of the dilaton
field, χ , in the chiral SU(3) model. As mentioned earlier,
the in-medium masses of charmonium states are modified
owing to the scalar gluon condensate and the twist-2 gluon
operators, which are calculated from the modification of the
χ field.

III. QCD SUM RULE APPROACH AND IN-MEDIUM
MASSES OF J/ψ AND ηc

In the present section, we use the medium modifications
of the gluon condensate, calculated from the dilaton field
in the chiral effective model to compute the masses of the
charmonium states J/ψ and ηc in isospin asymmetric hot
nuclear matter. Using QCD sum rules [10] the in-medium
masses of the lowest charmonium states can be written as

m2 � MJ
n−1(ξ )

MJ
n (ξ )

− 4m2
cξ, (30)

where MJ
n is the nth moment of the meson and ξ is the

normalization scale. Using operator product expansion, the
moment MJ

n can be written as [10]

MJ
n (ξ ) = AJ

n (ξ )
[
1 + aJ

n (ξ )αs + bJ
n (ξ )φb + cJ

n (ξ )φc

]
, (31)

where AJ
n (ξ ), aJ

n (ξ ), bJ
n (ξ ), and cJ

n (ξ ) are the Wilson coef-
ficients. The common factor AJ

n results from the bare loop
diagram. The coefficients aJ

n take into account perturbative
radiative corrections, while the coefficients bJ

n are associated
with the scalar gluon condensate term

φb = 4π2

9

〈
αs

π
Ga

µνG
aµν

〉
(
4m2

c

)2 . (32)

As already mentioned, the contribution of the scalar gluon
condensate is taken through the dilaton field within the chiral
SU(3) model used in the present investigation. Using Eq. (29),
the preceding equation can be rewritten in terms of the dilaton
field χ as

φb = 32π2

81
(
4m2

c

)2

{
(1 − d)χ4 +

(
χ

χ0

)2

×
[
m2

πfπσ +
(√

2m2
kfk − 1√

2
m2

πfπ

)
ζ

]}
. (33)

The coefficients AJ
n , aJ

n , and bJ
n are listed in Ref. [38]. The

coefficients cJ
n are associated with the value of φc, which gives

the contribution from twist-2 gluon operator and is given as

φc = 4π2

3
(
4m2

c

)2 G2, (34)

where G2 is given by Eq. (19). We calculate the in-medium
masses of the charmonium states J/ψ and ηc in the hot
asymmetric nuclear matter and compare the results with the
contribution from the twist-2 gluon operator as calculated in
the linear density approximation. In the low-density approxi-
mation, the term φc is given as [10]

φc = −2π2

3

〈
αs

π
AG

〉
(
4m2

c

)2 mNρB. (35)

In the preceding equation, AG represents twice the momentum
fraction carried by gluons in the nucleon and is set equal to
0.9 [10]. mN and ρB are the nucleon mass and baryon density,
respectively. The Wilson coefficients, cJ

n in the vector channel
(for J/ψ) and the pseudoscalar channel (for ηc), can be found
in Ref. [10]. The parameters mc and αs are the running charm
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quark mass and running coupling constant, respectively, and
are ξ dependent [38]. These are given by

mc(ξ )

mc

= 1 − αs

π

[
2 + ξ

1 + ξ
ln(2 + ξ ) − 2ln2

]
, (36)

where mc ≡ mc(p2 = −m2
c) = 1.26 GeV [39], and

αs

(
Q2

0 + 4m2
c

)
= αs

(
4m2

c

)/ (
1 + 25

12π
αs

(
4m2

c

)
ln

Q2
0 + 4m2

c

4m2
c

)
,

(37)

with αs(4m2
c) � 0.3 and Q2

0 = 4m2
cξ [38].

In the next section, we present and discuss the results of our
present investigation of the in-medium masses of J/� and ηc

in isospin asymmetric hot nuclear matter.

IV. RESULTS AND DISCUSSIONS

In this section, we first investigate the effects of density,
isospin asymmetry, and temperature of the nuclear medium on
the dilaton field χ in the chiral SU(3) model, from which we
obtain the expectation value of the scalar gluon condensate in
the medium. Using the QCD sum rule approach, the in-medium
masses of charmonium states J/ψ and ηc are calculated
from the medium dependence of the gluon condensates. The
medium-dependent dilaton field χ is obtained by solving the
equations of motion of the scalar fields, σ , ζ , δ, and χ , given
by Eqs. (20)–(23). The values of the parameters used in the
present investigation are k0 = 2.54, k1 = 1.35, k2 = −4.78,
k3 = −2.77, k4 = −0.22, and d = 0.064, which are the pa-
rameters occurring in the scalar meson interactions defined in
Eq. (4). The vacuum values of the scalar isoscalar fields σ and
ζ and the dilaton field χ are −93.3, −106.6, and 409.77 MeV,
respectively. The values gσN = 10.6 and gζN = −0.47 are
determined by fitting to the vacuum baryon masses. The other
parameters fitted to the asymmetric nuclear-matter satura-
tion properties in the mean-field approximation are gωN =
13.3, gρp = 5.5, g4 = 79.7, gδp = 2.5, mζ = 1024.5 MeV,
mσ = 466.5 MeV, and mδ = 899.5 MeV. The nuclear-
matter saturation density used in the present investigation is
0.15 fm−3.

In Fig. 1, we show the variation of a dilaton field χ with
temperature for both zero and finite baryon densities and for
selected values of the isospin asymmetry parameter, η = 0,
0.1, 0.3, and 0.5 [18]. At zero baryon density, it is observed
that the value of the dilaton field remains almost constant up to
a temperature of about 130 MeV, above which it is seen to drop
with increase in temperature. However, the drop in the dilaton
field is seen to be very small up to a temperature of around
175 MeV, above which the drop is seen to be larger. The value
of the dilaton field is seen to change from 409.8 MeV at T = 0
to about 409.7, 409.3, and 405.76 MeV at T = 150, 175, and
200 MeV, respectively. The thermal distribution functions have
an effect of increasing the scalar densities at zero baryon
density, that is, for µ∗

i = 0, as can be seen from the expression
of the scalar densities given by Eq. (24). This effect seems
to be negligible up to a temperature of about 130 MeV. This
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FIG. 1. (Color online) The dilaton field χ plotted as a function
of temperature, at given baryon densities, for different values of the
isospin asymmetry parameter η.

leads to a decrease in the magnitudes of scalar fields σ and
ζ . This behavior of the scalar fields is reflected in the value
of χ , which is solved from the coupled equations of motion
of the scalar fields, given by Eqs. (20)–(23), as a drop as
we increase the temperature above a temperature of about
130 MeV. The scalar densities attaining nonzero values at
high temperatures, even at zero baryon density, indicates the
presence of baryon-antibaryon pairs in the thermal bath and
has already been observed in the literature [25,40]. This leads
to the baryon masses being different from their vacuum masses
above this temperature, arising from modifications of the scalar
fields σ and ζ .

For finite-density situations, the behavior of the χ field with
temperature is seen to be very different from the zero-density
case, as can be seen in panels (b), (c), and (d) of Fig. 1,
where the χ field is plotted as a function of temperature for
densities ρ0, 2ρ0, and 4ρ0, respectively. At finite densities, one
observes first a rise and then a decrease of the dilaton field with
temperature. This is related to the fact that at finite densities,
the magnitude of the σ field (as well as of the ζ field) first
show an increase and then a drop with further increase of
the temperature [18], which is reflected in the behavior
of χ field, because it is solved from the coupled equations
of the scalar fields. The reason for the different behavior of
the scalar fields (σ and ζ ) at zero and finite densities can
be understood in the following manner [25]. As has already
been mentioned, the thermal distribution functions in Eq. (24)
have an effect of increasing the scalar densities at zero baryon
density, that is, for µ∗

i = 0. However, at finite densities, that
is, for nonzero values of the effective chemical potential, µi

∗,
for increasing temperature, there are contributions also from
higher momenta, thereby increasing the denominator of the
integrand on the right-hand side of Eq. (24). This leads to
a decrease in the scalar density. The competing effects of
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the thermal distribution functions and the contributions of
the higher-momenta states give rise to the observed effect of the
scalar density and hence of the σ and ζ fields with temperature
at finite baryon densities [25]. This kind of behavior of the
scalar σ field on temperature at finite densities has also been
observed in the Walecka model by Li et al. [41], which
was reflected as an increase in the mass of the nucleon with
temperature at finite densities in the mean-field calculations.
The effects of the behavior of the scalar fields on the value
of the χ field, obtained from solving the coupled equations
(20)–(23) for the scalar fields, are shown in Fig. 1.

In Fig. 1, it is observed that for a given value of isospin
asymmetry parameter η, the dilaton field χ decreases with
increase in the density of the nuclear medium. The drop in
the value of χ with density is seen to be much larger than
that seen with its modification with temperature at a given
density. For isospin symmetric nuclear medium (η = 0) at
temperature T = 0, the reduction in the dilaton field χ from
its vacuum value (χ0 = 409.8 MeV) is seen to be about
3 MeV at ρB = ρ0 and about 13 MeV at ρB = 4ρ0. As we
move from isospin symmetric medium with η = 0 to isospin
asymmetric medium at temperature T = 0 for a given value
of density, there is seen to be an increase in the value of the
dilaton field χ . However, the effect of isospin asymmetry of
the medium on the value of the dilaton field is observed to be
negligible up to about a density of nuclear-matter saturation
density, and is appreciable only at higher values of densities,
as can be seen in Fig. 1. At nuclear-matter saturation density
ρ0, the value of dilaton field χ changes from 406.4 MeV in
the symmetric nuclear medium (η = 0) to 406.5 MeV in the
isospin asymmetric nuclear medium (η = 0.5). At a density
of about 4ρ0, the values of the dilaton field are modified to
396.7 and 398 MeV at η = 0 and 0.5, respectively. Thus, the
increase in the dilaton field χ with isospin asymmetry of the
medium is seen to be greater at zero temperature as we move
to higher densities.

At a finite density, ρB , and for given isospin asymmetry
parameter η, the dilaton field χ is seen to first increase with
temperature, and above a particular value of temperature, it
is seen to decrease with further increase in temperature. At
the nuclear-matter saturation density ρB = ρ0 and in isospin
symmetric nuclear medium (η = 0) the value of the dilaton
field χ increases up to a temperature of about T = 145 MeV,
above which there is a drop in the dilaton field. For ρB = ρ0

in the asymmetric nuclear matter with η = 0.5, there is seen
to be a rise in the value of χ up to a temperature of about
120 MeV, above which it starts decreasing. As has already
been mentioned, at zero temperature and for a given value of
density, the dilaton field χ is found to increase with increase
in the isospin asymmetry of the nuclear medium. However,
from Fig. 1, it is observed that at high temperatures and for a
given density, the value of the dilaton field χ becomes higher in
symmetric nuclear medium as compared to isospin asymmetric
nuclear medium; for example, at nuclear saturation density
ρB = ρ0 and temperature T = 150 MeV the values of dilaton
field χ are 407.3 and 407 MeV at η = 0 and 0.5, respectively.
At density ρB = 4ρ0, T = 150 MeV, the values of dilaton
field χ are seen to be 399.1 and 398.7 MeV for η = 0 and
0.5, respectively. This observed behavior of the χ is related
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FIG. 2. (Color online) The functions G0 and G2 describing the
trace and nontrace parts of the energy momentum tensor are plotted
as functions of the density at different temperatures and for different
values of the isospin asymmetry parameter η.

to the fact that at finite densities and for isospin asymmetric
matter, there are contributions from the scalar isovector δ field
whose magnitude is seen to decrease for higher temperatures
for given densities, whereas δ field has zero contribution for
isospin symmetric matter.

In Fig. 2, we show the variation of the trace and the
nontrace parts of the energy momentum tensor given by
Eq. (12) with temperature for different values of the baryon
density and isospin asymmetry parameter, η. The trace part,
G0 = 〈αs

π
Ga

µνG
aµν〉, is given by Eq. (29), and G2, which is

related to the nontrace part of the energy momentum tensor, is
given by Eq. (19), both obtained from the SU(3) model used
in the present investigation. The value of the trace part, G0, is
plotted as a function with temperature for densities ρB = 0, ρ0,
and 4ρ0 in panels (a), (c), and (e) in Fig. 2. For zero density,
there is seen to be an increase of G0 with temperature up
to a temperature of about 175 MeV, and then a drop with
further increase in the temperature. The values of G0 are
obtained as 1.9361 × 10−2, 1.9362 × 10−2, 1.9381 × 10−2,
and 1.88 ×10−2 GeV4 at values of the temperature, T = 0,
100, 150, and 200 MeV, respectively. We might note here
that the calculations of the scalar gluon condensate, G0,
given by Eq. (29), have been performed by accounting for
the finite quark masses in the trace anomaly. In the absence
of finite quark masses, the scalar gluon condensate becomes
proportional to the fourth power of the dilaton field, as can
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be seen from Eq. (29). The dilaton field is observed to
decrease with temperature at zero baryon density, as can be
seen from Fig. 1. The values of G0, for the limit of zero
quark masses, also decrease accordingly with temperature
for ρB = 0, with the values of G0 given as 2.3455 × 10−2,
2.345 47 × 10−2, 2.3437 × 10−2, and 2.323 × 10−2 GeV4 at
values of temperature T of 0, 100, 150, and 200 MeV,
respectively. A similar behavior of G0 with temperature at
zero baryon density has also been observed in Ref. [36]. In
the present investigation, the finite quark mass term leads to
a decrease in the value of G0, as can be seen from Eq. (29).
At finite densities, the dilaton field χ is seen to increase up
to a temperature above which it starts decreasing, as can be
seen from Fig. 1. Accounting for the finite quark masses, we
get a positive contribution to G0 from the temperature effects
from the second term in Eq. (29), leading to an increase in
the scalar condensate up to a temperature above which there
is seen to be a decrease with further rise in temperature. For
baryon densities of ρB = ρ0 and 4ρ0, the values up to which
G0 increases with temperature are about 145 and 175 MeV,
respectively. In isospin symmetric nuclear matter, for ρB =
ρ0, the values of G0 are observed to be 1.906 46 × 10−2,
1.917 55 × 10−2, 1.92 × 10−2, and 1.8554 × 10−2 GeV4 for
temperatures of 0, 100, 150, and 200 MeV, respectively. For the
same values of the temperature, in the absence of finite quark
masses, the values of G0 are observed to be 2.269 × 10−2,
2.2857 × 10−2, 2.29 × 10−2, and 2.2 × 10−2 GeV4 for ρB =
ρ0 and η = 0. In isospin symmetric nuclear matter for ρB =
4ρ0 the values of G0 are given as 1.7367 × 10−2 GeV4 (2.06 ×
10−2 GeV4), 1.7656 × 10−2 GeV4 (2.094 × 10−2 GeV4),
1.78 × 10−2 GeV4 (2.112 × 10−2 GeV4), and 1.7626 ×
10−2 GeV4 (2.09 × 10−2 GeV4) for values of temperature,
T = 0, 100, 150, and 200 MeV, respectively, for the cases of
the finite (zero) quark masses in the trace anomaly.

The nontrace part of the energy momentum tensor, G2,
is plotted as a function of temperature in subplots (b), (d),
and (f) of Fig. 2 for densities, ρB = 0, ρ0, and 4ρ0. It
may be noted that value of G2 is zero in vacuum, and this
has a nonzero contribution only for finite density and/or
temperature. The magnitude of the quantity G2 is observed
to increase with increase in the temperature of the nuclear
medium for zero density, with the values of G2 at ρB = 0
given as −7.106 × 10−12, −2.386 × 10−7, −1.106 × 10−5,
and −3.528 × 10−5 GeV4 at values of temperature, T as 50,
100, 150, and 200 MeV, respectively. The observed behavior of
the magnitude of G2 increasing as a function of temperature
at zero baryon density has also been observed in Ref. [36].
At nuclear saturation density ρB = ρ0 there is seen to be a
decrease in the magnitude of G2 with temperature and then an
increase with further rise in temperature. In isospin symmetric
medium, for ρB = ρ0, the values of G2 are given as −1.181 ×
10−4, −1.130 × 10−4, −1.069 × 10−4, −1.034 × 10−4, and
−1.4527 × 10−4 GeV4 at values of temperature T = 0, 50,
100, 150, and 200 MeV, respectively. For density 4ρ0 and η =
0, the values of G2 are given as −1.63 × 10−4, −1.626 × 10−4,
−1.613 × 10−4, −1.5992 × 10−4, and −1.6156 × 10−4 GeV4

for T = 0, 50, 100, 150, and 200 MeV, respectively. In
isospin asymmetric medium, η = 0.5, at ρB = 4ρ0, the values
of G2 are −1.602 × 10−4, −1.598 × 10−4, −1.591 × 10−4,

TABLE I. The mass shifts of J/ψ and ηc are shown at densities
of ρ0, 2ρ0, and 4ρ0 at values of the isospin asymmetric parameter
η = 0 and 0.5 for ξ = 0.874. This value of ξ reproduces the vacuum
mass of J/ψ as 3097 MeV.

ρB J/ψ ηc

η = 0 η = 0.5 η = 0 η = 0.5

ρ0 −4.48 −4.34 −5.21 −5.06
2ρ0 −10 −9.29 −9.14 −8.64
4ρ0 −16.77 −15.19 −13.12 −12.19

−1.5991 × 10−4, and −1.6265 × 10−4 GeV4 at temperature
T = 0, 50, 100, 150, and 200 MeV, respectively. In the present
investigation, the effects of isospin asymmetry and temperature
of the nuclear medium on the values of G0 and G2 are observed
to be small and the effect of density seems to be the dominant
effect. This is related to the fact that the dilaton field and the
scalar fields, σ , ζ , and δ in the hot isospin asymmetric nuclear
medium are strongly dependent on the density of the medium
and the effects of temperature and isospin asymmetry on these
scalar fields are much smaller than the density effects.

After obtaining the medium modification of the scalar gluon
condensate from the value of the dilaton field using Eq. (29)
and of the twist-2 gluon operator by using Eqs. (11) and
(19), we next determine the in-medium mass shifts of J/ψ

and ηc mesons using the QCD sum rule approach. We use
the moments in the range 5 � n � 12 and fix the value of
parameter ξ = 0.874 so that we can reproduce the vacuum
value of mass of J/ψ , mJ/ψ = 3097 MeV. For this value of ξ ,
the parameter αs = 0.2667 and the running charm quark mass,
mc = 1.232 × 103 MeV. We consider the contributions from
scalar gluon condensate 〈αs

π
Ga

σκG
aσκ〉 and the twist-2 tensorial

gluon operator 〈αs

π
Ga

µσGa
ν
σ 〉 through the dilaton field χ within

the chiral SU(3) model used in the present investigation. We
obtain the value of φb, which is related to the scalar gluon
condensate by Eq. (32), from the medium-dependent χ field
using Eq. (33). The value for φc arising from the twist-2
tensorial gluon operator is calculated within the chiral SU(3)
model by using Eq. (34). We also compare our results with
the twist-2 gluon operator as calculated from the formula
obtained in the low-density approximation as given by Eq. (35)
[10]. The value of φc at nuclear saturation density ρ0 = 0.15
fm−3 is calculated to be −4.2158 × 10−5 within the SU(3)
chiral model used in the present investigation, which may
be compared to the value of −1.4685 × 10−5 in the linear
density approximation [10]. In Table I, we summarize the
results for the mass shifts of J/ψ and ηc, as obtained in
the present investigation, at zero temperature, for values of
the baryon densities of ρ0, 2ρ0, and 4ρ0 and for isospin-
asymmetry parameters of η = 0 and 0.5 for the value of
ξ = 0.874. As has already been mentioned, this value of ξ

is fixed so as to obtain the observed vacuum mass of J/ψ as
3097 MeV.

In Fig. 3, we show the variation of masses of J/ψ and ηc

mesons with n for a fixed value of baryon density, ρB = ρ0,
and for different values of isospin asymmetry parameter η.
We show the results for values of temperature T = 0, 100,
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FIG. 3. (Color online) The in-medium masses of the J/ψ and ηc

mesons plotted as functions of n for nuclear-matter saturation density
ρ0 at different temperatures and for different values of the isospin
asymmetry parameter η. The value of parameter ξ is taken as 0.874,
which reproduces the vacuum mass of J/ψ as 3097 MeV.

and 150 MeV. In symmetric nuclear matter, at nuclear-matter
saturation density, ρB = ρ0, and at temperature T = 0, we
obtain the mass shifts for J/ψ and ηc mesons to be equal
to −4.48 and −5.21 MeV, respectively, as can be seen from
Table I. These values of mass shifts for for J/ψ and ηc mesons
may be compared with the mass shifts of −7 and −5 MeV,
respectively obtained in the linear density approximation in
Ref. [10]. In the present investigation, we calculate the values
of φb and φc from the medium modification of the dilaton field,
χ , within the chiral SU(3) model by using Eqs. (33) and (34).
In isospin symmetric nuclear medium, at baryon densities,
ρB = 0 and ρ0, the values of the dilaton field, χ are 409.76
and 406.38 MeV, respectively, and, hence, using Eq. (29), the
values of the scalar gluon condensate 〈αs

π
Ga

µνG
aµν〉 turn out

to be (373 MeV)4 and (371.6 MeV)4 for densities ρB = 0
and ρ0, respectively. We note here that when we neglect
the quark masses in the trace anomaly, the values of the
scalar gluon condensate at these densities are modified to
(391 MeV)4 and (388 MeV)4, respectively. We thus observe
an increase of the values of the scalar gluon condensate by
about 20% when we do not account for the finite masses
of the quarks. The values of φb, accounting for the finite
quark masses, turn out to be 2.3 × 10−3 and 2.27 × 10−3

in the vacuum and at nuclear-matter saturation density, ρ0,
respectively. These may be compared with the values of

φb to be equal to 1.7 × 10−3 and 1.6 × 10−3, respectively,
for ρB = 0 and for ρB = ρ0, obtained from the values of
scalar gluon condensate of (350 MeV)4 and (344.81 MeV)4,
respectively, in vacuum and at nuclear saturation density ρ0 in
Ref. [10] in the linear density approximation. We might note
here that the value of nuclear-matter saturation density used in
the present calculations is 0.15 fm−3 and in Ref. [10] it was
taken to be 0.17 fm−3. When the quark masses are neglected
and φc is as calculated in the chiral SU(3) model used in the
present investigation, the values of the mass shifts for J/ψ and
ηc turn out to be −8.01 and −5.13 MeV, respectively. When
we calculate φb within the chiral SU(3) model, but calculate
the contribution of the twist-2 operator through φc calculated
in the linear density approximation given by Eq. (35) [10],
we obtain the mass shifts for J/ψ and ηc at ρB = ρ0 for
symmetric nuclear matter at zero temperature to be given as
−2.88 and −2.02 MeV, respectively. The value of the mass
shift of J/ψ of about −4.48 MeV at the nuclear matter density
ρ0 in symmetric nuclear matter at zero temperature obtained
in the present investigation may be compared to the value of
the mass shift of −8 MeV obtained using QCD second-order
Stark effect using the value of the scalar gluon condensate
obtained using a linear density approximation [17], as well as
a value of −8.6 MeV, when the scalar gluon condensate was
obtained from the expectation value of the scalar dilaton field
in a chiral SU(3) model [18]. We observe in Fig. 3 that the
isospin dependence of the mass shifts of J/ψ and ηc are very
small. This is attributable to the fact that the dependence of χ

on the isospin asymmetry is very small, as can be seen from
Fig. 1.

Figures 4 and 5 show the mass shifts of J/ψ and ηc for
baryon densities ρB = 2ρ0 and 4ρ0, respectively, at different
temperatures and different values of the isospin asymmetry
parameter η. In isospin symmetric nuclear medium, at density
ρB = 2ρ0 and temperature T = 0, the mass shifts for J/ψ

and ηc mesons are observed to be −10 and −9.14 MeV,
respectively. The effects of isospin asymmetry of the medium
on the mass shift of the J/ψ and ηc mesons are seen to
be almost negligible, as can be seen from Table I. This is
attributable to the very small changes in the dilaton field with
the isospin asymmetry of the medium, as can be seen from
Fig. 1. In isospin asymmetric nuclear medium (η = 0.5), at
nuclear saturation density ρ0, the mass shifts in J/ψ and
ηc mesons at zero temperature are observed to be −4.34
and −5.06 MeV from their vacuum values, which may
be compared with the values of −4.48 and −5.21 MeV,
respectively, for the isospin symmetric nuclear matter. At
values of the baryon density ρB of 2ρ0 and 4ρ0, as can be
seen from Table I, the isospin dependence of the mass shifts
for J/ψ and ηc mesons are seen to be negligibly small.

The effects of temperature on the dilaton field χ is
very small and this is reflected in the small change in the
mass shifts of J/ψ and ηc mesons with temperature T .
In isospin symmetric nuclear medium (η = 0), at nuclear
saturation density ρB = ρ0, the mass shifts for J/ψ meson
from their vacuum values are observed to be −4.01, −3.5, and
−3.23 MeV at temperatures T = 50, 100, and 150 MeV,
respectively. At baryon density ρB = 4ρ0, the values of
mass shift for J/ψ meson change to −16.13, −14.82, and
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FIG. 4. (Color online) The in-medium masses of the J/ψ and
ηc mesons plotted as functions of n for baryon density ρB = 2ρ0

at different temperatures and for different values of the isospin
asymmetry parameter η. The value of parameter ξ is taken as 0.874,
which reproduces the vacuum mass of J/ψ as 3097 MeV.

−13.76 MeV at temperatures T = 50, 100, and 150 MeV,
respectively. The value of the mass shift obtained at finite
value of temperature is observed to be smaller than that seen
in the zero-temperature case. This is because, at finite value of
baryon density ρB , the dilaton field χ increases with increase
in the temperature of the nuclear medium, but the increase is
very small. In isospin asymmetric nuclear medium η = 0.5,
at density ρB = 4ρ0, the mass shifts for J/ψ mesons from
their vacuum values are −14.82, −14.16, and −14.36 MeV at
temperatures T = 50, 100, and 150 MeV, respectively.

For the pseudoscalar meson ηc, the mass shifts at nuclear
saturation density ρ0 in nuclear medium with η = 0(0.5)
are −4.81(−4.73), −4.352(−4.345), and −4.1(−4.54) MeV
at temperatures T = 50, 100, and 150 MeV, respectively.
At density ρB = 4ρ0, with η = 0 (0.5), these values are
modified to −12.77(−11.98), −12.02(−11.6), and −11.41
(−11.73) MeV, respectively for T = 50, 100, and 150 MeV. It
may be noted that at high values of temperatures, for example,
at T = 150 MeV, the mass shift is greater in the isospin
asymmetric nuclear medium (η = 0.5) than in the isospin
symmetric nuclear medium (η = 0). This is opposite to the
zero-temperature case. The reason is that at high temperatures
the dilaton field χ has larger drop in the isospin asymmetric
nuclear medium (η = 0.5) than in the isospin symmetric
nuclear medium (η = 0), as can be seen in Fig. 1.
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FIG. 5. (Color online) The in-medium masses of the J/ψ and
ηc mesons plotted as functions of n for baryon density ρB = 4ρ0

at different temperatures and for different values of the isospin
asymmetry parameter η. The value of parameter ξ is taken as 0.874,
which reproduces the vacuum mass of J/ψ as 3097 MeV.

As mentioned earlier, for the preceding calculations we
had fixed the value of parameter ξ so as to reproduce the
vacuum value of J/ψ mass. However, with this value of ξ , the
vacuum value of ηc meson comes out to be 2955.6 MeV. We
can reproduce the vacuum value of pseudoscalar meson ηc =
2980.5 MeV if we fix the value of ξ = 0.8995. For this value
of ξ , the parameter αs = 0.266 and the running charm quark
mass mc = 1.2313 × 103 MeV. For these values of parameters,
the mass shifts for J/ψ and ηc mesons, in nuclear medium at
zero temperature, at densities ρ0, 2ρ0, and 4ρ0 for η = 0(0.5)
are summarized in Table II.

TABLE II. The mass shifts of J/ψ and ηc are shown at densities of
ρ0, 2ρ0, and 4ρ0 at values of the isospin asymmetric parameter η = 0
and 0.5 for ξ = 0.8995. This value of ξ reproduces the vacuum mass
of ηc as 2980.5 MeV.

ρB J/ψ ηc

η = 0 η = 0.5 η = 0 η = 0.5

ρ0 −4.27 −4.14 −5.69 −5.54
2ρ0 −9.55 −8.87 −9.39 −8.92
4ρ0 −16.02 −14.51 −13.12 −12.25
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FIG. 6. (Color online) The in-medium masses of the J/ψ and
ηc mesons plotted as functions of n for nuclear matter saturation
density ρ0 at different temperatures and for different values of the
isospin asymmetry parameter η, with ξ = 1.

We also show the results for the mass modifications of
J/ψ and ηc mesons, if we consider the value of parameter,
ξ = 1 [10], leading to the value of αs as 0.21 and of mc as
1.24 × 103 MeV. Figures 6, 7, and 8 show the temparature
and isospin-asymmetry dependence of the mass modifications
of J/ψ and ηc mesons for baryon densities of ρ0, 2ρ0,
and 4ρ0, respectively, with parameter ξ = 1. We observe
that with ξ = 1, the vacuum values of the masses of J/ψ

and ηc mesons are given as 3196.56 and 3066.57 MeV,
respectively. With ξ = 1, the results for the mass shifts for
J/ψ and ηc at different densities with η = 0 and 0.5, and
zero temperature, obtained in the present investigation are
summarized in Table III. The values of the mass shifts for J/ψ

meson in isospin symmetric medium, with ξ = 1, at nuclear
saturation density ρB = ρ0 are observed to be −3.92, −3.38,
and −3.1 MeV for T = 50, 100, and 150 MeV, respectively.
At baryon density ρB = 4ρ0, these values of the mass shift
change to −17.23, −15.77, and −14.59 MeV at temperature
T = 50, 100, and 150 MeV, respectively. For pseudoscalar
meson ηc, the mass shifts at ρB = ρ0 are obtained to be
−3.42, −3.06, and −2.91 MeV for T = 50, 100, and 150 MeV,
respectively, whereas at ρB = 4ρ0 these values of mass shift
are seen to be modified to −11.47, −10.68, and −10.04 MeV,
respectively.

In Ref. [15] the operator product expansion was carried out
up to dimension six and the mass shift for J/ψ was found to
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FIG. 7. (Color online) The in-medium masses of the J/ψ and
ηc mesons plotted as functions of n for baryon density of 2ρ0

at different temperatures and for different values of the isospin
asymmetry parameter η, with ξ = 1.

be −4 MeV at nuclear saturation density ρ0 and temperature
T = 0. The effect of temperature on the J/ψ in deconfinement
phase was studied in Refs. [42,43]. In these investigations,
it was reported that J/ψ mass is essentially constant in a
wide range of temperatures and above a particular value of
the temperature, T , there is a sharp change in the mass of
J/ψ in the deconfined phase; for example, in Ref. [44] the
mass shift for J/ψ was reported to be about 200 MeV at T =
1.05Tc. The pseudoscalar charmonium spectral function for
different temperatures was studied using a screened potential
in Ref. [45]. The effect of rising temperature was observed
to melt the higher excited states by 1.1TC and to shift the
continuum threshold to lower energies. In these studies, it

TABLE III. The mass shifts of J/ψ and ηc are shown at densities
of ρ0, 2ρ0, and 4ρ0 at values of the isospin asymmetric parameter
η = 0 and 0.5 for ξ = 1.

ρB J/ψ ηc

η = 0 η = 0.5 η = 0 η = 0.5

ρ0 −4.43 −4.28 −3.8 −3.66
2ρ0 −10.43 −9.66 −7.67 −7.18
4ρ0 −17.93 −16.19 −11.85 −10.87
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FIG. 8. (Color online) The in-medium masses of the J/ψ and
ηc mesons plotted as functions of n for baryon density of 4ρ0

at different temperatures and for different values of the isospin
asymmetry parameter η, with ξ = 1.

was observed that the charmonium ηc survives even in the
deconfined phase. In Refs. [45,46], the effect of temperature
on ηc in the deconfinement phase was studied. In Ref. [46], it
was reported that the J/ψ and ηc survive as distinct resonances
in the plasma even up to T � 1.6Tc and that they eventually
dissociate between 1.6Tc and 1.9Tc. This suggests that the
deconfined plasma is nonperturbative enough to hold heavy-
quark bound states. In the present work, we have studied the
effects of temperature on the mass modifications of J/ψ and
ηc mesons in the confined phase dueowing to modifications
of the scalar gluon condensate and twist-2 tnesorial gluon
operator, simulated by a medium-dependent scalar dilaton field
in chiral SU(3) model and the temperature effects are found to
be very small as compared to the density effects.

V. SUMMARY

In summary, in the present investigation, we have studied
the mass modifications of the charmonium states J/ψ and ηc

in the nuclear medium using the QCD sum rule approach and
using modification of a dilaton field (which simulates the gluon
condensates) within a chiral SU(3) model. The in-medium
modifications of the J/ψ and ηc are studied as arising owing
to changes in the scalar and twist-2 gluon condensates in the
nuclear medium, obtained from the medium modificaion of
the χ field. The value of the dilaton field in the hot nuclear
matter is obtained by solving the coupled Eqs. (20)–(23),
which are the equations of motion of the σ , ζ , δ, and χ

fields. The dilaton field χ thus depends on the scalar isovector
field δ, which is related to the isospin asymmetry of the
nuclear medium. The isospin asymmetry dependence of
the χ , in turn, leads to the isospin asymmetry dependence
of the charmonium states J/ψ and ηc. The modification of
the χ field is observed to be small with the isospin asymmetry
of the medium, as can be seen from Fig. 1. This is related to
the fact that the magnitude of the obtained value of δ after
solving the coupled equations for the scalar fields turns out
to be much smaller (about few percent) as compared to the
magnitudes of σ and ζ and hence the isospin asymmetry
(through δ) only gives rise to a very small modification of
the dilaton field χ [18]. It is observed that the temperature
effect on the χ field is also very small and the modification of
the dilaton field with density is seen to be the dominant
medium effect in the present investigation. The negligible
dependence of the dilaton field on isospin asymmetry as well as
on temperature is reflected in the small isospin asymmetry and
temperature dependence of the masses of the J/ψ and ηc

states in the nuclear medium. Experimentally, measurements
of dileptons (diphotons) in heavy-ion collisions may provide
a clue to the properties of vector (pseudoscalar) mesons in hot
and dense matter [46]. The present study of the in-medium
properties of J/ψ and ηc mesons will be helpful for the
experiments in the future facility of the FAIR, GSI, where the
compressed baryonic matter at high densities and moderate
temperature will be produced.
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