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N. Suzuki,1,2 T. Sato,1,2 and T.-S. H. Lee2,3

1Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
2Excited Baryon Analysis Center (EBAC), Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
(Received 11 June 2010; revised manuscript received 4 September 2010; published 22 October 2010)

We explain the application of a recently developed analytic continuation method to extract the electromagnetic
transition form factors for the nucleon resonances (N∗) within a dynamical coupled-channel model of meson-
baryon reactions. Illustrative results of the obtained N∗ → γN transition form factors, defined at the resonance
pole positions on the complex energy plane, for the well-isolated P33 and D13 and the complicated P11 resonances
are presented. A formula was developed to give a unified representation of the effects due to the first two P11 poles,
which are near the π� threshold, but are on different Riemann sheets. We also find that a simple formula, with its
parameters determined in the Laurent expansions of the πN → πN and γN → πN amplitudes, can reproduce
to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted
resonance positions. We discuss the important differences between our approach, which is consistent with the
earlier formulations of resonances, and the phenomenological approaches using the Breit-Wigner parametrization
of resonant amplitudes to fit the data.
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I. INTRODUCTION

The spectrum and form factors of excited nucleons are
fundamental quantities for investigating the hadron structure
within quantum chromodynamics (QCD). The excited nucle-
ons are unstable and couple strongly to meson-baryon contin-
uum states to form nucleon resonances (called collectively
as N∗) in πN and γN reactions. It is well known that
resonances locate on the unphysical sheets of the complex
energy plane and thus their properties can only be ex-
tracted from the empirical partial-wave amplitudes by analytic
continuation. Recently we applied an analytic continuation
method developed in Ref. [1] to extract N∗ pole positions
[2] from πN elastic scattering amplitudes determined in a
fit [3] (JLMS) within a dynamical coupled-channel model [4]
(Excited Baryon Analysis Center-dynamical coupled-channel,
EBAC-DCC) of meson-baryon reactions.

The scattering amplitudes obtained from a DCC model
of meson-baryon reactions, such as the EBAC-DCC model
as well as the models developed in Refs. [5–9], are not
available in an analytic form. They are obtained numerically
by solving coupled-channels integral equations with meson-
exchange driving terms. Thus, the predicted amplitudes can
only be analytically continued to the complex energy plane
numerically with a careful account of the analytic structure
of the considered scattering equations. Obviously, the method
depends on the dynamical content of each model. For the
EBAC-DCC model, this was developed in Ref. [1] and
established using several exactly soluble models. In this
article, we explain how this method is used to extract the
γ ∗N → N∗ transition form factors from the multipole am-
plitudes determined from extending the JLMS analysis to
investigate γN → πN [10] and N (e, e′π )N [11] reactions.

The electromagnetic γ ∗N → N∗ transition form factors
give information on the current and charge distributions of

N∗ and N . It can be shown [12,13] that a resonance state
|ψR

N∗ 〉 with a complex energy MR can be defined as an
“eigenstate” of the Hamiltonian H |ψR

N∗ 〉 = MR|ψR
N∗ 〉 with

the outgoing boundary condition for its asymptotic wave
functions. Therefore the γ ∗N → N∗ transition form factor
is defined by the current matrix element 〈ψR

N∗ |Jem|N〉, which
can be extracted from the residue RπN,γ ∗N of electromagnetic
pion production amplitudes at the resonance poles. To extract
RπN,γ ∗N , we need to evaluate the on-shell matrix elements of
the γ ∗N → πN amplitudes on the complex Riemann energy
sheet. As will be discussed later, the analytic structure of
the considered coupled-channels equations for getting these
on-shell matrix elements is rather complex and must be dealt
with carefully. In particular, we need to develop a formula to
give a unified representation of the first two P11 resonances
that are near the π� threshold, but are on different Riemann
sheets.

To illustrate our approach it is sufficient to only present
results for the well-isolated resonances in P33 and D13 and
the complex P11 partial waves. With only three complex
parameters determined in the Laurent expansion of each
partial-wave amplitude at resonance pole position, we present
a simple formula that can reproduce to a very large extent the
exact solutions of the considered model at energies near the
real parts of the extracted resonance positions. This finding
agrees with what was reported in an analysis [14] of the πN

scattering amplitude within the Jülich model [9]. Here we show
that this formula is also a good approximation for γN → πN

amplitudes.
There exists very limited work on extracting the γN → N∗

transition form factors at resonance poles. The results reported
in Ref. [15] are at the Q2 = 0 photon point. To our knowledge,
the Q2 evolution of the γN → N∗ transition form factors at
resonance poles have not been reported in the literature. All
such information, such as the recent results of Refs. [16–18],
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were obtained by using the the phenomenological parametriza-
tion of amplitudes with the Breit-Wigner form (simply called
the Breit-Wigner parametrization in this article) to fit the
data. We thus will explain in some detail the differences
between our approach and these previous approaches. We
find that although our Laurent expansion form is similar to
the phenomenological Breit-Wigner parametrization, there are
fundamental differences in defining the energy dependence of
amplitudes and therefore there is no simple relation between
the two approaches. The only comparison we can make is for
the γN → �(1232) transition form factors if we follow the
traditional practice to define that the Breit-Wigner resonance
position of �(1232) is the energy where the real parts of
the multipole amplitudes vanish. As is well recognized, the
definition of the Breit-Wigner position becomes very model
dependent at the higher-energy region where multichannels
effects are important. We thus will not make comparisons with
the previous results for the other two considered resonances in
P11 and D13 partial waves.

In Sec. II, we will briefly review the analytic continuation
method developed in Ref. [1] and explain how it is applied
to evaluate the on-shell amplitudes of πN, γ ∗N → πN

transitions. Section III is devoted to explaining how the
determined residues are used to extract the elasticity ηel of
N∗ → πN decay and the γ ∗N → N∗ transition form factors
at resonance poles. The results for P11, P33, and D13 nucleon
resonances are presented in Sec. IV. A summary is given in
Sec. V.

II. ANALYTIC CONTINUATION METHOD

Within the formulation [4] for the EBAC-DCC model, the
partial-wave amplitudes of meson-baryon reactions can be
written as

Tβ,α(p′, p; E) = tβ,α(p′, p; E) + tRβ,α(p′, p; E), (1)

where α, β represent the meson-baryon (MB) states γN ,
πN, ηN, ρN, σN, π�, and

tRβ,α(p′, p; E) =
∑
i,j


̄β,i(p
′; E)[GN∗ (E)]i,j 
̄α,j (p; E), (2)

with [
G−1

N∗
]
i,j

(E) = (
E − mN∗

i

)
δi,j − �i,j (E). (3)

Here i, j denote the bare N∗ states defined in the Hamiltonian.
mN∗

i
are their masses. The first term (called the meson-

exchange amplitude from now on) in Eq. (1) is defined by
the following coupled-channels equation

tβ,α(p′, p; E) = vβ,α(p′, p) +
∫

C

dqq2
∑

γ

vβ,γ (p′, q; E)

×Gγ (q,E)tγ,α(q, p; E), (4)

where vβ,α is defined by meson-exchange mechanisms and
Gγ (q,E) is the propagator for channel γ . The dressed vertexes
and the energy shifts of the second term in Eqs. (2) and (3) are

defined by


̄α,j (p; E) = 
α,j (p) +
∫

C

dqq2
∑

γ

tα,γ (p′, q; E)

×Gγ (q,E)
γ,j (q), (5)

�(E)i,j =
∫

C

dqq2
∑

γ


γ,i(q)Gγ (q,E)
̄γ,j (q), (6)

where 
α,i(p) defines the coupling of the ith bare N∗ state to
channel α.

Because of the quadratic relation between energy E and
momentum p there are two energy sheets for each two-body
channel: the physical (unphysical) sheet is identified with
Im(p) > (<) 0 for the stable two-particle channels. Thus the
scattering amplitudes of an n-channels model are defined on
a Riemann energy sheet, which consists of 2n sheets. For the
EBAC-DCC model, defined by Eqs. (1) through (6), each sheet
can be defined by the symbol (zπN, zηN , zππN , zπ�, zρN , zσN ),
where zα can be p or u representing the physical or unphysical
sheets of channel α. Note that an acceptable reaction model
can only have bound state poles and unitarity cuts on the
physical sheet (pppppp). The sheets from all other possible
combinations of u and p are called unphysical sheets on which
the scattering amplitude can have poles. We are, however,
only interested in poles that have large effects on scattering
observables and therefore they must be on the sheets that
are near the (pppppp) physical sheet. These poles are called
resonance poles and other poles are called shadow poles. It
is known [19,20] that a shadow pole near the threshold of a
channel can also have large effects on scattering observables
and must also be considered in the search. As analyzed in
Ref. [1] using several exactly soluble models, these poles are,
in most cases, on sheets where the open (above threshold)
MB channels are on unphysical u sheets and the closed
(below threshold) channels are on the physical sheet. In the
following we first recall how the analytic continuation method
we developed in Ref. [1] is used to search for such resonance
poles within the EBAC-DCC model. We then describe how it
is used to extract the residues of the extracted resonance poles
from on-shell amplitudes.

Since vα,β and the bare vertex 
α,i are energy independent
within the EBAC-DCC model, the analytic structure of the
scattering amplitude defined previously as a function of E

is mainly determined by the Green functions Gγ (q,E). Thus
the key for selecting the amplitude on the physical sheet or
unphysical sheet is to take an appropriate path of momentum
integration C in Eqs. (1) through (6) according to the locations
of the singularities of the MB Green functions Gα(p,E) as E

moves to the complex plane. This can be done independently
for each MB channel. For a channel with stable particles such
as πN and ηN , the MB Green function is

GMB(E,p) = 1

E − EM (p) − EB(p)
, (7)

which has a pole at the on-shell momentum p0 defined by

E =
√

m2
M + p2

0 +
√

m2
B + p2

0. (8)
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FIG. 1. The shift of the on-shell momentum (open circle/solid
circle) of the two-particle Green function Eq. (7) as energy E moves
from a real value above/below the threshold energy to a complex value
with negative imaginary part. The C1 (dotted line) is the integration
path for calculating Eqs. (4)–(6) amplitude for E on the unphysical
Riemann sheet.

As an example, let us consider the analytic continuation of the
amplitude to the unphysical sheet of the MB channel when
the energy E is above the threshold Re(E) > mB + mM and
Im(E) < 0. The on-shell momentum p0 for such an E is on
the second and the fourth quadrant of the complex momentum
plane. As Im(E) becomes more negative as illustrated in
Fig. 1, the on-shell momentum (open circle) moves into the
fourth quadrant. The amplitude on the unphysical sheet can be
obtained by deforming the path C into C1 so that the on-shell
momentum does not cross the integration contour. For energy
below the threshold for the MB channel (E < mB + mM ), the
on-shell momentum psub is on the axis of positive-imaginary.
As the energy moves into the region of Re(E) < mB + mM and
Im(E) < 0, psub moves to the second quadrant of the complex
p plane and does not cross path C1, as indicated by the dotted
curves in Fig. 1. Hence the amplitudes on the physical sheet of
the MB channel for energy below the MB threshold can also
be obtained by taking the path C1.

For the channels with an unstable particle such as π�, as
an example, the Green function is of the following form:

Gπ�(E,p) = 1

E − Eπ (p) − E�(p) − ��(E,p)
, (9)

where

��(p,E) =
∫

C3

{
�,πN (q)}2q2dq

E − Eπ (p) − [(Eπ (q) + EN (q))2 + p2]1/2
.

(10)

The π� Green function in Eq. (9) has a singularity at
momentum p = px , which satisfies

E − Eπ (px) − E�(px) − ��(px,E) = 0. (11)

Physically, this singularity corresponds to the π� two-body
“scattering state.” There is also a discontinuity of the π�

Green function associated with the ππN cut in ��, as shown
in the dashed line in Fig. 2, where p0 is defined by

E = Eπ (p0) + [
(mπ + mN )2 + p2

0

]1/2
. (12)

Therefore, for Re(E) > mB + mM, 2mπ + mN , the integra-
tion contour C must be chosen to be below the ππN cut

Im p

Re p0

C2

p
0

px

FIG. 2. Contour C2 for calculating Eqs. (4)–(6) for E on the
unphysical Riemann sheet with the unstable particle propagators,
such as Eq. (9) for the π� channel. See the text for the explanations
of the dashed line and the singularity px .

(dashed line) and the singularity px , such as the contour C2

shown in Fig. 2, for calculating amplitudes on the unphysical
sheet.

The singularity q0 of the integrand of Eq. (10) depends on
the spectator momentum p

E − Eπ (p) = {[Eπ (q0) + EN (q0)]2 + p2}1/2. (13)

Thus q0 moves along the dashed curve, illustrated in Fig. 3,
when the momentum p varies along the path C2 of Fig. 2.
To analytically continue ��(p,E) to the unphysical sheet, the
contour C3 of Eq. (10) must be below q0. A possible contour
C3 is the solid curve in Fig. 3.

We emphasize here that we can deform the contour
C only in the region where the potential vα,β(p′,p) and
the bare N∗ vertex 
MB,N∗ (p) are analytic. The contours
described previously are chosen only from considering the
singularities of MB and the ππN Green functions. Thus
they must be further modified according to the analytic
structure of the considered vα,β (p′,p) and 
MB,N∗ (p) to
obtain the scattering amplitude in the momentum region
of interest. This consideration is especially necessary when
we need to get the on-shell amplitude for extracting the
residues of the identified resonance poles. The residue of
the amplitude at the resonance pole is evaluated from the
“on-shell” matrix element, where the on-shell momenta are

Im q

Re q0

C3

FIG. 3. Contour C3 for calculating the � self-energy Eq. (10) on
the unphysical Riemann sheet. Dashed curve is the singularity q0 of
the propagator in Eq. (13), which depends on the spectator momentum
p on the contour C2 of Fig. 2.
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FIG. 4. The contour (solid curve) for calculating electromagnetic
matrix element. p0 and px are the singularities shown in Fig. 2. The
dashed-dot curve is the singularity of the pion-exchange γN → π�

matrix element at E = (1357, −76i) MeV.

defined as MR = Eπ (pon
πN ) + EN (pon

πN ) for the πN channel
and MR = q

0,on
γN + EN (qon

γN ) with (q0,on
γN )2 = (qon

γN )2 − Q2 for
the γ ∗N channel. Here Q2 = −q2 � 0 is the four-momentum
transfer square specified by the experiment. Since on-shell
momentum are, in general, closer to the real axis than
the momentum on contour C, the analytic properties of the
meson-exchange potential has to be examined. For example,
the t-channel meson exchange potential vt

M ′B ′,MB( �p ′
, �p) of

the EBAC-DCC model has singularities at

�2 − ( �p − �p′)2 = 0, (14)

with � = EM ′(p′) − EM (p) or EB ′(p′) − EB(p). The form
of 
MB,N∗ (p) is chosen such that its singularity is at the
pure imaginary momentum. Thus the contours have to be
chosen to also avoid these singularities. As an example, we
show in Fig. 4 the singularities associated with the π�

channel at E = (1357,−76i) MeV. The dotted line for the
ππN cut and the circle shows pX are the singularities
from the Green’s function, as discussed previously. The most
relevant singularity of the meson-exchange potential in our
investigation of electromagnetic pion production amplitude is
due to the t-channel pion exchange of γN → π�, which is
shown as the dashed-dot curve. Thus the integration contour
has to be modified to the solid curve C2 in Fig. 4. This can
be understood from Fig. 5 in which we see that the matrix
element (dashed curves) of the nonresonant potential vπ�,γN

encounters the cut around Re(p) ∼ 170 MeV with the path
C ′

2, but it varies smoothly (solid curves) along the path C2.

III. EXTRACTION OF TRANSITION FORM FACTORS

To indicate the essential features of our approach more
clearly, it is useful to first briefly describe how the resonance
parameters are defined in the previous investigations. The
scattering amplitude Fβ,α between any two channels α and
β is related to the S-matrix element by Fβ,α = (Sβ,α − 1)/2i.
Within the rather general theoretical framework discussed by,
for example, Dalitz and Moorhouse [13], Taylor [21], and
McVoy [22], Fβ,α at energies near a resonance pole position
MR is parametrized as a sum of a pole term and a constant
nonresonant contribution

Fβ,α(E → MR) ∼ Rβ,α

MR − E
+ Bβ,α, (15)

where Rβ,α is the residue at the pole position MR and the
nonresonant amplitude Bβ,α is an energy-independent complex
number. By the unitarity condition imposed on the full S matrix
Fα,β(E) at E → MR , the nonresonant term Bα,β is written in
terms of a nonresonant S matrix SB , which is unitary by itself
(SBSB† = 1)

Bβ,α = SB
β,α − 1

2i
. (16)

Then the pole term of Eq. (15) is defined by the partial width

α and a phase φα arising from the presence of the nonresonant
term Bα,β

Rβ,α

E − ER

= eiφβ
√


β/2eiφα
√


α/2

E − MR

. (17)

It is important to note that for the γN → πN amplitudes
we are going to consider, eiφγN

√

γN is the electromagnetic

γN → N∗ form factor which clearly must be a complex
number when the the nonresonant term BπN,γN is present
and φγN 	= 0. We will see that our formulas are consistent
with these earlier investigations and will yield complex
γN → N∗ form factors. Our main advance is to provide their
interpretations in terms of the dynamics defined within the
EBAC-DCC model.

Here we mention that by introducing the appropriate
energy-dependence of Im(MR), Rαβ , and Bα,β , the expression
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FIG. 5. The real (left) and the imaginary (right) parts of the half-off-shell matrix-elements of the nonresonant potential vγN→π� for P11

partial wave at E = (1357, −76i), as functions of the real part [Re(p)] of off-shell momentum. The solid (dashed) curve is from the calculation
along the path C2 (C ′

2) shown in Fig. 4.
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Eq. (15) is used in practice to fit the experimental data.
This is the origin of the commonly used Breit-Wigner
parametrization of the amplitude in the physical energy region.
In some recent analyses [16–18] based on such a Breit-Wigner
parametrization, the extracted γ ∗N → N∗ form factors are
reported as real numbers. Clearly, this is rather different from
what one can interpret from the previous formula used in the
earlier analyses [13,21,22]. We will discuss this issue further
in Sec. IV.

We now explain that within the EBAC-DCC model, it is
straightforward to extract the resonance parameters MR , Bα,β ,
and Rα,β of Eq. (15) by performing a Laurent expansion of
the T matrix defined in Eqs. (1) through (6). We need to
find the poles of the scattering amplitudes Tα,β . In principle,
the pole of the scattering amplitude can be found in the
meson-exchange amplitude t and/or the resonance amplitude
tR of Eq. (1). However, as pointed out in Ref. [14], a pole
Mx of the meson-exchange amplitude t does not survive as a
pole of the full amplitude when we introduce coupling with
bare N∗ states since there is an exact cancellation between the
pole contributions from t and tR at E = Mx . Furthermore, the
nonresonant term at resonance pole t(E = MR) is finite. Thus,
the resonance poles of EBAC-DCC, or any model with bare
N∗ states, can be found by only analyzing tR defined by Eq. (2).
Consequently, we only need to explain how the residues of the
resonance poles are extracted from the term tR .

The pole positions MR of tR are found from the zeros of
the determinant of the N∗ propagator defined by Eq. (3)

�(E = MR) = det
[
G−1

N∗ (E = MR)
] = 0. (18)

The pole term of the N∗ Green function can be expressed as

[GN∗ (E)]ij = χiχj

E − MR

, (19)

where i, j denote the bare N∗ state in the free Hamiltonian
and χi represents the ith “bare” resonance component of the
dressed N∗ and satisfies∑

j

[GN∗ (MR)−1]ijχj

=
∑

j

[(
MR − mN∗

i

)
δij − �(MR)ij

]
χj = 0. (20)

If there is only one bare N∗ state, with G−1
N∗ (E) = 1/[E −

mN∗ − �(E)], it is easy to see that

χ = 1√
1 − �′(MR)

, (21)

where �′(MR) = [d�/dE]E=MR
. If we have two bare

N∗ states, Eq. (20) leads to

χ1 =
√

MR − mN∗
2
− �22(MR)

�′(MR)
, (22)

χ2 = �12(MR)

MR − mN∗
2
− �22(MR)

χ1, (23)

where �′(MR) = [d�/dE]E=MR
can be evaluated using

Eq. (18).

Now it is straightforward to see how the residues Rβ,α and
the nonresonant term Bβ,α of Eq. (15) can be extracted from
the amplitude Tβ,α defined by Eq. (1). First we note that at
E near the resonance pole MR , the full amplitude defined by
Eq. (1) can be written as

Tβ,α

(
pon

β , pon
α ; E → MR

)
= tβ,α

(
pon

β , pon
α ; MR

) + tRβ,α

(
pon

β , pon
α ; E → MR

)
, (24)

where pon
α is the on-shell momentum of channel α

[e.g., MR = Eπ (pon
πN ) + EN (pon

πN ) for the πN channel] and
tβ,α(pon, pon; MR) is finite, as explained previously. By using
Eq. (2) for the definition of tRβ,α and Eq. (19) for the pole term
of the N∗ propagator, we can perform the Laurent expansion
of the on-shell element of Eq. (24) to obtain

Tβ,α

(
pon

β , pon
α ; E → MR

)
= 
̄R

β 
̄R
α

E − MR

+ Bβ,α + B1
β,α(E − MR) + · · · , (25)

where


̄R
α =

∑
j

χj 
̄α,j

(
pon

α ,MR

)
. (26)

Here the dressed vertex 
̄α,j is defined by Eq. (5). The terms
Bβ,α and B1

β,α in Eq. (25) depend on the matrix elements of
the meson-exchange amplitude t of Eq. (1)

Bβ,α = tβ,α

(
pon

β , pon
α ; MR

)
+ d

dE

[
(E − MR)tRβ,α

(
pon

β , pon
α ; E

)]
E=MR

. (27)

The term B1
β,α can be calculated, but is not relevant to our

following discussions.
Let us now consider Eq. (25) for the α = β = πN case.

We need to relate the residue 
̄πN 
̄πN of its pole term to the
residue of the πN elastic scattering amplitude FπN,πN defined
by the standard notation

FπN,πN (E → MR) =
[
SπN,πN (E) − 1

2i

]
E→MR

=
[

Reiφ

MR − E

]
E→MR

, (28)

where SπN,πN is the partial-wave S matrix. In terms of the
normalization of the EBAC-DCC model SπN,πN (E) = 1 − 2i

[πponEπ (pon)EN (pon)/E]TπN,πN (pon, pon; E), we find that
(pon stands for pon

πN )

FπN,πN (MR)

= −π
ponEN (pon)Eπ (pon)

MR

TπN,πN (pon, pon,MR). (29)

Keeping only the pole term of Eq. (25) in evaluating the above
equation and using the definition Eq. (28), we then obtain

Reiφ = π
ponEN (pon)Eπ (pon)

MR


̄R
πN
̄R

πN . (30)

The πN elasticity of a resonance is then defined as

ηe = R

−Im(MR)
. (31)
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TABLE I. The extracted resonance poles (ReMR, −ImMR) MeV and elasticity ηe [Eq. (31)] are compared with the values listed by PDG [23].

MR (EBAC-DCC) location MR (PDG) ηe (EBAC-DCC) ηe (PDG)

P33 (1211,50) (u-ppp-) (1209–1211, 49–51) 100% 100%
D13 (1521,58) (uuuupp) (1505–1515, 52–60) 65% 55–65%
P11 (1357,76) (upuupp) (1350–1380, 80–110) 49% 55–75%

(1364,105) (upuppp) 60%
(1820,248) (uuuuup) (1670–1770, 40–190) 8% 10–20%

With the similar procedure, we can perform the Laurent
expansion of the γ ∗N → πN amplitude to obtain

TπN,γN (pon, qon; E → MR)

= 
̄R
πN (pon)
̄R

γN (qon,Q2)

E − MR

+ BπN,γN + · · · , (32)

where qon stands for qon
γN . As discussed in Sec. I, a nucleon

resonance can be interpreted [12,13] as an “eigenstate” of
the Hamiltonian H |ψR

N∗ 〉 = MR|ψR
N∗ 〉. Then from the spectral

expansion of the Low equation for reaction amplitude T (E) =
H ′ + H ′ 1

E−H
H ′, where we defined H ′ = H − H0 with H0

being the noninteracting free Hamiltonian, we have

TπN,γN (pon, qon; E → MR)

= 〈pon|H ′∣∣ψR
N∗

〉〈
ψR

N∗
∣∣H ′|qon,Q2〉

E − MR

+ · · · . (33)

Obviously, we can see that 〈ψR
N∗ |H ′|qon,Q2〉 =

〈ψR
N∗ |Jµ(Q2)εµ|N〉 is determined by the electromagnetic

current operator Jµ(Q2). It must be a complex number since
the resonance wave function ψR

N∗ contains scattering states.
Comparing Eqs. (32) and (33), we then interpret 
̄R

γN (qon,Q2)
as the N∗

R → γ ∗N transition form factor. As seen in Eq. (19),
the resonance consists of all bare N∗ components and hence
we have〈

ψR
N∗

∣∣Jµ(Q2)εµ|N〉 =
∑

i

χi
̄γN,N∗
i
(qon,Q2). (34)

Using the normalizations defined in Ref. [11] and following
the definition originally introduced for the constituent quark
model [24], the usual γ ∗N → N∗ transition form factors are
related to our extracted from factors by

A3/2(Q2) = C
∑

j

χj 
̄
R
γ ∗N,j (Q2,MR, λγ = 1, λN = −1/2),

(35)

A1/2(Q2) = C
∑

j

χj 
̄
R
γ ∗N,j (Q2,MR, λγ = 1, λN = 1/2),

(36)

S1/2(Q2) = C
∑

j

χj 
̄
R
γ ∗N,j (Q2,MR, λγ = 0, λN = −1/2),

(37)

where λN and λγ are the helicities of the initial nucleon and
photon, respectively, and

C =
√

EN (�q)

mN

1√
2K

×
√

(2j + 1)(2π )3(2q0)

4π
, (38)

where K = (M2
R − m2

N )/(2MR). The above formulas are
derived by using the formula detailed in Ref. [7] for relating
the γ ∗N → N∗ form factor to multipole amplitudes.

IV. RESULTS AND DISCUSSION

In this section, we illustrate our procedures by presenting
the results for the pronounced resonances in P33, D13, and the
complex P11 partial waves. We also investigate the extent to
which our results can be compared with those extracted from
using the Breit-Wigner form of resonant amplitudes to fit the
data.

Before we present our results for the electromagnetic
form factors, it is useful to first discuss our results from the
πN scattering amplitudes, which were briefly presented in
Refs. [1,2]. The extracted pole positions (MR) and elasticities
ηe defined by Eq. (31) for P33, D13, and P11 are compared with
the values from the Particle Data Group (PDG) [23] in Table I.
We see that our results correspond well with PDG, while only
one P11 near 1360 MeV is listed by PDG [23]. The extracted
residues Reiφ , defined in Eq. (30), for the πN amplitude are
compared with some of the previous work in Table II. We see

TABLE II. The extracted πN residues Reiφ defined by Eq. (30) are compared with several previous results.

EBAC-DCC GWU-VPI [16] Cutkosky [26] Jülich [14]

R φ R φ R φ R φ

P33(1211) 52 −46 52 −47 53 −47 47 −37
D13(1521) 38 7 38 −5 35 −12 32 −18
P11(1357) 37 −111 38 −98 52 −100 48 −64
(1364) 64 −99 86 −46 – – – –
(1820) 20 −168 – – 9 −167 – –
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FIG. 6. Energy dependence of (a) the πN amplitude and (b) the γπ M1+(3/2) and (c) E1+(3/2) amplitudes of the P33 channel. The solid
circle (triangle) shows the real (imaginary) part of the amplitude calculated using Eq. (15). The solid (dashed) curve shows the real (imaginary)
part of the amplitude of the EBC-DCC model.

that the agreement in P33 and D13 is excellent. However, we
see that the residues of the P11 resonances extracted by four
groups do not agree well while we agree well with GWU/VPI
only for the resonance at 1356 MeV.

In Table I, we also indicate the location of each pole on
the Riemann energy sheet. Since we only search for poles in the
region where the open (above threshold) channels are on the
unphysical u sheet and the close channels (below threshold)
on the physical p sheets, as described in Sec. II, the quantity
deciding which sheet each resonance in Table I is on are the
branching points for each channel, Within the JLMS fit they are
(1077, 1486, 1216, 1363 − 33i, 1703 − 75i, 1906 − 323i)
MeV for (πN, ηN, ππN, π�, ρN, σN ), respectively. For
example, the P11 pole at 1357 MeV(1364 MeV) is below
(above) the π� threshold 1363 MeV and is on upuupp

(upuppp) sheets since both poles are above the πN and ππN

channels and below the ηN, ρN , and σN channels. Thus
their residues are very different although their positions are
very close since they are on different Riemann sheets. This
two-poles structure near the π� threshold is also found in
the earlier analysis of VPI [25] and Cutkosky and Wang [26],
and the recent analysis by the GWU/VPI [16] and Jülich [14]
groups.

Our results presented in Tables I and II suggest that the
resonance parameters of the pronounced and well-isolated
resonance poles, such as P33(1210) and D13(1521), are rather
safely determined by the structure of the empirical partial-wave
amplitudes as long as the employed models have the correct
analytic properties in the region not far from the physical
region. On the other hand, the residues of the poles near
threshold are sensitive to the dynamical content of the models,
as we saw in the considered P11 case.

We now turn to presenting our results for the γ ∗N → N∗
form factors Aλ(Q2) and Sλ(Q2). We first observe that for
the isolated resonances in P33 and D13, Eqs. (25) and (27)
for γ ∗N → πN multipole amplitudes at E → MR can be
approximated as the following simple form:

TπN,γN (E → MR) = BπN,γN − RπN,γN

E − MR

, (39)

where the complex constants are evaluated at resonance
position E = MR

BπN,γN = tπN,γN (pon, qon; MR)

+ d

dE

[
(E − MR)tRπN,γN (pon, qon; E)

]
E=MR

, (40)

RπN,γN = −
̄R
πN (pon,MR)Aλ(Q2,MR)/C. (41)

Here C is defined by Eq. (38). We observe that the expression
in Eq. (39), evaluated with all constants except E kept at their
complex values at pole position MR , is a good approximation
in the physical region of E near WR = Re(MR). A similar,
good approximation is also for the πN → πN amplitudes, as
also reported in Ref. [14]. Our findings are shown in Figs. 6
and 7 for the P33 and D13 partial waves, respectively. The
determined constants BπN,γ ∗N , RπN,γN , BπN,πN RπN,πN , and
MR for each case in Figs. 6 and 7 are presented in Table III.

We now note that the Laurent expansion expression in
Eq. (39) looks similar to the commonly used amplitude with a
Breit-Wigner parametrization

T BW
πN,γN (E) = BπN,γ ∗N (Q2; E)

+ 

1/2
πN (E)eiφBW(E)ABW

λ (Q2, E)

E − (
WR − i 
tot(E)

2

) , (42)
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(imaginary) part of the amplitude of the EBC-DCC model.
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TABLE III. Extracted resonance parameters. Rβ,α and Bβ,α are for the πN elastic scattering amplitude FπN,πN and multipole amplitudes
EL±, ML± of the pion photoproduction.

MR(MeV) RπN,πN (MeV) BπN,πN RπN,γN (10−3 fm MeV) BπN,γN (10−3 fm)

P33 1211 − 50i 36.1 − 37.7i −0.43 + 0.13i M1+(3/2) −2728 + 1436i −7.43 − 3.86i

E1+(3/2) 175 + 118i −3.49 + 1.51i

D13 1521 − 58i 37.6 + 4.9i 0.06 − 0.08i M2−(1/2p) −224 − 61.6i 1.01 − 0.44i

E2−(1/2p) −437 − 368i 4.25 + 0.36i

where 
tot(E = WR) and 
πN (E = WR) are called the total
width and partial decay width for the πN channel, respectively,
and ABW

λ (Q2, q, E) is assumed to be real numbers. The energy
dependence of these widths as well as the phase factor φBW(E)
are parts of the assumptions in those analysis, which, of course,
will influence how the nonresonant amplitude BπN,γ ∗N (Q2; E)
is adjusted to fit the data.

Equations (39) and (42) have a similar structure, but
they have important differences. First the Laurent expansion
expression of Eq. (39) is evaluated at complex MR and
hence the on-shell momentum qon and pon are also complex.
However, all the energy and momentum variables in Eq. (42)
are real numbers defined by the physical energy E. The
nonresonant amplitude BπN,γN in Eq. (39) is obtained from a
coupled-channel calculation based on the equations presented
in Sec. II, while BπN,γ ∗N (Q2; E) in Eq. (42) is often calculated
from tree-diagrams of the phenomenological Lagrangian with
unitarization using the πN amplitude. Clearly, there is no
simple relation between these two approaches. We thus
will not make comparisons of our results at resonance pole
positions with those extracted from using the Breit-Wigner
parametrization Eq. (42). This important difference must be
clarified further in the future to know how these two different
extracted resonance parameters can be used meaningfully to
test hadron structure calculations.

The two-pole structure of P11 resonances near the π�

threshold poses a problem in interpreting our results for the
γ ∗N → N∗ form factors Aλ(Q2). We note that Eq. (39) is valid
for each of these two poles, but they are on different Riemann
surfaces. Thus we need to find a parametrization that carries the
sheet information in representing these two-pole contributions.
Here we follow the approach of Refs. [27–29] and a similar
formula used in extracting meson resonances [20,30].

We first use Eq. (39) to write the πN → πN and γN →
πN scattering amplitudes on the π� physical (a = p) and
unphysical (a = u) sheet as

T
(a)
β,α

(
pon

β , pon
α , E → M

(a)
R

) = − R
(a)
β,α

E − M
(a)
R

+ B
(a)
β,α, (43)

where α, β represent the πN or γN channels. All parameters
R

(a)
β,α, B

(a)
β,α , and M

(a)
R are obtained numerically from the

amplitude as described in the previous section. The above
two amplitudes with a = u, p can be combined by using the
following unified representation:

Tβ,α

(
pon

β , pon
α , E → MR

)
= − Rβ,α + R1

β,αpπ�

E − MR − γpπ�

+ Bβ,α + B1
β,αpπ�, (44)

where pπ� is the π� on-shell momentum px determined
by Eq. (11). We require Tβ,α = T

(p/u)
β,α at pπ� = p

(p/u)
π� . This

requirement for α = πN, γN and β = πN determines six
unknown complex numbers R,R1,MR,B,B1, and γ from
the known parameters R

(a)
β,α, B

(a)
β,α , and M

(a)
R . Neglecting the

small contribution of R1 and B1, we then obtain

Tβ,α

(
pon

β , pon
α , E → MR

) = − Rβ,α

E − MR − γpπ�

+ Bβ,α,

(45)

where

γ = M
(p)
R − M

(u)
R

p
(p)
π� − p

(u)
π�

, (46)

MR = M
(p)
R − γp

(p)
π�, (47)

R1
β,α = R

(p)
β,α

(
1 − γ dp

(p)
π�

/
dE

) − R
(u)
β,α

(
1 − γ dp

(u)
π�

/
dE

)
p

(p)
π� − p

(u)
π�

,

(48)

Rβ,α = R
(p)
β,α

(
1 − γ dp

(p)
π�

/
dE

) − p
(p)
π�R1

β,α. (49)

With p
(u)
π� = 49 − 68i MeV, M

(u)
R = (1359 − 76i) MeV, and

p
(p)
π� = −65 + 86i MeV, M

(p)
R = (1357 − 76i) MeV, we

have MR = (1364 − 105i)MeV, γ = −0.146 + 0.062i and
RπN,πN = (−12 − 47i)MeV. The quantities R

(u/p)
πN,γN at Q2

can be obtained from 
̄R
πN 
̄R

γN of Eq. (39) and hence RπN,γN

can also be calculated from using Eqs. (46) through (49). By
interpreting RπN,πN and RπN,γN of Eq. (45) as the residues of
a pole and using the procedures described previously, we can
then extract the electromagnetic helicity amplitudes Aλ(Q2)
and Sλ(Q2).

We found that the unified formula Eq. (45) is a good
approximation for both the πN and γπ amplitudes if Eq. (43)
is evaluated in the physical region where E is near WR =
Re(MR). This is shown in Fig. 8 for the considered P11 partial
wave. Although Eq. (45) is close to the commonly used Breit-
Wigner form of Eq. (42), we will not compare the extracted
γ ∗N → N∗ helicity amplitude Aλ(Q2) with those from the
previous analysis using the Breit-Wigner parametrization, for
the same reasons discussed previously for the isolated P33 and
D13 resonances.

We now turn to presenting our results for the γ ∗N → N∗
form factors for the P33, D13, and P11 resonances at the Q2 = 0
photon point. The electromagnetic parameters for calculating
the pion photoproduction amplitudes within EBAC-DCC were
determined in Ref. [10]. Our results at the resonance poles
are listed in Table IV. We see that in most cases, their
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FIG. 8. Energy dependence of (a) the P11πN scattering and (b) the M1−(1/2p) γπ amplitude. The solid circle (triangle) shows the real
(imaginary) part of the amplitude calculated using Eq. (45). The solid (dashed) curve shows the real (imaginary) part of the amplitude of the
EBC-DCC model.

imaginary parts are sizable. As discussed previously, they
have no simple relation with those extracted from using the
Breit-Wigner parametrization. The only comparison we can
make is for the γN → �(1232) transition form factors if we
follow the traditional practice to define that the Breit-Wigner
resonance position of �(1232) is the energy E = 1232 MeV
where the real parts of the multipole amplitudes vanish. By
using the procedure described in Ref. [7], our results for
this Breit-Wigner position are listed in the third column of
Table V. We see that our results are in good agreement with
the previous results [31–34] from using the Breit-Wigner
parametrization. It has been well recognized that the definition
of the Breit-Wigner position has become very model dependent
in the higher-energy region where multichannels effects are
important. We thus do not make comparisons for the other two
considered resonances in P11 and D13 partial waves.

We now present the Q2 evolution of the extracted
γ ∗N → N∗ form factors. The pion electroproduction ampli-
tudes are calculated using the parameters determined from
fitting [11] the CEBAF Large Acceptance Spectrometer
(CLAS) p(e, e′π ) data [18,35–37] at several Q2. As discussed
in Ref. [11], we fit the data by adjusting only the bare helicity
amplitudes of the EBAC-DCC model. Because the quality of
the data at each Q2 is different (as summarized in Table I of
Ref. [11]), our determined bare helicity amplitudes are not a
smooth function of Q2. Consequently, the extracted helicity
amplitudes at resonance poles are not a smooth function of
Q2. It is not a simple task to specify the errors for the
extracted resonance parameters at resonance poles. Since the
objective of this article is mainly to explain our resonance
extraction procedure, we thus will not resolve this problem.
This important issue, however, must be dealt with in the future.
Here we mention that most, if not all, of the previous work on
resonance information at resonance poles, such as those listed
in Table II, have not given errors.

For P33 we can use the standard relation [7] to evaluate
the N -� magnetic transition form factor G∗

M in terms of
helicity amplitudes. Our results are shown in the left side
of Fig. 9. The real and imaginary parts of the extracted
G∗

M (Q2) are the solid circles (connected by the solid curves)
and triangles (connected by the dotted line), respectively.
As mentioned previously, these results at resonance pole
MR = 1210 − 50i cannot be meaningfully compared with
the previous results extracted from using the Breit-Wigner
parametrization. It is only meaningful to compare our results
at Briet-Wigner position W = 1232 MeV with those of the
earlier results. This comparison is also shown in the right
side of Fig. 9. We see that our results at Briet-Wigner position
E = 1232 MeV (open squares connected by dashed curve) are
in good agreement with the results (solid circles with errors)
from the previous analysis [18,38–40] using the Breit-Wigner
parametrization.

Our results for the resonance pole of D13 and the three
poles of P11 listed in Table I are shown in Figs. 10 and
11, respectively. Similar to the results at the photon point
presented in Table IV, their imaginary parts (solid triangles)
are comparable or larger than the real parts (solid circles) in
magnitudes. We note that the Q2 dependence of the helicity
amplitudes for P11 in Fig. 11 indicates that the structure of the
first two poles N∗(1356) and N∗(1364) is quite different from
the third N∗(1820).

For the P11 case, it is perhaps more appropriate to interpret
our results calculated from using the unified form Eq. (43)
for the two poles near the π� threshold as the values that
can be identified with the Roper N∗(1440) resonance listed
by PDG. This results are shown in Fig. 12. We again see
that its imaginary parts (dotted line) are comparable or larger
than its real parts (solid line) in most of the Q2 region. Here
we also see that the contribution (dot-dashed lines) from the
determined bare γN → N∗ strengths play an important role in

TABLE IV. The extracted γN → N∗ helicity amplitudes (Aλ in 10−3 GeV−1/2) at nucleon pole positions. The values for P 11(total) are
from using Eq. (45), which gives a unified representation of the results from two poles at (1356 − 76i) and (1364 − 105i) near the π� threshold.

P33(1210 − 50i) D13(1521 − 58i) P11(1356 − 76i) P11(1364 − 105i) P 11(total)

A1/2 −129 + 44i −31 + 29i −13 + 20i −14 + 22i −28 + 20i

A3/2 265 + 19i 171 + 91i – – –
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TABLE V. The γN → �(1232) helicity amplitudes (Aλ in 10−3 GeV−1/2) calculated at Breit-Wigner position W = 1232 MeV are compared
with previous results.

EBAC-DCC Arndt [31] Ahrens [32] Dugger [33] Blanpied [34]

P33(1232) A3/2 −251 −243 ± 1 −256 ± 3 −258 ± 5 −266.9 ± 1.6 ± 7.8
A1/2 −136 −129 ± 1 −137 ± 5 −139 ± 4 −135.7 ± 1.3 ± 3.7
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changing the sign of the real part at Q2 ∼ 0.4 (GeV/c)2. This
sign change of the bare γN → N∗ form factor is seen in some
relativistic constituent quark model calculations [41,42]. This
suggests that our bare parameters can perhaps be interpreted
in terms of hadron structure calculations excluding the MB
coupled-channel effects, which is determined by the unitarity
condition.

To end this section, we emphasize that our γN → N∗ form
factors at pole positions presented in Figs. 9 through 12 are
well defined in terms of the matrix elements of the current
operator between eigenstates of the Hamiltonian, as discussed
in Sec. III. This must be accounted for in comparing our results
with any hadron structure calculation.

V. SUMMARY

We explained the application of a recently developed
analytic continuation method to extract the electromagnetic
transition form factors for the nucleon resonances (N∗) within
the EBAC-DCC model of the MB reactions. We discuss in
detail how the contours for solving the considered coupled-
channels integral equations are chosen to find resonance

poles MR and their residues. The formula for determining
the γ ∗N → N∗ transition form factors Aλ(Q2) and Sλ(Q2),
defined on the complex Riemann energy sheet, from the
extracted residues are presented.

We found that the resulting Laurent expansions of the
πN → πN and γN → πN amplitudes, evaluated in the
physical energy region, can reproduce to a very large extent
the exact solutions of the EBAC-DCC model at energies
near E = Re(MR). A formula was developed to give a
unified representation of the effects due to the first two P11

resonances, which are near the π� threshold, but are on
different Riemann sheets. Illustrative results for the well-
isolated P33 and D13, and the complicated P11 resonances are
presented.

We discuss the differences between our results and
those extracted from the approaches using the Breit-Wigner
parametrization of resonant amplitude to fit the data. We find
that there is no simple connection between these two different
approaches.

To conclude, we emphasize that our form factors are defined
in a well-studied theoretical framework [12,13,22] within
which a resonance is an “eigenstate” of the Hamiltonian with
the outgoing boundary condition for the asymptotic wave
function of its decay channels. Thus the electromagnetic
transition form factors defined by 〈ψR

N∗ |Jem|N〉, which can
be extracted from the residues of the resonance poles, must
be complex since the resonant wave function ψR

N∗ contains a
scattering continuum. This must be accounted for in comparing
our results with those from using the Breit-Wigner form to fit
the data and any hadron structure calculations of the N -N∗
transition form factors, such as those from relativistic quark
models [41,42], Dyson-Schwinger models [43], and lattice
QCD (LQCD) [44].
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