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Describing the strongly interacting quark-gluon plasma through the Friedberg-Lee model
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The Friedberg-Lee (FL) model is studied at finite temperature and density. The soliton solutions of the FL
model in the deconfinement phase transition are solved and thoroughly discussed for certain boundary conditions.
We indicate that the solitons before and after the deconfinement have different physical meanings: the soliton
before deconfinement represents hadrons, while the soliton after the deconfinement represents the bound state
of quarks which leads to a strongly interacting quark-gluon plasma phase. The corresponding phase diagram is
given.
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I. INTRODUCTION

An important discovery at the BNL Relativistic Heavy Ion
Collider (RHIC) in recent years is the strongly interacting
quark-gluon plasma (sQGP) [1–3]. For the collective effects
from RHIC experiments, known as radial and elliptic flow,
the QGP could be well described by ideal hydrodynamics. It
implies that the QGP at RHIC is the most perfect fluid [4–6].
For this reason, Shuryak has pointed out there should be lots of
bound states [1] especially for light and heavy qq̄ bound states
at Tc < T < 4Tc, where Tc is the transition temperature. For
the physical quark mass, the QCD transition is a nonsingular
crossover at finite temperature. In recent lattice results, at high
temperatures and small densities, it is a crossover from the
hadronic phase to QGP phase [7,8]. From recent theoretical
studies, we have realized the rich phases of QCD theory, such
as the color superconducting phase [9], pion condensation [10],
color glass condensate, and quarkyonic phase [11]. Now the
RHIC results tell us that after deconfinement, the quarks are not
free immediately, as we usually thought for a weakly coupled
QGP (wQGP), but are still in a strong coupled state as the
sQGP. It is a challenge for us to understand this new state of
nuclear matter [12]. As we know, phenomenologically, a linear
confine potential and color Coulomb potential exist between
quarks in vacuum, know as V ∼ α/r + kr . With temperature
T increased to some critical temperature, the linear confine
potential disappears, while the Coulomb potential remains,
which could still be very strong [13]. Thus in the literature, the
effective Coulomb potential has been often used to describe
the strong interaction of sQGP [14,15]. In recent years,
experiments and theories have been developing rapidly in the
study of the sQGP. For new frontiers of QGP study, refer to
Ref. [16].

However, in the present work, to obtain a simple and
intuitive picture of sQGP, we will use a simple model to
study the possible physical mechanism of the bound state in
sQGP and the corresponding phase diagram of deconfinement.
The model used here is the Friedberg-Lee (FL) model, which
has been widely discussed in past decay studies [17–19]. It
has been very successful in describing phenomenologically

the static properties of hadrons and their behaviors at low
energy. The model consists of quark fields interacting with
a phenomenological scalar field σ . The σ field is introduced
to describe the complicated nonperturbative features of QCD
vacuum. It naturally gives a color confinement mechanism
in QCD theory. The model has been also extended to finite
temperatures and densities to study the deconfinement phase
transition [20–24]. However, it seems that the deep meaning
of the soliton solutions in deconfinement phase transition has
not been revealed in the past studies. The main purpose of
this paper is to study in detail the properties of the solitons
in the FL model before and after deconfinement and provide
a possible explanation and description of sQGP through this
effective theoretical model.

The organization of this paper is as follows: In Sec. II we
give a brief introduction of the FL model. The field equations
and the effective potential are derived. In Sec. III, the soliton
equation of the FL model is solved for certain boundary
conditions and the physical meanings of these solitons in
deconfinement are thoroughly discussed. In Sec. IV, a phase
diagram of the deconfinement phase transition is given. The
last section is the summary.

II. FL MODEL AND EQUATIONS

We start from the Lagrangian of the FL model,

L = ψ̄(iγµ∂µ − gσ )ψ + 1
2 (∂µσ )(∂µσ ) − U (σ ), (1)

where

U (σ ) = 1
2!aσ 2 + 1

3!bσ 3 + 1
4!cσ

4 + B. (2)

ψ represents the quark field, and σ denotes the phenomeno-
logical scalar field. a, b, c, g, and B are the constants which
are generally fitted in with producing the properties of hadrons
appropriately at zero temperature.

At finite temperature and for the thermal equilibrium
system, the σ field will be replaced by σ̄ + σ ′, where σ̄ is the
Gibbs thermal average of the σ field, and σ ′ is the fluctuation.
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At tree level, one can obtain the field equations [22]

(iγµ∂µ − gσ̄ )ψ = 0, (3)

∂µ∂µσ̄ = −
(

∂U

∂σ̄
+ 1

2
(b + cσ̄ )〈σ ′2〉 + g〈ψ̄ψ〉

)

≡ −∂Veff

∂σ̄
, (4)

where 〈σ ′2〉 and 〈ψ̄ψ〉 denote the contributions of the thermal
excitations of σ and quark fields, respectively,

〈σ ′2〉 =
∫

d3p
(2π )3

1

Eσ

1

eβEσ − 1
, (5)

〈ψ̄ψ〉 = −γ

∫
d3p

(2π )3

mq

Eq

(
1

eβ(Eq−µ) + 1
+ 1

eβ(Eq+µ) + 1

)
,

(6)

in which β is the inverse temperature, µ is the chemical poten-
tial, and γ is a degenerate factor, γ = 2(spin) × 2(flavor) ×
3(color). Eσ = √ �p2 + m2

σ and Eq =
√

�p2 + m2
q ; mq = gσ̄

and m2
σ = a + bσ̄ + 1

2cσ̄ 2 are the effective masses of the
quark and σ fields, respectively. One should notice that the
second equality of Eq. (4) means that we define a thermal
effective potential as

Veff = U (σ̄ ) + 1

β

∫
d3p

(2π )3
ln(1 − e−βEσ )

− γ

β

∫
d3p

(2π )3
[ln(1 + e−β(Eq−µ))

+ ln(1 + e−β(Eq+µ))]. (7)

It could be seen that the Veff is just the one-loop effective po-
tential at finite temperature and density. One should notice that
Veff here plays dual roles at the microscopic and macroscopic
levels. At the microscopic level, it acts as the effective potential
within a hadron embedded in a hot and dense environment. At
the macroscopic level, it plays the role of a thermodynamic
function of the thermodynamic system consisting of quarks
interacting with the scalar fields.

From Eq. (4), one could see that the properties of the soliton
field σ̄ depend completely on the effective potential Veff . As
known, by the effective potential at finite temperature and
density, one can study the deconfinement phase transition in
the FL model. Thus the properties of solitons in deconfinement,
especially the relations between solitons and deconfinement,
could be well studied by solving Eq. (4) at finite temperature
and density.

For the model parameters a, b, c, and g, different sets of
values can be chosen [23]. For the problem we discuss here,
they will give similar physical results. Thus in our following
calculation, we just take one set of values as a = 17.7 fm−2,
b = −1457.4 fm−1, c = 20 000, and g = 12.16, which has
been often used in the literatures. The effective mass of the σ

field is fixed at mσ = 550 MeV [22,23].
At zero temperature and density, the Veff is just the U (σ̄ )

and has been plotted in Fig. 1. There are two minima of the
potential U (σ̄ ): one corresponds to the perturbative vacuum at
σ̄ = 0, another corresponds to the physical vacuum at σ̄ = σv .
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FIG. 1. Effective potential at zero temperature and density.

The difference in the potential of the two vacuum states is the
bag constant B. If we take U (σv) = 0, the bag constant B can
be expressed as

− B = 1
2!aσ 2

v + 1
3!bσ 3

v + 1
4!cσ

4
v . (8)

At finite temperature and zero chemical potential, from
Eq. (7), the Veff can be numerically evaluated and is plotted
in Fig. 2. There are two critical temperatures Tc1 and Tc2. At
Tc1, the two minima degenerate. At Tc2, the minimum σ̄ = σv

just vanishes. The bag constant is now temperature dependent
B(T ). For T � Tc1, it is defined as

B(T ) = Veff(σ̄ = 0; T ) − Veff(σ̄ = σv; T ), (9)

which can be numerically evaluated. From Fig. 2, it is easy
to see that the bag constant will decrease with increasing
temperature. Until at T = Tc1 the two vacuums degenerate,
the bag constant is zero. There is no bag constant to provide
dynamical mechanism to confine the quarks. At this time,
the deconfinement phase transition occurs. For thorough
discussions about the bag constant and deconfinement phase
transition in the FL model, see Ref. [23].

III. SOLITON SOLUTIONS AND sQGP IN
DECONFINEMENT

For the static and spherically symmetric soliton field, Eq. (4)
becomes

d2σ̄

dr2
+ 2

r

dσ̄

dr
= ∂Veff

∂σ̄
. (10)

We will solve this equation numerically. A standard numerical
package COLSYS will be used for the numerical calculation
[25].

For solving the soliton equation (10), one should know the
different configurations of the thermal effective potential Veff

and determine the boundary conditions. However, because Veff

is highly nonlinear in σ̄ as shown in Eq. (7), it is not easy to
solve the equation using COLSYS. At finite temperature and
zero chemical potential, since Veff can be plotted as shown in
Fig. 2, we can fit every curve in terms of σ̄ 2, σ̄ 3, and σ̄ 4 with
the effective parameters a(T ), b(T ), and c(T ). That means

Veff = 1
2!a(T )σ̄ 2 + 1

3!b(T )σ̄ 3 + 1
4!c(T )σ̄ 4 + B(T ). (11)
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FIG. 2. Effective potentials for different temperatures and zero
chemical potential: T1 = 50, T2 = 100, Tc1 = 121, T3 = 130, T4 =
140, and Tc2 = 143 MeV.

In this form, Veff can be applied in COLSYS for the numerical
calculation. In the following, we will solve Eq. (10) under
certain boundary conditions and discuss the soliton solutions
for different configurations of Veff .

At T < Tc1, the boundary condition are taken as

dσ̄

dr

∣∣∣∣
r=0

= 0, σ̄ |r→∞ = 0. (12)

From Fig. 2, at T < Tc1, the physical vacuum at σ̄ = σv

is stable. The bag constant B 
= 0 and its value decreases
with increasing temperature. The corresponding quarks are
confined. Equation (10) can be numerically solved, and the
soliton solutions are plotted in Fig. 3(a). One can see that
the solitons at temperature T < Tc1 do not change so much.
The quarks keep confined in a hadronic state until the critical
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FIG. 3. Soliton solutions for different temperatures and zero
chemical potential. (a) T0 = 0, T1 = 50, T2 = 100, and Tc1 =
121 MeV. (b) T3 = 130 and T4 = 140 MeV.

µ1

µ2

µc 1

µ3

µ4
µc 2

0.05 0.00 0.05 0.10 0.15 0.20

100

50

0

50

σ fm 1

V
ef

f
M

eV
fm

3

FIG. 4. Effective potentials at different chemical potentials when
fixing the temperature T at 50 MeV: µ1 = 100, µ2 = 200, µc1 = 255,
µ3 = 300, µ4 = 350, and µc2 = 375 MeV.

temperature T = Tc1 at which the two vacuums degenerate.
As the bag constant B = 0, the hadrons are destructed, and
the quarks are deconfined. The corresponding soliton is also
plotted in Fig. 3(a).

If we keep increasing temperature to Tc1 < T < Tc2, from
Fig. 2, the perturbative vacuum σ̄ = 0 is stable. Equation (10)
will be solved under the boundary conditions

dσ̄

dr

∣∣∣∣
r=0

= 0, σ̄ |r→∞ = σv. (13)

The soliton solutions are solved and plotted in Fig. 3(b). These
solitons are quite different from those at T < Tc1. Since the
system is already deconfined, these solitons do not represent
hadrons any more but rather the bound states of quarks. Though
the quarks are deconfined, they are still in strong coupled states.
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FIG. 5. Soliton solutions at different chemical potentials when
fixing the temperature T at 50 MeV. (a) µ1 = 100, µ2 = 200, and
µc1 = 255 MeV. (b) µ3 = 300 and µ4 = 350 MeV.
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FIG. 6. Phase diagram of deconfinement in the FL soliton model.

That is, the system is in a sQGP phase. At T = Tc2, when the
physical vacuum σ̄ = σv vanishes and only the perturbative
vacuum σ̄ = 0 exists, the soliton solution disappears. At
this time, the quarks become quasifree, and the system goes
into a quasifree gas phase of QGP, which can be identified
as wQGP.

At fixed finite temperature and varying chemical potential,
we can make similar observations. In Fig. 4, we show Veff

at T = 50 MeV and for different chemical potentials. There
are also two critical chemicals µc1 and µc2. At µc1 the
two vacuums degenerate; at µc2 the vacuum of σ̄ = σv just
vanishes. The corresponding soliton solutions are plotted in
Figs. 5(a) and 5(b). It is clear that at µ < µc1, the solitons
representing the quarks are confined in hadronic states, and the
system is in a hadronic phase. At µc1 � µ < µc2, the solitons
represent bound states of quarks, and the system is in a sQGP
phase. At µ � µc2, the solitons disappear. That means the
quarks become quasifree and the system is in a wQGP phase.

From the above discussions, we see the physical meaning
of the solitons: before deconfinement, the solitons represent
hadrons; after deconfinement, the solitons represent the bound
states of quarks. In the hadronic phase, the quarks are confined
in a soliton bag, and the system is composed of hadrons. In
the sQGP phase, the bag is destroyed, and the quarks are
deconfined, but the soliton at this time can make quarks in a
bound state. Thus the system is composed of clusters of quarks.
In the wQGP phase, the soliton disappears, and the quarks are
set free out of the bound states, and the system is composed
of quasifree quarks. The solitons after deconfinement could
provide a possible formation mechanism of the bound states
in sQGP.

IV. PHASE DIAGRAM

Now we are in a position to plot the phase diagram of
deconfinement phase transition in the FL model. When the
chemical potential is fixed, one could obtain two critical

temperatures. Increasing the chemical potential to another
fixed value, the other two corresponding critical temperatures
could be obtained, and so on. The µ-T phase diagram could
be plotted as shown in Fig. 6. The full line is the dividing
line between the hadronic and deconfined quark phases. The
dashed line further divides the deconfined quark phase into the
sQGP and wQGP phases.

V. SUMMARY

In this paper, we have thoroughly discussed the soliton
solutions in the FL model at finite temperatures and densities
for certain boundary conditions. The physical interpretations
of the solitons in the deconfinement phase transition have
been given. In the FL model, the system is deconfined at
the time that the bag constant becomes zero. We indicate
that the solitons before deconfinement are hadrons, while
the solitons after deconfinement represent the bound states
of quarks, which could possibly lead to the sQGP phase.
This is very different from previous studies with the FL
model, in which there is no sQGP. The whole phase diagram
is divided into three phases: the hadronic, the sQGP, and
the wQGP. The model and our calculation have limitations.
We only calculate the one-loop effective potential which
is equivalent to the mean-field treatment. At mean-field
approximation, the thermodynamic contributions could not
counteract the cubic term σ 3 in the effective potential. From
Landau theory, the deconfinement phase transition here could
only be first order. At low densities and high temperatures,
there is no second-order phase transition or crossover. This
is the limitation of this work. However, this model provides
possibilities for further investigation of these problems. For
examples, for high-temperature and low-density areas, once
the nonlinear effects of the fluctuations are considered, the
cubic term σ 3 may disappear in the effective potential, where
the second-order phase transition may be occur. Furthermore,
one could study the tunnel effects at the time the physical
vacuum and perturbative vacuum degenerate, which could
give a possible physical mechanism to explain the crossover.
All these problems will be thoroughly studied in our future
work. The QCD phase structure still needs lots of thorough
investigation, especially for the finite-density areas, where
the results are often model dependent. Here we only present
a possible phase diagram based on the FL model, which is
qualitatively consistent with that of Shuryak [1].
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