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Anatomy of the symmetry energy of dilute nuclear matter
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The symmetry energy coefficients of dilute clusterized nuclear matter are evaluated in the S-matrix framework.
Employing a few different definitions commonly used in the literature for uniform nuclear matter, it is seen that
the different definitions lead to perceptibly different results for the symmetry coefficients for dilute nuclear
matter. They are found to be higher compared to those obtained for uniform matter in the low density domain.
The calculated results are in reasonable consonance with those extracted recently from experimental data.
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I. INTRODUCTION

Experiments [1,2] have recently been done to determine
the symmetry energy coefficients of dilute warm nuclear
matter. The density range explored is up to ∼0.05ρ0, ρ0 being
the density of normal nuclear matter. The symmetry energy
coefficients at these low densities are found to be significantly
larger than those obtained from effective interactions [3–5] in
the mean-field (MF) models. These results bear very interest-
ing import in the astrophysical context. A higher symmetry
energy, for example, would lead to a lower (e−)-capture
rate in the supernova collapse phase, which would result in
a stronger explosive shock [6] and may thus significantly
influence the initial conditions for the postbounce evolution
of the supernova. The isotopic abundance of the relatively
heavy elements produced in explosive nucleosynthesis is also
directly influenced by the symmetry energy.

The experimental observations, more or less, matched the
theoretically predicted trend made earlier by Horowitz and
Schwenk [7] for the symmetry energy coefficients of dilute
nuclear matter. They had made a virial treatment of the said
matter and found from the free-energy considerations that
the matter, if assumed to be a system of interacting gas
of nucleons and nucleon-clusters, is more stable compared
to pure nucleonic matter. For simplicity, they considered
the matter to be composed of nucleons and alphas only.
Soon afterward, the S-matrix approach [8] as applied to
dilute nuclear matter was developed [9]. This approach
provides a fully consistent logical framework for describing
the thermodynamic properties of dilute hadronic matter. In
its rudimentary form this goes over to the virial equation of
state of Horowitz and Schwenk, which is an extension of the
Beth-Uhlenbeck [10] scheme to include bound and scattering
states of systems heavier than the two-nucleon system in
the virial treatment. Calculations [4,11] in this approach
again produced values of the symmetry energy coefficients
much larger than those obtained in the MF models and are
seen to be in reasonable consonance with the experimental
trend.
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The aim of the present article is to have a closer look at the
evaluation of symmetry energy or symmetry free-energy coef-
ficients of dilute nuclear matter. There are different definitions
of symmetry energy coefficients available in the literature. For
pure nucleonic matter below ρ0 at any temperature T , the
near-perfect linearity of the per particle energy E(ρ,X, T ) in
X2 [4,12] [X = (ρn − ρp)/(ρn + ρp) is the nuclear asymmetry
parameter] makes these definitions practically equivalent. En-
ergy of clusterized nuclear matter, however, shows a different
behavior with X. A resulting ambiguity in the definition of
the symmetry energy coefficients is addressed in this article.
We also find that the experimentalists resort to different
approximations in evaluating the density and temperature of
the clusterized matter produced and take the help of isoscaling
to determine [1,2] the symmetry energy coefficients of the
said matter at the specified density and temperature. From the
S-matrix-based cluster composition of dilute nuclear matter at
finite temperature followed by sequential decay [13], we try to
understand the veracity of these approximations and apply the
different definitions including isoscaling techniques [14–16]
to evaluate the symmetry energy coefficients and compare with
the experimental data.

The article is organized as follows. The various theoretical
details are presented in Sec. II. The results and discussions
are contained in Sec. III. The concluding remarks are given in
Sec. IV.

II. THEORETICAL ELEMENTS

The definition of symmetry energy coefficients of dilute
nuclear matter is not unique. In Sec. II A, definitions commonly
used in the literature are given. In Sec. II B, a brief outline
of the S-matrix framework is presented within which the
symmetry coefficients with these definitions are evaluated. In
Sec. II C, expressions for a few relevant observables are given.
Determination of the symmetry coefficients of clusterized
matter requires the knowledge of the source temperature and
also of the primary fragment multiplicities. The experimentally
detected multiplicities are the ones that have undergone
secondary particle emission. In Sec. II D, we show how to
correlate the detected multiplicities to the primary ones and
how the temperature of the fragmenting system is obtained
from the double ratio of the modified isotope yield. This makes
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the extraction of the symmetry coefficients from isoscaling
techniques more reliable.

A. The symmetry energy coefficient

The symmetry energy of an asymmetric nuclear system is
defined as the energy change in making the system isospin
symmetric. For a homogeneous system, microscopic calcula-
tions in the mean-field model [17] show that the energy per
nucleon of asymmetric nuclear matter up to saturation density
is practically linear in X2 and may be written as E(ρ,X, T ) =
E(ρ,X = 0, T ) + CE(ρ, T )X2. The term CE(ρ, T )X2 is the
symmetry energy Esym, and the slope parameter CE is called
the symmetry coefficient. In the nuclear mass formula for
the binding energy per particle, the symmetry energy also
appears as a term CEX2. Empirical values of CE are found
to be ∼23–25 MeV for medium-heavy nuclei compared to
∼30–34 MeV for nuclear matter at the saturation density
because of surface effect. The symmetry coefficient CE was
defined in several ways:

CE(ρ, T ) = [E(ρ,X, T ) − E(ρ,X = 0, T )]/X2, (1)

CE(ρ, T ) = [E(ρ,X = 1, T ) + E(ρ,X = −1, T )]/2

−E(ρ,X = 0, T ), (2)

and

CE(ρ, T ) = 1

2

(
∂2E(ρ,X, T )

∂X2

)
X=0

. (3)

For uniform nuclear matter at densities up to saturation, all
three definitions yield nearly the same value of CE as E(X) is
seen to be nearly linear in X2 in the whole range of X. Similar
definitions follow for the symmetry free-energy coefficient
CF , namely, F (ρ,X, T ) = F (ρ,X = 0, T ) + CF X2 where
F (ρ,X, T ) denotes the free energy. For dilute nuclear matter in
equilibrium, however, the system finds minimum free energy
when it is clusterized. The clusterized fragments, even for
symmetric dilute nuclear matter may not be all symmetric;
they may thus contribute sizable symmetry energy to the total
energy of the system. The total energy or free energy of
the asymmetric system may then deviate considerably from
the linearity in X2; this makes an unambiguous definition
of the symmetry coefficients CE or CF difficult.

Experimentally, the nuclear symmetry energy coefficients
have been extracted from isoscaling [1,2]. From measured
fragment yields Yi(N,Z) from two similar fragmenting sys-
tems i = 1, 2 differing in isospin content, a scaling relation,

Y2(N,Z)/Y1(N,Z) ∝ eδN+γZ, (4)

was observed. In the model of nuclear statistical equilibrium
(NSE) [18], the isoscaling parameters are given by δ =
(µn2 − µn1 )/T and γ = (µp2 − µp1 )/T where µni

’s and µpi
’s

are the neutron and proton chemical potentials in the two
systems. From the measured multiplicities of different isotopes
of any specific element, say, δ can be extracted experimentally
and then the symmetry free-energy coefficient CF is related

to δ as [15]

CF = δT

4
[
(Z/A)2

1 − (Z/A)2
2

] , (5)

where (Z/A)i are the proton fractions in the two systems. The
symmetry energy coefficient CE is then evaluated as

CE = CF + T CS, (6)

where CS is the symmetry entropy coefficient; it is de-
fined as CS = [S(ρ,X, T ) − S(ρ,X = 0, T )]/X2, where S

is the entropy per nucleon evaluated using the theoretical
model [1,2].

In an explosive supernova scenario, Def. I may possibly
find its use. There, the physical process involves, in general,
changes in density, temperature, and isospin asymmetry.
One has to deal with quantities like �F = F (ρ2, X2, T2) −
F (ρ1, X1, T1). After rearrangement, �F can be written as

�F = [F (ρ2, X2, T2) − F (ρ2, X = 0, T2)]

− [F (ρ1, X1, T1) − F (ρ1, X = 0, T1)]

+ [F (ρ2, X = 0, T2) − F (ρ1, X = 0, T2)]

+ [F (ρ1, X = 0, T2) − F (ρ1, X = 0, T1)]. (7)

The previous equation reduces to

�F = [
CF (ρ2, X2, T2)X2

2 − CF (ρ1, X1, T1)X2
1

]
+

∫ ρ2

ρ1

P (ρ,X = 0, T2)

ρ2
dρ −

∫ T2

T1

S(ρ1, 0, T )dT .

(8)

In Eq. (8), CF (ρ,X, T ) is the asymmetry-dependent free
symmetry energy coefficient as defined through Def. I,
P (ρ,X = 0, T ) is the pressure of symmetric dilute nuclear
matter, and S is its entropy per nucleon.

B. The S-matrix framework

The S-matrix formalism in the nuclear context was already
presented in some detail in Refs. [9] and [11]. For the sake of
completeness, we give below some of its salient features.

The grand partition function of an interacting infinite
system of neutrons and protons can be written as

Z =
∞∑

Z,N=0

(ζp)Z(ζn)N TrZ,N e−βH . (9)

Here, ζ ’s are the elementary fugacities, ζn = eβµn and ζp =
eβµp with β = 1/T the inverse of the temperature, and µ’s are
the nucleonic chemical potentials. H is the total Hamiltonian
of the system and TrZ,N is taken over states of Z protons
and N neutrons. The dynamical information concerning the
nucleonic interaction is contained in the partition function as
two types of terms [8],

lnZ = lnZ (0)
part + lnZscat. (10)

The first term on the right-hand side corresponds to contribu-
tions from stable single-particle states of clusters of different
sizes including neutrons and protons formed in the system;
the second term refers to all possible scattering states. The
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superscript (0) indicates that the clusters behave as an ideal
quantum gas. The first term includes contributions from both
the ground states of the clusters and their excited states below
the particle emission threshold so that

lnZ (0)
part = lnZ (0)

gr + lnZ (0)
ex , (11)

with

lnZ (0)
gr = ∓V

∑
i

gi
0

∫
dp

(2π )3

× ln
(
1 ∓ ζie

−β(p2/2Aim)
)
, (12)

and

lnZ (0)
ex = ∓V

∑
i

εi
s∑

εi
j =εi

1

gi
j

×
∫

dp
(2π )3

ln
(
1 ∓ ζie

−β(p2/2Aim+εi
j )). (13)

In Eqs. (10) and (11), i refers to a fragment species with
mass, charge, and neutron number Ai, Zi, and Ni , respectively.
The upper and lower signs refer to bosonic and fermionic
clusters with gi

0(gi
j ) as the ground-state (excited-state) spin

degeneracies and V is the volume of the system. The effective
fugacity ζi is ζi = eβ(µi+Bi ) where from chemical equilibrium
µi = Niµn + Ziµp and Bi is the binding energy of the cluster.
Here p is the momentum of the cluster and m is the nucleonic
mass. A nucleus in a particular excited state is taken as a
distinctly different species and can be treated in the same
footing as the ground state. In Eq. (11), the sum is taken over
all particle-stable excited states and for A � 16, all the discrete
particle-stable excited states [13,19,20] are included. For A >

16, the sum in Eq. (11) is replaced by an integral weighted with
the level density ω(A, ε∗), the integral extending from the first
excited state εi

1 taken to be 2 MeV to the particle emission
threshold energy εi

s , taken as 8 MeV, both εi
1 and εi

s being
taken to be independent of the species. Equation can then be
recast as

lnZ (0)
ex = ∓V

∑
i

∫ εi
s

εi
1

dε∗ω(A, ε∗)

×
∫

dp
(2π )3

ln
(
1 ∓ ζie

−β(p2/2Aim+ε∗)
)
. (14)

The expression for the level density is taken from Ref. [21].
The scattering term in Eq. (10) may be written as a sum of

contributions from a set of channels with total proton number
Zt , neutron number Nt , and mass number At . All the other
labels required to fix a channel is denoted by σ . The scattering
term can then be written as

lnZscat = V
∑
Zt ,Nt

A
3/2
t eβµZt ,Nt

λ3
N

∑
σ

eβBZt ,Nt ,σ

×
∫ ∞

0
dε

e−βε

2πi
TrZt ,Nt ,σ

(
AS−1(ε)

∂

∂ε
S(ε)

)
c

,

(15)

the trace being restricted to channel (Zt,Nt , σ ). In Eq. (15)
λN = h/

√
2πmT is the nucleon thermal wavelength and ε

is the center-of-mass kinetic energy in the channel. Here
A represents the bosonic symmetrization or fermionic an-
tisymmetrization operator, S is the scattering operator, and
the subscript c, in diagrammatic language, refers only to
the connected part of the expression in the parenthesis. The
quantity BZt ,Nt ,σ is the sum of the individual binding energies
of all the particles participating in the scattering channel.
From binding energy considerations, two-particle channels
are expected to be more dominant than the multiparticle
channels for any particular Zt and Nt . We thus consider only
two-particle scattering channels. In essence, the interactions
among the nucleons are contained in the ground and excited
states of the clusters and all the possible scatterings between
them. The scattering contribution to the partition function is
split into two parts, one coming from the low mass particles
(A � 8, say) and the other from heavy ones, containing at least
one high mass particle (A > 8), so that we write,

lnZscat = lnZL
scat + lnZH

scat. (16)

Because the scattering of relatively heavier nuclei is known
to be dominated by a multitude of narrow resonances near
the continuum threshold, the S-matrix elements for them are
approximated by resonances, each of which can be treated
[22,23] like an ideal gas term. For heavier mass fragments
A > 16, assuming the resonance level densities to be the
same as that of excited states below threshold, the scattering
contribution from the heavier mass fragments lnZH

scat takes the
form similar to that in Eq. (14) where the integration interval εi

1
to εi

s over the excitation energy is replaced by εi
s to εi

r , εi
r being

the limit of resonance domination. For A � 16, in Eq. (11) the
sum over all the particle-decaying excited states are taken with
lifetimes >200 fm/c.

For lnZL
scat, only the scattering channels NN,Nt,N3He,

Nα and αα are considered, where N and t refer to the nucleon
and the triton, respectively. Then

lnZL
scat = lnZNN + lnZNt + lnZN3He + lnZNα + lnZαα.

(17)

Each of the terms in Eq. (17) can be expanded in the
respective virial coefficients. Expansion up to the second-order
coefficients are only considered; they are written as energy
integrals of the relevant phase shifts [7,9]. Collecting the
various contributions, the grand partition function takes the
form,

lnZ = lnZ (0)
gr + lnZ (0)

ex + lnZL
scat + lnZH

scat. (18)

C. Expressions for some relevant observables

The explicit expression for the partition function given by
Eq. (18) is

lnZ = V

⎧⎨
⎩ 2

λ3
N

[
ζn + ζp + bnn

2
ζ 2
n + bpp

2
ζ 2
p + 1

2
bnpζnζp

]

+ 2

λ3
t

[ζt + 2ζt (bpt ζp + bnt ζn)]
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+ 2

λ3
h

[ζh + 2ζh(bphζp + bnhζn)]

+ 1

λ3
α

[
ζα + bααζ 2

α + bnαζα(ζn + ζp)
]

+
∑

i

ζi

λ3
i

⎛
⎝gi

0 +
εi
r∑

εi
j =εi

1

gi
j e

−εi
j /T

⎞
⎠

⎫⎬
⎭ . (19)

The sum in the parenthesis of the last term in Eq. (19)
goes over to an integral for A >16 as stated earlier. The
subscripts n, p, t, h, and α refer to the neutron, proton, triton,
3He, and 4He, respectively, and λi is the thermal wavelength
(λi = λN/

√
Ai) of a fragment species i with mass mAi . The

bnn, etc., are the temperature-dependent virial coefficients.
The model with the partition function given by Eq. (19) will
be referred to as the S-matrix (SM) model; the neglect of
the scattering terms (the terms involving the virial coefficients)
leads to the NSE model. Further neglect of the excited states
as used by Albergo et al. [24] in the context of isotope
thermometry will be referred to as the NSE0 model. Once
the partition function is known, all the relevant observables
can be calculated.

The pressure can be evaluated from

P = T lnZ/V . (20)

The number density ρi of the ith fragment species is calculated
from

ρi = ζi

(
∂

∂ζi

lnZ
V

)
V,T

. (21)

For relatively low density and not too low temperature, the
fugacity ζ � 1. The quantal distribution can then be well
approximated by the classical one. The primary fragment
multiplicity densities for the ith species can then be derived as

ρi = 1

λ3
i

e[µiNi+µpZi+B(Ai,Zi )]/T

×
⎛
⎝gi

0 +
εi
r∑

εj =εi
1

gi
j e

−εi
j /T

⎞
⎠ + ρi

sc. (22)

In Eq. (22), the sum over the excited states includes both the
γ and particle-decay (resonance) channels. The last term ρi

sc

is the contribution to the fragment yield from scattering; it
is nonzero only for the fragments with A � 4, the explicit
expressions for which are given in Ref. [7]. The sum in the
parenthesis in Eq. (22) goes over to an integral for A > 16 as
mentioned before.

The free-energy density is then calculated from the Gibbs-
Duhem relation,

F = −P +
∑

i

µiρi . (23)

The entropy density is

S =
(

∂P

∂T

)
µ

, (24)

which yields the total energy density as

E = F + T S. (25)

The full expression for the entropy density is

S = 5

2

P

T
−

∑
i

ρi ln ζi

+ T

λ3
N

{
ζnζpb0′

np + (
ζ 2
n + ζ 2

p

)
b′

nn

} + 4T

λ3
t

ζt {ζnb
′
nt + ζpb′

pt }

+ 4T

λ3
h

ζh{ζnb
′
nh + ζpb′

ph} + T

λ3
α

{
ζ 2
αb′

αα + ζα(ζn + ζp)b′
nα

}
+ 1

T

∑
i∈H

ζi

λ3
i

∫
ω(ε∗)ε∗e−ε∗/T dε∗, (26)

where
∑

i denotes the sum over all the species and
∑

i∈H

signifies that the sum runs over the channels of heavy
fragments.The primes on the virial coefficients denote their
temperature derivatives. The coefficient b0

np corresponds to
the nonresonance n-p scattering contribution; it is related
to the full bnp as bnp = b0

np + bd with bd = 6
√

2eBd/T , Bd

being the binding energy of deuteron.

D. Connecting measured data to primary observables

Experimental extraction of the symmetry free-energy co-
efficient from isoscaling depends on the knowledge of the
temperature T of the disassembling source and the isoscaling
parameters δ and/or γ . They, in turn, are determined exploiting
the multiplicity distribution of the excited primary fragments.
Because of subsequent particle emission, however, the primary
distribution changes leading to secondary yield of the frag-
ments. Experimentally, the latter are measured, reconstruction
of the primary multiplicities from the experimentally detected
ones is then necessary to get T , δ, and γ and also the other
thermodynamic parameters at the time of nuclear disassembly
(freeze-out). This was discussed in Ref. [13]; here we present
it in brief for completeness.

The observed secondary yield of light fragments (Ai �
4, Zi � 2), because of feeding from excited heavier ones, can
be written in terms of thermodynamic parameters V,µn, µp,
and T at freeze-out as

Yi(Ai, Zi) = Vgi
0
A

3/2
i

λ3
N

e[(Niµn+Ziµp+B(Ai,Zi ))/T ]

+V
∑

j

∑
kj

{
A

3/2
j

λ3
N

e[(Nj µn+Zj µp+B(Aj ,Zj ))/T ]

× ω
kj

p (Aj ,Zj , T )x
kj

i (Aj ,Zj , T )

}
+ Vρi

sc.

(27)

In Eq. (27), the first and last terms together comprise the
primary multiplicities of the said light fragments; the middle
term represents their population growth from decay of heavier
species. The quantity x

kj

i corresponds to the branching ratio
of the kth particle-decaying state of the j th heavy species
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for emitting the light ith species. It is calculated using the
Weisskopf-Ewing model [25]. The quantity ω

kj

p (Aj ,Zj , T ) is
the internal partition function for the particle-unstable states,

ω
kj

p (Aj,Zj , T ) = g
j

k e
−ε

j

k /T . (28)

For heavy particles (A > 4, Z � 2), the experimentally ob-
served yield is written as

Y (A,Z) = V
A3/2

λ3
N

e(Nµn+Zµp+B(A,Z))/T

×
{
g0(A) + ωγ (A,Z, T ) +

∑
kj

6∑
i=1

×
(

A + ai

A

)3/2

e(niµn+ziµp+B(A+ai ,Z+zi )−B(A,Z))/T

×ω
kj

p (A + ai, Z + zi, T )x
kj

i (A + ai, Z + zi, T )

}
.

(29)

In Eq. (29), ωγ = ∑
k gke

−εk/T is the partition function for
γ -decaying states of the heavier fragments; the sum i runs over
the emitted ejectiles, for which we take only n, p, d, t,3He,
and α, ai and zi being their mass and charge. Given a set of
experimental yields for four fragments, their single ratios are
constructed using Eqs. (27) and (29), resulting in a system
of three independent equations. Using the Newton-Raphson
method, the equations can be solved iteratively for µn,µp,
and T ; the volume V can then be determined from the total
observed yield of a fragment. Once these thermodynamic
parameters are known, the primary yield can be easily
calculated.

III. RESULTS AND DISCUSSIONS

As mentioned earlier, the definition of the symmetry energy
coefficients CE and CF for clusterized nuclear matter is
not unique; their values may depend on the prescriptions
used to evaluate them. In this article, we calculate the
symmetry coefficients for warm dilute nuclear matter at
different temperatures and densities using several prescriptions
as used in the literature for uniform matter; we employ the
S-matrix framework for this purpose. To examine critically
the role of clusterization on the symmetry coefficients, we also
evaluate them in the relativistic mean-field model (RMF) for
uniform nucleonic matter. Finally, the calculated coefficients
are compared with the experimental values [2] of CE and CF ,
extracted recently exploiting the phenomenon of isoscaling
[15]. Hereafter, the definitions of CE given by Eqs. (1)–(3)
will be referred to as Def. I, Def. II, and Def. III, the definition
given by Eqs. (5) and (6) from isoscaling will be referred to
as Def. IV. Analogous definitions follow for the symmetry
free-energy coefficient CF .

As already mentioned, the symmetry energies of dilute
clusterized nuclear matter may deviate considerably from the
linearity in X2. In Fig. 1, the symmetry energy and free energy
per nucleon of dilute neutron-rich matter evaluated in the SM
model are presented as black lines at densities ρ = 0.002 and
0.02 fm−3 and at temperatures of T = 4 and 8 MeV as a

0

5

10

15

E
sy

m
 (

M
eV

)

0 0.2 0.4 0.6 0.8
X

2

0

5

10

F
sy

m
 (

M
eV

)

ρ=0.002
ρ=0.02
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FIG. 1. (Color online) The symmetry energy Esym and symmetry
free energy Fsym displayed as a function of X2. The black lines [top
two lines (a); top and middle lines (b)–(d)] correspond to calculations
in the SM model; the red lines [bottom two lines (a); middle and
bottom lines (b)–(d)] are the ones obtained in RMF theory. The solid
and open circles depict the least-squares fitted values with a quartic
term in X in the expressions for Esym and Fsym.

function of X2. The calculations in the left panels [(a) and
(c)] refer to those at the lower temperature T = 4 MeV, those
on the right panels [(b) and (d)] correspond to calculations
at T = 8 MeV. In these calculations, the maximum mass of
the fragment Amax allowed to be formed in the dilute matter
is taken as 50; it is found that the results with Amax = 20 is
almost the same as those for Amax = 50 as at these densities
and temperatures formation of a fragment with mass > 20 is not
very significant. The full and dashed lines refer to calculations
at densities ρ = 0.002 and 0.02 fm−3, respectively. The results
are seen to be nonlinear in X2, the nonlinearity depending
on ρ and T . To visualize the effects of clusterization on
the behavior of symmetry energies, we compare our results
with those obtained for the uniform nucleonic matter. The
results for uniform matter as depicted in Fig. 1 (red solid and
dashed lines) have been calculated using the BSR4 parameter
set [26,27] of the extended RMF model [28–30]. The BSR4
parameter set satisfies simultaneously the empirical constraint
on the density dependence of the symmetry energy as well as
the experimental data on the bulk properties of finite nuclei
as was recently shown [27]. The symmetry energies and free
energies calculated in the RMF model are seen to be always
smaller than those obtained in the SM approach. The calculated
symmetry energies here are practically linear in X2, however,
the symmetry free energies have a nonlinear component. For an
estimate of this nonlinearity in the symmetry energies, a quartic
term in the asymmetry parameter X is added to Esym and
Fsym as Esym = aeX

2 + beX
4 and Fsym = af X2 + bf X4. The

coefficients a and b are dependent on ρ and T and are obtained
by a least-squares fit to the calculated values at different
values of X. For a quantitative feeling of this nonlinearity, the
values of the coefficients a and b at densities ρ = 0.002 and
0.02 fm−3 and at temperatures T = 4 and 8 MeV are presented
in Table I for the results calculated in both the SM and RMF
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TABLE I. The least-squares fitted coefficients a and b at different
temperatures T and densities ρ. The coefficients and T are in MeV
and ρ is in fm−3.

Model T ρ ae be af bf

SM 4 0.002 12.517 −4.879 6.860 −0.601
4 0.02 14.607 −2.733 14.168 −1.743
8 0.002 3.300 −0.146 5.212 1.424
8 0.02 12.611 −2.541 11.864 1.163

RMF 4 0.002 1.129 0.038 2.920 0.727
4 0.02 7.303 0.188 8.424 0.868
8 0.002 1.129 0.038 4.829 1.416
8 0.02 7.303 0.188 10.411 1.565

models. It is seen that the coefficients be in the RMF model are
quite small compared to ae indicating the near linearity of the
symmetry energy in X2 in this model; in the SM model these
coefficients are appreciably larger. The fitted values are shown
as solid and open circles for the lower and the higher densities,
respectively. With the quartic term, the fit to the calculated
results are seen to be as a whole excellent for the temperatures
and densities studied.

In Fig. 2, the calculated values of symmetry coefficients CE

and CF in Def. I at three temperatures T = 4, 6, and 8 MeV
for densities up to ρ = 0.03 fm−3 are displayed. The value
of the asymmetry parameter X occurring in Eq. (1) is taken
to be X = 0.2. The left panels [(a) and (b)] correspond to
the values evaluated in the SM approach. Two characteristics
for the symmetry coefficients are in general seen: (i) With
increasing temperature, both CE and CF tend to decrease;
(ii) with increasing density, they tend to level off. For the
lowest temperature considered, however, CE exhibits a peaked
structure. The right panels [(c) and (d)] of Fig. 2 compare the
values calculated in the SM (thick lines) and NSE models (thin
lines) at T = 4 and 8 MeV. The effect of scattering is seen to
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FIG. 2. The symmetry energy coefficients CE and CF calculated
using Def. I as a function of density for the temperatures T = 4, 6,
and 8 MeV. The left panels [(a) and (b)] correspond to calculations
in the SM model. In the right panels [(c) and (d)], SM results (thick
lines) are compared with those obtained in the NSE model (thin lines).
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FIG. 3. The symmetry coefficients CE and CF obtained for
different values of X using Def. I in the SM model shown as a
function of density for T = 4 and 8 MeV.

be somewhat more visible at higher temperature; the larger
density of lighter particles (n, p, etc.) in warmer systems is
reflected here.

The values of CE and CF evaluated using Eq. (1) (Def. I)
with two choices of the asymmetry parameter at X = 0.2 and
X = 0.4 are displayed in Fig. 3 at two temperatures T = 4 and
8 MeV. While at higher temperature, the calculated values are
not much different at different values of X [(c) and (d)], at the
low temperature of 4 MeV quite different values for CE and CF

are obtained as is seen from the solid and dashed lines in the
left panels [(a) and (b)] of this figure with the notable feature
that the peaked structure for CE tends to wash out at higher
values of X. The values of symmetry coefficients obtained
from Def. I display a delicate interplay in the fragmentation
pattern of dilute matter as a function density, temperature, and
asymmetry; the peaked structure in CE at T = 4 MeV and
X = 0.2 is an outcome of this.

In Fig. 4, the values of CE and CF calculated in Def. II are
presented at the same temperatures and in the same density
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FIG. 4. Same as in Fig. 2 using Def. II.

045201-6



ANATOMY OF THE SYMMETRY ENERGY OF DILUTE . . . PHYSICAL REVIEW C 82, 045201 (2010)

0

10

20

30

40
C

E
 (

M
eV

)

T=4
T=8

0 0.01 0.02 0.03
ρ (fm

-3
)

0

10

20

C
F
 (

M
eV

)
(a)

(b)

FIG. 5. The symmetry coefficients CE and CF obtained using
Def. III at different densities at temperatures T = 4 and 8 MeV.

range as shown in Fig. 2 for Def. I. The symmetry coefficients
increase with density and tend to saturate here, too. The
symmetry free-energy coefficient CF is seen to be nearly
insensitive to temperature; CE , however, is lower at higher
temperatures, which is quite appreciable at low densities. This
is a reflection of negative symmetry entropy in the density
range we consider. Panels (c) and (d) of Fig. 4 display the effect
of scattering on the symmetry coefficients; contrary to Def. I,
this effect is more dominant here as one of the systems in the
calculation of CE or CF is either pure neutron or proton matter.

In Fig. 5, the symmetry coefficients calculated using Eq. (3)
(Def. III) are presented at T = 4 and 8 MeV as a function of
density. Similar trends as with Def. I and Def. II are seen,
however, the symmetry coefficients are found to be much
larger. Similar display is done in Fig. 6 for the symmetry
coefficients obtained in the isoscaling procedure (Def. IV).
The twin fragmenting systems taken are at X = 0.0 and at
X = 0.2. The fragments considered for the calculation are the
isotopes of Z = 1, 2, and 3 obtained from the SM model. In the
conventional isoscaling procedure, the symmetry coefficients
are independent on the choice of atomic number Z; in our
calculation, however, because of the presence of scattering
and secondary decay from the excited primary fragments,
a dependence on Z is observed. This is seen to be more
prominent with increasing temperature and density. At the
lower temperature of 4 MeV [(a) and (b)], the symmetry
coefficients for Z = 1 and 2 are indistinguishable.

The extraction of CF from isoscaling [Eq. (5)] is not
unambiguous, it may have some dependence on the different
sets of similarly prepared twin systems of proton fractions
(Z/A)1 and (Z/A)2. This was addressed by calculating CF

with the choice of the two sets with twin systems (X1 = 0.0,
X2 = 0.1) and (X1 = 0.0, X2 = 0.2). The results averaged
over Z = 1, 2, 3 are presented in Fig. 7. The solid and dashed
lines in red displayed in (b) and (d) [bottom two light lines] at
temperatures T = 4 and 8 MeV refer to calculations in the NSE
model without any secondary decay for the above two sets. A
weak dependence on the choice of set is observed. The solid
and dashed black lines refer to corresponding calculations in
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FIG. 6. The symmetry coefficients calculated as a function of
density at T = 4 and 8 MeV in the SM model with inclusion of
secondary decay employing isoscaling for isotopes of Z = 1, 2, and
3. The results for Z = 1 and 2 at T = 4 MeV are indistinguishable.

the SM model. The effects of scattering and decay are also
seen not to be too strong. The calculated values of CE at the
two temperatures are displayed in (a) and (c). The dependence
on the choice of set as well as on the scattering + secondary
decay is seen to be very appreciable here.

A comparison of the symmetry coefficients evaluated
employing the different definitions is made in Fig. 8. In
Def. I and Def. IV, the asymmetric system is chosen with
X = 0.2. Further calculations presented are done with this
asymmetry. The symmetry coefficients calculated in the RMF
model are shown as red lines. These results are always
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FIG. 7. (Color online) Effects of asymmetry and scattering +
secondary decay on the symmetry coefficients employing isoscaling
at T = 4 and 8 MeV. The solid and dashed lines correspond to
twin fragmenting systems with (X1 = 0.0, X2 = 0.1) and (X1 = 0.0,
X2 = 0.2) showing the asymmetry effect. The black lines represent
calculations in the SM model with secondary decay; the red lines
[middle and bottom light lines (a); bottom two light lines (b)-(d)] are
the ones obtained without scattering and secondary decay.
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FIG. 8. (Color online) Comparison of the symmetry coefficients
obtained with different definitions at different densities and temper-
atures. The solid, dashed, dotted, and dot-dashed lines correspond to
calculations with Def. I, Def. II, Def. III, and Def. IV, respectively.
The black lines are the results in the SM model; the red lines [the lines
in light shade] are those obtained in the RMF model where results
with Def. I and Def. III are indistinguishable.

significantly lower than those obtained for clusterized matter
showing the important role played by clusterization on the
symmetry coefficients. At extremely low densities where the
matter tends to be in a uniform nucleonic state, the different
definitions yield more or less the same values for the symmetry
coefficients for clusterized matter. In the RMF model, the
coefficient CE is practically independent on the choice of
definition as symmetry energy is seen to be almost bilinear
in X (see Fig. 1), however, the coefficient CF is seen to
be somewhat dependent on X as can be seen from the red
solid lines (Def. I) and the dashed lines (Def. II) [the lines
in light shade]. The coefficients obtained with Def. III in
RMF are indistinguishable from those obtained with Def. I.
The differences in the symmetry coefficients obtained with
the different definitions for clusterized matter are found to
be quite appreciable; the gaps are reduced with increasing
temperature. At the lower temperature T = 4 MeV, the
symmetry coefficients obtained with Def. III are seen to be the
largest; those obtained from isoscaling (Def. IV) lie midway
between those calculated using Def. III and the other two
definitions. At higher temperature the dispersion among the
various results obtained in different definitions narrows down.

Recent collision experiments with heavy ions have yielded
values of the temperature and density of the hot dilute
fragmenting nuclear matter and also its symmetry coefficients.
In these experiments [2], multiplicities of the lighter parti-
cles, namely, n, p, d, t, 3He, and 4He have been measured.
The temperature of the system was measured from isotope
thermometry using the H-He thermometer based on the
double-yield ratio (t/d)/(4He/3He) in the Albergo model
[24]. In the same model, from single isotope ratio, the
densities of the fragmenting source have been evaluated. In
Figs. 9(a) and 9(b), they are shown as red solid squares
[light shade] as a function of vsurf where vsurf is the velocity
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FIG. 9. (Color online) The extracted experimental values (red
solid squares) of temperature and density from Ref. [2] are compared
in (a) and (b) with the scattering-corrected values in the present
calculations (inverted solid black triangles). In (c) and (d), the
calculated symmetry coefficients in the SM model with Def. I, Def. II,
and Def. IV (solid black, blue, and magenta circles [dark, light
and lighter shades]), and Def. III (open circles) are compared with
the experimental values (solid red squares). The solid diamonds in
(c) correspond to CE with CF calculated in isoscaling, Ssym being
evaluated with equivalent expression as used in Def. II. The open
blue squares correspond to calculations in RMF using Def. II.

before the final Coulomb acceleration [2]. The Albergo model
has no provision to consider the scattering effect on the
thermodynamic observables; in the SM model, they are taken
into account as detailed in Ref. [13]. Using the same H-He
thermometer, from the input temperature and density obtained
in the Albergo model, the scattering-corrected temperature and
density are obtained iteratively. In (a) and (b), the corrected
values of T and ρ are shown as inverted solid black triangles.
Scattering correction is seen to have at most an ∼10% effect
on these thermodynamic observables.

The calculated symmetry coefficients using different defi-
nitions are compared with the experimental ones in Figs. 9(c)
and 9(d). The experimental values of the coefficient CF were
obtained using Eq. (5) with T and ρ as shown by the solid red
squares [(a) and (b)]; the symmetry entropy was calculated
in the NSE model with the equivalent expression of Eq. (2)
as the difference between the entropies of pure neutron and
proton matter and symmetric clusterized nuclear matter. The
coefficient CE was then obtained from Eq. (6). The solid black,
blue, and magenta circles [dark, light and lighter shades]
correspond to the present calculations in Def. I, Def. II,
and Def. IV for clusterized matter in the SM approach with
the scattering-corrected temperature and density, respectively.
The open black circles represent corresponding results using
Def. III. The different values of CF shown in (d) reflect the
nonuniqueness in their definition for clusterized dilute matter.
They, however, remain in a moderately narrow band around the
experimentally extracted values. The difference is amplified
for the symmetry energy coefficient CE as seen in (c). The
solid black diamonds in (c) also represent the symmetry energy

045201-8



ANATOMY OF THE SYMMETRY ENERGY OF DILUTE . . . PHYSICAL REVIEW C 82, 045201 (2010)

coefficients calculated with Def. IV; their difference from
the solid magenta circles is from the fact that in the former
case, the symmetry entropy is calculated as the difference
between pure neutron matter (instead of matter at X = 0.2)
and symmetric matter as was done to extract the experimental
values of CE . The former choice of entropy calculation brings
down the results considerably toward the experimental values.
The open blue squares are the results obtained in the RMF
model at the scattering-corrected temperatures and densities
using Def. II. The results are not that sensitive to the choice of
definition in this model as can be seen from Fig. 8. They are
generally smaller compared to all other results including the
experimental ones.

IV. CONCLUDING REMARKS

Finding out the symmetry coefficients of dilute nuclear
matter as a function of temperature and density in the
framework of the S-matrix approach was the primary aim in
this article. Generally, it is found that the symmetry coefficients
CE and CF increase with density at a fixed temperature
and then they gradually tend to level off at a density of
∼0.2 ρ0; the applicability of the SM approach may be doubtful
beyond this density. At a fixed density, it is also seen that
the symmetry coefficients decrease with temperature. The
changing fragmentation pattern with density, temperature,
and asymmetry makes the temperature dependence of the
symmetry coefficients of dilute nuclear matter rather involved.
A closed expression for the said temperature dependence is
hard to find, unlike that for a finite nucleus [31]. At very low
density, scattering effects on the symmetry coefficients are
rather negligible; the effects become important with higher
density and temperature. In the density domain we work in,
the calculated symmetry coefficients in the SM approach are
found to be generally considerably higher than those calculated
for uniform nuclear matter.

We have taken recourse to the different definitions available
in the literature for the evaluation of the symmetry coefficients
of dilute warm nuclear matter that becomes nonhomogeneous
and clusterized for stability. For uniform nuclear matter, these
few definitions lead practically to the same values of the
symmetry coefficients, but for the nonhomogeneous matter,
different values are reached making a unique definition of the
symmetry energy of dilute nuclear matter in terms of symmetry
coefficients and asymmetry of the system difficult. Dilute
symmetric nuclear matter is a case in point; the disassembled

fragments may contribute to a sizable symmetry energy though
the total asymmetry of the system is zero.

In trying to understand and compare our calculated val-
ues of the symmetry coefficients with the experimentally
reported ones, we have made a modest attempt to critically
analyze the extracted experimental parameters like density
and temperature in our SM approach; we find that because
of scattering effects (neglected in the experimental analyses),
the temperature and densities are somewhat higher than those
reported in experiments. The evaluated values of the symmetry
free-energy coefficients at these experimental parameters are in
reasonable consonance with those obtained from experiments.
Compared to the symmetry free-energy coefficients, the sym-
metry energy coefficients are found to have a wider variation
obtained in different definitions. The fragmentation pattern
of a system is quite sensitive to its asymmetry parameter
introducing a strong asymmetry dependence in the symmetry
entropy coefficient CS of Eq. (6). Different definitions of
symmetry coefficients imply systems with different values
of effective asymmetry producing a larger dispersion in CE

compared to CF .
Examining the behavior of symmetry energies as a function

of the asymmetry parameter X, it is evident that the symmetry
coefficients of nonhomogeneous matter defined in the conven-
tional way as CE ∼ Esym/X2 or CF ∼ Fsym/X2 would be an
involved function of X. Def. II and Def. III, by construction,
are asymmetry independent; these definitions do not reflect
the underlying functional behavior of the symmetry energy
of nonhomogeneous matter on the asymmetry parameter. The
symmetry coefficients obtained from isoscaling (Def. IV) have
an implicit asymmetry dependence that may not be too large.
They also have, as we have shown, dependence on the atomic
numbers of the light fragment isotopes chosen for isoscaling
because of the scattering and secondary decay effects. The ex-
perimental extraction of the symmetry coefficients, exploiting
Def. IV, may thus depend on the experimental parameters. The
symmetry coefficients obtained through Def. I are asymmetry
dependent. In a real physical process such as the supernova
collapse or explosive phase, as mentioned earlier, they are the
ones that seem most useful in describing the changing physical
entities in an evolving scenario of density, temperature, and
asymmetry.
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