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We present a sophisticated treatment of the hydrodynamic evolution of ultrarelativistic heavy ion collisions,
based on the following features: initial conditions obtained from a flux tube approach, compatible with the
string model and the color glass condensate picture; an event-by-event procedure, taking into the account the
highly irregular space structure of single events, being experimentally visible via so-called ridge structures in
two-particle correlations; the use of an efficient code for solving the hydrodynamic equations in 3 + 1 dimensions,
including the conservation of baryon number, strangeness, and electric charge; the employment of a realistic
equation of state, compatible with lattice gauge results; the use of a complete hadron resonance table, making
our calculations compatible with the results from statistical models; and a hadronic cascade procedure after
hadronization from the thermal matter at an early time.
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I. INTRODUCTION

There seems to be little doubt that nuclear collisions at
the relativistic heavy ion collider (RHIC) produce matter that
expands as an almost ideal fluid [1–4]. This observation is
mainly based on the studies of azimuthal anisotropies, which
can be explained on the basis of ideal hydrodynamics [5–9].
A big success of this approach was the correct description
of the so-called mass splitting, which refers to quite different
transverse momentum dependencies of the asymmetries for
the different hadrons, depending on their masses.

Another striking observation is the fact that particle pro-
duction seems to be governed by statistical hadronization in
the framework of an ideal resonance gas, with hadroniza-
tion temperatures TH close to 170 MeV [10–16], which
corresponds to the critical temperature of the (crossover)
transition between the resonance gas and the quark gluon
plasma. Such a high temperature is, in particular, necessary to
accommodate the yields of heavy particles such as baryons and
antibaryons.

If we imposed statistical hadronization at TH ≈ 170 MeV
in a hydrodynamical approach, we will get the correct particle
ratios, but the baryon spectra will be too soft. A later freeze-out
at around 130–140 MeV, as in earlier calculations, gives better
spectra, but too few baryons. A solution to this is to consider
an early “chemical freeze-out” Tch ≈ TH and then force the
particle yields to stay constant till the final “thermal freeze-out”
Tth [17]. Although in this way one might be able to understand
particle yields and spectra, such an approach produces too
much azimuthal asymmetry (expressed via the second Fourier
coefficient v2) compared to the data, in particular at large
rapidities. Here, it seems to help to replace the hydrodynamic
treatment of the evolution between Tch and Tth by a hadronic
cascade [18–22]. So this second phase seems to be significantly
nonthermal.

The calculations found in Refs. [20,21] manage to repro-
duce both the particle yields and transverse momentum spectra
of pions, kaons, and protons within 30% for pt values below
1.5 GeV/c. The net baryon yield cannot be reproduced since
the calculations are done for a zero baryon chemical potential,
another systematic problem is due to a relatively small hadron
set. A bigger hadron set will produce essentially more pions
and will thus reduce for example the pion/kaon ratio.

Most calculations are still done using an unrealistic equa-
tion of state with a first-order transition based on ideal gases of
partond and hadrons. As shown later, using a realistic equation
of state, which is for µB = 0 compatible with the lattice results,
actually makes a big difference.

Also important is an explicit treatment of individual events
rather than taking smooth initial conditions as representing
many events. This was pioneered by Spherio calculations
[23–25] based on Nexus initial conditions [26,27]. An event-
by-event treatment will affect all observables such as spectra
and elliptical flow and it is absolutely essential for rapidity-
angle correlations (ridge effect).

Although Nexus reproduces qualitatively the essential
features of a realistic event-by-event initial condition, it should
be noted that the model was developed ten years ago, before
the RHIC era. So we will base our discussions in this article
on the Nexus successor EPOS, which contains many upgrades
related to the question of the interplay between soft and hard
physics, high parton density effects and saturation, the role
of projectile and target remnants, and so on. The parameters
have been optimized by comparing our results to all possible
accelerator data concerning proton-proton (or more generally
hadron-proton) and proton-nucleus (deuteron-nucleus) colli-
sions. EPOS seems to be the only model compatible with the
yields, spectra, and double differential spectra of identified
particles from NA49 [28]. EPOS also seems to be the only
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interaction model compatible with cosmic ray data for air
shower simulations [29]. All this is just to say that we consider
the elementary EPOS model for pp scattering as a very solid
basis for generalizations toward heavy ion applications.

In this article, we present a sophisticated treatment of
the hydrodynamic evolution of ultrarelativistic heavy ion
collisions, based on the following features:

(i) initial conditions obtained from a flux tube approach
(EPOS), compatible with the string model used
for many years for elementary collisions (electron-
positron, proton proton) and the color glass condensate
picture;

(ii) consideration of the possibility of having a (moderate)
initial collective transverse flow;

(iii) event-by-event procedure, taking into account the
highly irregular space structure of single events being
experimentally visible via the so-called ridge structures
in two-particle correlations;

(iv) core-corona separation, considering the fact that only a
part of the matter thermalizes;

(v) use of an efficient code for solving the hydrodynamic
equations in 3 + 1 dimensions, including the conserva-
tion of baryon number, strangeness, and electric charge;

(vi) employment of a realistic equation of state, compatible
with lattice gauge results – with a crossover transition
from the hadronic to the plasma phase;

(vii) use of a complete hadron resonance table, making our
calculations compatible with the results from statistical
models;

(viii) hadronic cascade procedure after hadronization from
the thermal system at an early stage.

All the above-mentioned features are not new, what is new is
the attempt to put all these elements into a single approach,
bringing together topics such as statistical hadronization, flow
features, saturation, the string model, and so on, which are
often discussed independently. For any quantitative analysis of
heavy ion results we have to admit that there is just one com-
mon mechanism, which accounts for the whole soft physics.
We therefore test our approach by comparing our results to all
essential observables in Au-Au scatterings at RHIC.

There is quite some activity concerning viscous effects
[30–35], but this aspect will not be addressed in the present
article. Here, we want to develop a sophisticated description
based on ideal hydrodynamics and see how far we can get.
As we will see later, some of the features attributed to
viscosity may be explained within ideal hydrodynamics in
a sophisticated formulation.

Although the model is very complex, the physical picture
that emerges is very clear since the different “features” of
our approach affect different observables in a very transparent
way. An Au-Au collision at 200 GeV will typically create
thermalized quark/gluon matter after less than 1 fm/c, concen-
trated in several longitudinal subflux tubes with energy density
maxima of well beyond 50 GeV/fm3. Flux tube structure
essentially means that the complicated bumpy transverse
structure of a given event is (up to a factor) translational
invariant. During the evolution, translational invariant flows
develop, which finally show up as rapidity-angle correlations.

y

z

x

FIG. 1. (Color online) Macroscopic flux tubes (three in this
example) made out of many individual ones of variable length.

This is unavoidable in such an approach with irregular flux
tubes.

In Fig. 1, we sketch the flux tube picture. The longitudinal
direction is along the z axis, the coordinates x and y represent
the transverse plane. A “macroscopic” flux tube is a longi-
tudinal structure of high energy density, almost translational
invariant despite an irregular form in the transverse direction.
Such a flux tube is made of many individual elementary flux
tubes or strings, each one having a small diameter (of 0.2
to 0.3 fm). The elementary flux tubes are actually short, the
momentum fraction of the string ends are distributed roughly
as 1/x. The macroscopic flux tubes represent, nevertheless,
long structures simply due to the fact that many short
elementary flux tubes are located at transverse positions
corresponding to the positions of nucleon-nucleon scatterings.
These simply happen to be more or less frequent in certain
transverse areas, leading to more or less high densities of flux
tubes in the transverse plane.

This flux tube approach is just a continuation of 30 years of
very successful applications of the string approach to particle
production in collisions of high-energy particles [36–38], in
particular, in connection with the parton model. Here, the
relativistic string is a phenomenological tool to deal with
the longitudinal character of the final state partonic system.
An important issue at high energies is the appearance of
so-called nonlinear effects, which means that the simple linear
parton evolution is no longer valid, gluon ladders may fuse or
split. More recently, a classical treatment was proposed, called
color glass condensate (CGC), which has the advantage that
the framework can be derived from first principles [39–44].
Comparing a conventional string model such as EPOS and the
CGC picture: They describe the same physics, although the
technical implementation is, of course, different. All modern
string model implementations have to deal with screening and
saturation and EPOS is not an exception. Without screening,
proton-proton cross sections and multiplicities will explode
at high energies. We will discuss later in more detail about
the question of CGC initial conditions for hydrodynamical
evolutions compared to conventional ones. To give a short
answer: This question is irrelevant when it comes to event-by-
event treatment.

Starting from the flux tube initial condition, the system
expands very rapidly thanks to the realistic crossover equation
of state, flow (also the elliptical one) develops earlier compared
to the case of a strong first-order equation of state as in
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FIG. 2. (Color online) The energy density over T 4 as a function
of the temperature T . The dotted line indicates the “hadronization
temperature” (i.e., the end of the thermal phase) when “matter” is
transformed into hadrons.

Refs. [20,21], temperatures corresponding to the crossover
(around 170 MeV) are reached in less than 10 fm/c. The system
hadronizes in the crossover region, where here “hadronization”
is meant to be the end of the completely thermal phase: Matter
is transformed into hadrons. We stop the hydrodynamical
evolution at this point, but particles are not yet free. Our
favorite hadronization temperature is 166 MeV, shown as the
dotted line in Fig. 2, which is indeed right in the transition
region where the energy density varies strongly with the
temperature. At this point we employ statistical hadronization,
which should be understood as the hadronization of the
quark-gluon-plasma state into a hadronic system at an early
stage not the decay of a resonance gas in equilibrium.

After this hadronization—although no longer thermal—the
system still interacts via hadronic scatterings, still building
up (elliptical) flow, but much less compared to an idealized
thermal resonance gas evolution, which does not exist in
reality.

Despite the nonequilibrium behavior in the final stage of
the collision, our sophisticated procedure gives particle yields
close to what was predicted in statistical models, see Fig. 3.
This is because the final hadronic cascade does not change
particle yields too much (with some exceptions to be discussed
later), but it affects slopes and—as mentioned—azimuthal
asymmetry observables.

In the following, we will present the details of our
sophisticated approach to the hydrodynamic evolution in heavy
ion collisions, with a subsequent attempt to understand and
interpret all soft heavy ion data from Au-Au at 200 GeV.
The predictive power of the presented approach is enormous.
The basic EPOS approach, which fixes the flux tube initial
conditions, has quite a number of parameters determining soft
Pomeron properties, the perturbative QCD treatment (cutoffs),
the string dynamics, screening and saturation effects, and the
projectile and target remnant properties. All these unknowns
are fixed by investigating electron-positron, proton-proton, and
proton-nucleus scattering from the Super Proton Synchrotron
(SPS) via RHIC to Tevatron energies, for all observables where
data are available. This very large amount of elementary data
grants us very little freedom concerning heavy ion collisions.
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FIG. 3. (Color online) Particle ratios (hadron yields to π+ yields)
from our model calculations (thick horizontal line) as compared to
the statistical model [10] (thin horizontal line) and to data [45–47]
(points).

II. ELEMENTARY FLUX TUBES AND
NONLINEAR EVOLUTION

Nucleus-nucleus scattering—even proton-proton—
amounts to many elementary collisions happening in parallel.
Such an elementary scattering is the so-called “parton
ladder,” see Fig. 4, also referred to as cut Pomeron, see
Appendix A and Ref. [48]. A parton ladder represents
parton evolutions from the projectile and the target side
toward the center (small x). The evolution is governed
by an evolution equation in the simplest case according
to Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP).
In the following we will refer to these partons as “ladder
partons” to be distinguished from “spectator partons” to be
discussed later. It was realized a long time ago that such
a parton ladder may be considered as a quasilongitudinal
color field, a so-called “flux tube,” conveniently treated as a
relativistic string. The intermediate gluons are treated as kink
singularities in the language of relativistic strings, providing
a transversely moving portion of the object. This flux tube

quasi longitudinal
color electric field

via pair
production

decay

"flux tube" 

nucleon

nucleon

effects
nonlinear

partons
low x

FIG. 4. (Color online) Elementary interaction in the EPOS model.
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decays via the production of quark-antiquark pairs, creating
in this way fragments—which are identified with hadrons.
Such a picture is also in qualitative agreement with recent
developments concerning the CGC, as discussed earlier.

A consistent quantum-mechanical treatment of the multiple
scattering is quite involved, in particular when the energy
sharing between the parallel scatterings is taken into account.
For a detailed discussion we refer to Ref. [26]. Based on
cutting rule techniques, one obtains partial cross sections for
exclusive event classes, which are then simulated with the help
of Markov chain techniques.

Important, in particular, at moderate energies (RHIC), our
“parton ladder” is meant to contain two parts [26]: the hard
one, as discussed previously (following an evolution equation)
and a soft one, which is a purely phenomenological object,
parametrized in Regge pole fashion, see the Appendix. The
soft part essentially compensates for the infrared cutoffs, which
have to be employed in the perturbative calculations.

At high energies one needs to worry about nonlinear
effects because the gluon densities get so high that gluon
fusion becomes important. Nonlinear effects can be taken into
account in the framework of the CGC [39–44]. Here, we adopt
a phenomenological approach, which grasps the main features
of these nonlinear phenomena and still remains technically
doable (we should not forget that we finally have to deal
with complications due to multiple scatterings, as discussed
earlier).

Our phenomenological treatment is based on the fact
that there are two types of nonlinear effects [48]: a simple
elastic rescattering of a ladder parton on a projectile or target
nucleon (elastic ladder splitting) or an inelastic rescattering
(inelastic ladder splitting), see Fig. 5. The elastic process
provides screening and therefore a reduction of the total
and inelastic cross sections. The importance of this effect
should first increase with mass number (in the case of nuclei
being involved), but finally saturate. The inelastic process will

ladder partons

nucleons

ladder partons

nucleons

FIG. 5. (Color online) Elastic (upper plot) and inelastic (lower
plot) “rescattering” of a ladder parton.

affect particle production, in particular transverse momentum
spectra, strange over nonstrange particle ratios, and so on. Both
elastic and inelastic rescattering must be taken into account to
obtain a realistic picture.

To include the effects of elastic rescattering, we first
parametrize a parton ladder (to be more precise, the imaginary
part of the corresponding amplitude in impact parameter space)
computed on the basis of DGLAP. We obtain an excellent fit
of the form

α(x+x−)β, (1)

where x+ and x− are the momentum fractions of the “first”
ladder partons on, respectively, the projectile and target side
(which initiate the parton evolutions). The parameters α and
β depend on the center of mass system (cms) energy

√
s of

the hadron-hadron collision. To mimic the reduction of the
increase of the expressions α(x+x−)β with energy, we simply
replace them by

α(x+)β+εP (x−)β+εT , (2)

where the values of the positive numbers εP/T will increase
with the nuclear mass number and log s. This additional
exponent has very important consequences: It will reduce sub-
stantially the increase of both cross sections and multiplicity
with the energy, having thus a similar effect as introducing a
saturation scale.

The inelastic rescatterings (ladder splittings, looking from
inside to outside) amount to providing several ladders close
to the projectile (or target) side, which are close to each other
in space. They cannot be considered as independent color
fields (strings), we should rather think of a common color field
built from several partons ladders. We treat this object via
an enhancement of remnant excitations, the latter ones to be
discussed in the following.

So far we just considered two interacting partons, one from
the projectile and one from the target. These partons leave
behind a projectile and target remnant, colored, so it is more
complicated than simply projectile/target deceleration. One
may simply consider the remnants to be diquarks providing
a string end, but this simple picture seems to be excluded
from strange antibaryon results at the SPS [49]. We therefore
adopt the following picture: Not only a quark, but a two-fold
object takes part in the interaction, namely a quark-antiquark
or a quark-diquark pair, leaving behind a colorless remnant,
which is, however, in general, excited (off-shell). If the first
ladder parton is a gluon or a seaquark, we assume that there
is an intermediate object between this gluon and the projectile
(target), referred to as a soft Pomeron. And the “initiator” of the
latter one is, again, the previously mentioned two-fold object.

So we have finally three “objects,” all of them being
white: the two off-shell remnants and the parton ladder in
between. Whereas the remnants contribute mainly to particle
production in the fragmentation regions, the ladders contribute
preferentially at central rapidities.

We showed in Ref. [50] that this “three object picture” can
solve the “multistrange baryon problem” of Ref. [49]. In addi-
tion, we assembled all available data on particle production in
pp and pA collisions between 100 GeV (lab) up to Tevatron to
test our approach. Large rapidity (fragmentation region) data
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are mainly accessible at lower energies, but we believe that
the remnant properties do not change much with energy, apart
from the fact that projectile and target fragmentation regions
are more or less separated in rapidity. But even at RHIC,
there are remnant contributions at rapidity zero, for example,
the baryon/antibaryon ratios are significantly different from
unity, in agreement with our remnant implementation. So even
central rapidity RHIC data allow us to confirm our remnant
picture.

III. FLUX TUBES, JETS, AND
CORE-CORONA SEPARATION

We will identify parton ladders with elementary flux tubes,
the latter ones treated as classical strings. The relativistic
classical string picture is very attractive because its dynamics
(Lagrangian) is essentially derived from general principles
such as covariance and gauge invariance (the dynamics should
not depend on a particular string surface parametrization). We
use the simplest possible string: a two-dimensional surface
X(α, β) in 3 + 1-dimensional space-time with piecewise
constant initial conditions

V (α) ≡ ∂X

∂β
(α, β = 0) = Vk, in [αk, αk+1], (3)

referred to as kinky strings. The dynamics is governed by the
Nambu-Goto string action [51–53] (see also Ref. [37]). Our
string is characterized by a sequence of intervals [αk, αk+1]
and the corresponding velocities Vk . Such an interval with its
constant value of V is referred to as “kink.” Now we are in a
position to map partons onto strings. We identify the ladder
partons with the kinks of a kinky string such that the length
of the α interval is given by the parton energies Ek and the
kink velocities are just the parton velocities p

µ

k /Ek . The string
evolution is then completely given by these initial conditions,
expressed in terms of parton momenta. The string surface is
given as

X(α, β) = X0 + 1

2

[∫ α+β

α−β

V (ξ ) dξ

]
. (4)

It should be added that due to the cylindrical topological
structure of gluon ladders, the emitted gluons are situated on
two different sheets and correspondingly we associate two
strings to a parton ladder, as discussed in detail in Ref. [26].
The two hard partons of the elementary hard parton-parton
scattering may appear as two kinks (moving in opposite
directions) of the same string, or with the same probability,
of the two different strings. Let us consider a string at a
given proper time τ0. In Fig. 6, the thick line of the form
of a hyperbola represents schematically the intersection of the
string surface X(α, β) with the hypersurface corresponding to
constant proper time τ = τ0. We show only a simplified picture
in z − t space, whereas in reality (and in our calculations) all
three space dimensions are important due to the transverse
motion of the kinks: The string at a constant proper time
is a one-dimensional manifold in the full 3 + 1-dimensional
space-time. In Fig. 7, we sketch the space components of this
object. The string in IR3 space is a mainly longitudinal object

z

t

at given proper time
flux tube (string)

FIG. 6. (Color online) Flux tube (string) at a given proper time.
The picture is schematic in the sense that the string extends well
into the transverse dimension, correctly taken into account in the
calculations. The quantity X is a four-vector.

(here parallel to the z axis), but due to the kinks there are string
pieces moving transversely (in the y direction in the picture).
But despite these kinks, most of the string carries only a little
transverse momentum.

In the case of elementary reactions such as electron-positron
annihilation or proton-proton scattering (at moderately rel-
ativistic energies), hadron production is realized via string
breaking such that string fragments are identified with hadrons.
Here, we employ the so-called area law hypothesis [54,55]
(see also Ref. [37]). The string breaks via q − q̄ or qq − qq

production within an infinitesimal area dA on its surface with
a probability that is proportional to this area dP = pB dA,

where pB is the fundamental parameter of the procedure. It
should be noted that despite the very complicated structure of
the string surface X(α, β) in 3 + 1 space-time, the breaking
procedure following the area law can be done rigorously, using
the so-called band method [26,56]. The flavor dependence
of the q − q̄ or qq − qq string breaking is given by the
probabilities exp(−πm2

q/κ), with mq being the quark masses
and κ the string tension. After breaking, the string pieces close
to a kink constitute the jets of hadrons (arrows in Fig. 8), whose
direction is mainly determined by the kink gluon.

When it comes to heavy ion collisions or very high-energy
proton-proton scattering, the procedure has to be modified,
since the density of strings will be so high that they cannot
possibly decay independently [57]. For technical reasons,
we split each string into a sequence of string segments,
corresponding to widths δα and δβ in the string parameter
space (see Fig. 9). One distinguishes between string segments
in dense areas (more than some critical density ρ0 of segments
per unit volume), from those in low-density areas. The

z

x

y

FIG. 7. (Color online) Flux tube with transverse kink in IR3 space.
The kink leads to transversely moving string regions (transverse
arrow).
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z

x

y

FIG. 8. (Color online) Broken flux tube with transverse kink
in IR3 space. The string segments close to the kink give rise to
transversely moving hadrons, constituting a jet (arrows).

high-density areas are referred to as core, the low-density
areas as corona [57]. String segments with large transverse
momentum (close to a kink) are excluded from the core. At
this stage we do not consider energy loss of these kink partons,
we will investigate this in a later publication. Also excluded
from the core are remnant baryons. Simple implementations
of the core-corona idea can be found in Refs. [58,59].

Let us consider the core part. Based on the four-momenta
of infinitesimal string segments, we compute the energy
momentum tensor and the flavor flow vector at some position
x (at τ = τ0) as [27]

T µν(x) =
∑

i

δp
µ

i δpν
i

δp0
i

g(x − xi), (5)

Nµ
q (x) =

∑
i

δp
µ

i

δp0
i

qi g(x − xi), (6)

where q ∈ u, d, s represents the net flavor content of the string
segments, and

δp =
{

∂X(α, β)

∂β
δα + ∂X(α, β)

∂α
δβ

}
, (7)

are the four-momenta of the segments. The function g is a
Gaussian smoothing kernel with a transverse width σ⊥ =
0.25 fm. The Lorentz transformation into the comoving frame
gives

α
µβ

νT
µν = T µν

com, (8)

where we define the comoving frame such that the first column
of Tcom is of the form (ε, 0, 0, 0)T . This provides an equation
for the energy density ε in the comoving frame and the flow

z

t

X(  ,  )α β

X(α+δα,β+δβ)

FIG. 9. (Color online) String segment at a given proper time. The
picture is schematic in the sense that the string extends well into the
transverse dimension, correctly taken into account in the calculations.

velocity components vi

ε = T 00 −
3∑

k=1

T 0kvk, (9)

vi = 1

ε
(T i0 − T ikvk), (10)

which may be solved iteratively [60],

ε(n) = T 00 −
3∑

k=1

T 0kv(n−1) k, (11)

v(n) i = 1

ε(n)
(T i0 − T ikv(n−1) k). (12)

The flavor density is then calculated as

fq = Nqu, (13)

with u being the flow four-velocity.
The above procedure is applied at some proper time τ0 and

this is also taken to be the initial time for the hydrodynamic
evolution. This seems to be a drastic simplification, the
justification being as follows: We imagine to have a purely
longitudinal scenario (descibed by flux tubes) till some proper
time τflux < τ0. During this stage there is practically no
transverse expansion and the energy per unit of space-time
rapidity does not change. This property should not change
drastically beyond τflux, so we assume it will continue to hold
during thermalization between τflux and τ0. So although we
cannot say anything about the precise mechanism that leads to
thermalization, and therefore we cannot compute the real T µν ,
we expect at least the elements T 00 and T 0i to stay close to the
flux tube values and we can use the flux tube results to compute
the energy density. Only T ij will change considerably, but this
does not affect our calculation much.

From the previous discussion it is clear that our construction
produces practically no transverse flow, although in reality
during the thermalization between τflux and τ0 this should be
the case, see Refs. [61–66]. Having no possibility to treat this
rigorously, we add the following transverse velocities by hand:

�vx(r, φ) = min(0.4, v0r/r0)
√

1 + ε cos φ, (14)

�vy(r, φ) = min(0.4, v0r/r0)
√

1 − ε sin φ, (15)

with

r0 = ρ
√

1 − ε cos 2φ, (16)

and

ρ = 4
√

〈x2 + y2〉/2, ε = 〈y2 − x2〉/〈y2 + x2〉. (17)

Such an initial collective transverse flow does not seem to be
really essential for reproducing the data, however, a value v0 =
0.25 gives a slight improvement of the transverse momentum
spectra, compared to v0 = 0. So we use the former value as
the default, taken for all results in this article.
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IV. HYDRODYNAMIC EVOLUTION, REALISTIC
EQUATION OF STATE

Having fixed the initial conditions, the core evolves accord-
ing to the equations of ideal hydrodynamics, namely the local
energy-momentum conservation

∂µT µν = 0, ν = 0, . . . , 3, (18)

and the conservation of net charges,

∂N
µ

k = 0, k = B, S,Q, (19)

with B, S, and Q referring to, respectively, baryon number,
strangeness, and electric charge. In this article we treat ideal
hydrodynamics, so we use the decomposition

T µν = (ε + p) uµuν − p gµν, (20)

N
µ

k = nku
µ, (21)

where u is the four velocity of the local rest frame. Solving
the equations, as discussed in the Appendix, provides the
evolution of the space-time dependence of the macroscopic
quantities energy density ε(x), collective flow velocity �v(x),
and the net flavor densities nk(x). Here, the crucial ingredient
is the equation of state, which closes the set of equations by
providing the ε dependence of the pressure p. The equation of
state should fulfill the following requirements:

(i) flavor conservation, using chemical potentials µB , µS ,
and µQ;

(ii) compatibility with lattice gauge results in the case of
µB =µS =µQ = 0.

The starting point for constructing this “realistic” equation of
state is the pressure pH of a resonance gas and the pressure
pQ of an ideal quark gluon plasma, including bag pressure.
Let Tc be the temperature where pH and pQ cross. The correct
pressure is assumed to be of the form

p = pQ + λ (pH − pQ), (22)

where the temperature dependence of λ is given as

λ = exp

(
−T − Tc

δ

)
�(T − Tc) + �(Tc − T ), (23)

with

δ = δ0 exp(−(µB/µc)2)

(
1 + T − Tc

2Tc

)
. (24)

From the pressure one obtains the entropy density S as

S = ∂p

∂T
= SQ + λ (SH − SQ) + ∂λ

∂T
(pH − pQ), (25)

and the flavor densities ni as

ni = ∂p

∂µi
= ni

Q + λ
(
ni

H − ni
Q

)+ ∂λ

∂µi
(pH − pQ). (26)

The energy density is finally given as

ε = T S +
∑

i

µini − p, (27)
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FIG. 10. (Color online) Energy density versus temperature for
our equation of state X3F (full line), compared to the lattice data [67]
(points) and some other EoS choices, see text.

or

ε = εQ + λ (εH − εQ) +
(

T
∂λ

∂T
+ µi ∂λ

∂µi

)
(pH − pQ).

(28)

Our favorite equation of state, referred to as “X3F,” is obtained
for δ0 = 0.15, which reproduces lattice gauge results for
µB =µS =µQ = 0, as shown in Figs. 10 and 11.

The symbol X3F stands for “crossover” and ‘three flavor
conservation.” Also shown in the figures is the equation of
state (EoS) Q1F, referring to a simple first order EoS, with
baryon number conservation, which we will use as a reference
for comparison. Many current calculations are still based on
this simple choice as, for example, the one in Refs. [20,21],
shown as dotted lines in Figs. 10 and 11.

When the evolution reaches the hadronization hypersurface,
defined by a given temperature TH , we switch from “matter”
description to particles, using the Cooper-Frye description.
Particles may still interact, as discussed in the following, so
hadronization here means an intermediate stage, particles are
not yet free streaming, but they are no longer thermalized. The
hadronization procedure is described in detail in the Appendix.
After the “intermediate” hadronization, the particles at their
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FIG. 11. (Color online) Pressure versus temperature, for our
equation of state X3F (full line), compared to the lattice data [67]
(points) and some other EoS choices, see text.
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hadronization positions (on the corresponding hypersurface)
are fed into the hadronic cascade model UrQMD [68,69],
performing hadronic interaction until the system is so dilute
that interactions no longer occur. The “final” freeze-out
position of the particles is the last interaction point of the
cascade process, or the hydro-hadronization position, if no
hadronic interactions occur.

V. ON THE IMPORTANCE OF AN EVENT-BY-EVENT
TREATMENT

A remarkable feature of an event-by-event treatment of
the hydrodynamical evolution based on random flux tube
initial conditions is the appearance of a so-called ridge
structure, found in Spherio calulations based on Nexus initial
conditions [70,71]. We expect to observe a similar structure
doing an event-by-event hydrodynamical evolution based on
flux tube initial conditions from EPOS. The result is shown in
Fig. 12, where we plot the dihadron correlation dN/d�η d�φ,
with �η and �φ being, respectively, the difference in the
pseudorapidity and azimuthal angle of a pair of particles. Here,
we consider trigger particles with transverse momenta between
3 and 4 GeV/c and associated particles with transverse
momenta between 2 GeV/c and the pt of the trigger in central
Au-Au collisions at 200 GeV. Our ridge is very similar to the
structure observed by the STAR collaboration [72].

In the following we will discuss a particular event, which
can, however, be considered as a typical example, with similar
observations being true for randomly chosen events. Important
for understanding the strong �η – �φ correlation is the obser-
vation that the initial energy density has a very bumpy structure
as a function of the transverse coordinates x and y. However,
this irregular structure is the same at different longitudinal
positions. This can be clearly seen in Fig. 13, where we
show for a given event the energy density distributions in the
transverse planes at different space-time rapidities, namely
ηs = 0 and ηs = 1.5: We observe almost the same structure.
For different events, the details of the bumpy structures change,
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FIG. 12. (Color online) Dihadron �η − �φ correlation in a
central Au-Au collision at 200 GeV, as obtained from an event-by-
event treatment of the hydrodynamical evolution based on random
flux tube initial conditions. Trigger particles have transverse momenta
between 3 and 4 GeV/c and associated particles have transverse
momenta between 2 GeV/c and the pt of the trigger.
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FIG. 13. (Color online) Initial energy density in a central Au-Au
collision at 200 GeV at a space-time rapidity ηs = 0 (upper) and
ηs = 1.5 (lower).

but we always find an approximate “translation invariance”:
The distributions of energy density in the transverse planes
vary only a little with the longitudinal variable ηs . It should
be noted that the colored areas represent only the interior
of the hadronization surface, the outside regions are white.
Hadronization is meant to be an intermediate step, before
the hadronic cascade. An approximate translational invariance
is also observed when we go to larger values of ηs so, for
example, when we compare the energy density at ηs = 1.5
with the one at ηs = 3.0 the form of the energy distributions
is similar, however, the magnitude at large ηs is smaller.

Considering later times, we see in Fig. 14 that the
approximate translational invariance is conserved for both
energy densities and radial flow velocities. It is remarkable
(and again true, in general, for arbitrary events) that the
energy distribution in the transverse plane is much smoother
than initially, the distribution looks more homogeneous. Very
important for the following discussion is the flow pattern, seen
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FIG. 14. (Color online) Energy density (upper panel) and radial flow velocity (lower panel) at a proper time τ = 2.6 fm/c, at a space-time
rapidity ηs = 0 (left) and ηs = 1.5 (right).

in Fig. 14, for ηs = 0 and ηs = 1.5. The radial flow is, as
expected, largest in the outer regions. A closer inspection of
the outside ring of the large radial flows reveals an irregular
atoll-like structure: There are well pronounced peaks of large
flow over the background ring. At even later times, as seen in
Fig. 15, the outer surfaces become irregular due to the irregular
flows discussed previously, again with well-identified peaks of
large radial flows.

The well-isolated peaks of the radial flow velocities have
two important properties: They sit close to the hadronization
surface and they sit at the same azimuthal angle when com-
paring different longitudinal positions ηs . As a consequence,
particles emitted from different longitudinal positions get the
same transverse boost when their emission points correspond
to the azimuthal angle of a common flow peak position.
And since longitudinal coordinate and (pseudo)rapidity are
correlated, one obtains finally a strong �η – �φ correlation.

In Fig. 16, we summarize the previous discussion. The
flux tube initial conditions provide a bumpy structure of the

energy density in the transverse plane, which shows, however,
an approximate translational invariance (similar behavior at
different longitudinal coordinates). Solving the hydrodynamic
equations preserves this invariance, leading in the further
evolution to an invariance of the transverse flow velocities.
These identical flow patterns at different longitudinal positions
lead to the fact that particles produced at different values of ηs

profit from the same collective push when they are emitted at an
azimuthal angle corresponding to a flow maximum (indicated
by the arrows in the figure).

Finally, we have to address the question of why we have an
irregular transverse structure with an approximate translational
invariance. The basic structure of EPOS is such that each
individual nucleon-nucleon collision results in a projectile
and target remnant and two or more elementary flux tubes
(strings), the higher the energy the bigger the number of
strings. Most of the energy of the reaction is carried by the
remnants, the flux tubes cover only a limited range in rapidity,
but their “lengths” (in rapidity) vary enormously. Nevertheless,
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FIG. 15. (Color online) Energy density (upper panel) and radial flow velocity (lower panel) at a proper time τ = 4.6 fm/c, at a space-time
rapidity ηs = 0 (left) and ηs = 1.5 (right).

we obtain a very smooth variation of the energy density with
the longitudinal coordinate ηs . This is due to the fact that the
transverse positions of a string are given by the position of
the nucleon pair, whose interaction gave rise the the formation
of the flux tube. These “pair positions” fluctuate considerably,
event by event, and one obtains typically a situation as shown
in Fig. 17, where we plot the projection to the transverse
plane of the positions of the interaction nucleon-nucleon pairs.
The two circles representing two hard sphere nuclei are only
added to guide the eye, for the calculations we use, of course,
a realistic nuclear density. Clearly visible in the figure is
the inhomogeneous structure: There are areas with a high
density of interaction points and areas that are less populated.
These transverse positions of interacting pairs define also the
corresponding positions of the flux tubes associated to the
pairs. In Fig. 18, we present a schematic view of this situation.
On the left we plot the pair positions projected to the transverse
plane (dots). From each dot we draw a line parallel to the

z axis, representing a possible location of a flux tube. The flux
tubes have variable longitudinal lengths, they do not cover the
full possible length between the projectile and target, but only a
portion, as indicated by the thick horizontal lines in the figure.
But even then, the transverse structure (minima and maxima
of the energy density) is, to a large extent, determined by the
density of nucleon-nucleon pairs.

VI. ELLIPTICAL FLOW

Important information about the space-time evolution of the
system is provided by the study of the azimuthal distribution
of particle production. One usually expands

dn

dφ
∝ 1 + 2 v2 cos 2φ + · · · , (29)

where a nonzero coefficient v2 is referred to as elliptical flow
[73]. It is usually claimed that the elliptical flow is proportional
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(b)

x
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z

FIG. 16. (Color online) Schematic view of the translational
invariance of the initial energy density (a), leading to a corresponding
invariance of the transverse flow (b). We use the term “invariance”
in the sense of a similarity transform: same shape, but different
magnitude. The magnitude of the energy density at large ηs is, of
course, smaller than the one at ηs = 0.

to the initial space eccentricity

ε = 〈y2 − x2〉
〈y2 + x2〉 . (30)

We therefore plot in Fig. 19 the ratio of v2 over eccentricity.
The latter one is calculated based on the transverse posi-
tions of participating nucleons in a Glauber Monte Carlo
procedure, as in the experiment. The points are data, the
full line is the full calculation, namely a hydrodynamical
evolution with subsequent hadronic cascade, from flux tube
initial conditions, in event-by-event treatment. The dotted line
refers to a simplified hadronic cascade, allowing only elastic
scatterings (inelastic collisions are replaced by elastic ones),
the dashed line is the calculation without hadronic cascade.
In all cases, hadronization from the thermal phase occurs
at TH = 166 MeV. We also show as a thin solid line the
hydrodynamic calculation till final freeze-out at 130 MeV. We
use an energy density weighted average for the computation of
the eccentricity. For both v2 and ε, we take into account the fact
that the principle axes of the initial matter distribution are tilted
with respect to the reaction plane. So we get nonzero values
even for very central collisions due to the random fluctuations.
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FIG. 17. (Color online) Projection of the positions of nucleon-
nucleon scattering to the transverse (x,y) plane, from a simulation of
a semiperipheral (b = 8 fm/c) Au-Au event at 200 GeV.

For all theoretical curves, the ratio v2/ε is not constant,
but increases substantially from peripheral toward central
collisions—in agreement with the data. In our case, this
increase is a core-corona effect. For peripheral collisions
(small number of participating nucleons Npart), the relative
importance of corona to core increases and the corona part
does not provide any v2 because by construction it does not
interact with the matter before hadronization. In a toy model
approach [75], one expects

v2

ε
= fcore(Npart) · v2

ε

∣∣∣∣
core

, (31)

with a monotonically increasing relative core weight
fcore(Npart), which varies between zero (very peripheral) and
unity (very central). Comparing the theoretical curves in
Fig. 19, we see that most elliptical flow is produced early,

y

z

x

FIG. 18. (Color online) Schematic view of the projection of
the positions of nucleon-nucleon scattering to the transverse (x,y)
plane, which defines “possible transverse positions” of the flux tubes,
indicated by the thin lines. The actual flux tubes fluctuate concerning
their longitudinal positions; a possible realization is shown by the
thick lines.
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FIG. 19. (Color online) Centrality dependence of the ratio of v2

over eccentricity. Points are data [74], the different curves refer to the
full calculation: hydro and cascade (full line), only elastic hadronic
scatterings (dotted), and no hadronic cascade at all (dashed). The thin
solid line—above all others—refers to the hydrodynamic calculation
till final freeze-out at 130 MeV.

as seen by the dashed line, representing an early freeze-
out - at TFO = TH = 166 MeV. Adding final state hadronic
rescattering leads to the full curve (full cascade) or the dotted
one (only elastic scattering), adding some more, 20% to v2.
The difference between the two rescattering scenarios is small,
which means the effect is essentially due to elastic scatterings.
Continuing the hydrodynamic expansion through the hadronic
phase till freeze-out at a low temperature (130 MeV), instead
of employing a hadronic cascade, we obtain an even higher
elliptic flow, as shown by the thin line in Fig. 19, and as
discussed already in Refs. [20,21,76].

We now discuss the effect of the EoS (see also Ref. [77]).
Using a (nonrealistic) first-order equation of state (curve Q1F
from Fig. 10), one obtains considerably less elliptical flow
compared to the calculation using the the crossover EoS
X3F, as seen in Fig. 20. Taking a wrong EoS and a wrong
treatment of the hadronic phase (thermally equilibrated rather
than hadronic cascade) compensate each other concerning the
elliptical flow results.

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400
 Npart

 v
2 

/ ε
  (

%
)

EPOS 2

PHOBOS

FIG. 20. (Color online) Centrality dependence of the ratio of v2

over eccentricity, for a full calculation, hydro and hadronic cascade,
for a (nonrealistic) first-order transition EoS (dashed-dotted line)
compared to the crossover EoS, the default case (full line, same
as the one in Fig. 19). Points are data [74].
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FIG. 21. (Color online) Pseudorapidity distributions of the el-
liptical flow v2 for minimum bias events (upper left) and different
centrality classes in Au-Au collisions at 200 GeV. Points are data
[79], the different curves refer to the full calculation: hydro and
cascade (full thick line), only elastic hadronic scatterings (dotted), no
hadronic cascade at all (dashed), and hydrodynamic calculation till
final freeze-out at 130 MeV (thin line).

In our sophisticated (ideal) hydrodynamical treatment we
get always an increase of the ratio of v2 over eccentricity,
whereas it was also claimed that this variation is due to
incomplete thermalization [78].

More detailed information is obtained by investigating
the (pseudo)rapidity dependence of the elliptical flow for
different centralities, as shown in Fig. 21 for Au-Au scattering
at 200 GeV. Again we compare several scenarios: the full
treatment, namely hydrodynamic evolution from flux tube
initial conditions with early hadronization (at 166 MeV) and
subsequent hadronic cascade, and the calculations with only
elastic rescattering, or no hadron scattering at all. Also shown
as a thin line is the case where the hydrodynamic expansion is
continued through the hadronic phase till freeze-out at a low
temperature (130 MeV) instead of employing a hadronic cas-
cade. The previously found observations [20] are confirmed:
at central rapidity, most flow develops early, the nonequilib-
rium hadronic phase gives only a moderate contribution. At
large rapidities, however, the hadronic rescattering has a large
relative effect on v2. Remarkable is the almost triangular shape
of our v2 rapidity dependencies. This is partly due to the
fact that the initial energy density is provided by flux tubes,
each one covering a certain width in (space-time) rapidity, as
indicated in Fig. 18. A single elementary flux tube contributes
a constant energy density in a given interval where the interval
always contains rapidity zero. If (for a simple argument) the
positive string endpoints were distributed uniformly in rapidity
between zero and ηmax

s , the energy density would be of the
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FIG. 22. (Color online) The transverse momentum dependence
of v2 for pions (circles, full lines), kaons (squares, dashed lines), and
protons (triangles, dotted lines) for minimum bias events in minimum
bias Au-Au collisions at 200 GeV. The symbols refer to data [80,81],
the lines to our full calculations.

triangular form

dε/dηs ∝ ηmax
s − ηs, (32)

which is what we observe approximately. This initial shape in
space-time rapidity ηs seems to be mapped to the pseudora-
pidity dependence of v2.

Also important for this discussion is the fact that the relative
corona contribution is larger at large rapidities compared
to small ones. The corona contributes to particle produc-
tion (visible in rapidity spectra), but not to the elliptical
flow.

The previous v2 results were obtained by averaging over
transverse momenta pt with the dominant contribution coming
from small transverse momenta. The pt dependencies of v2 for
different particle species is shown in Figs. 22 (for minimum
bias Au-Au collisions) and 23 (for the 20–60% most central
Au-Au collisions), where we compare our simulations for
pions, kaons, and protons with experimental data. We first
look at the results for the transverse momentum dependence
of v2 for the calculations without hadronic cascade (w/o
HC), that is, the upper left plots in Figs. 22 and 23. The
pion and kaon curves are almost identical, the protons are
shifted due to an important corona contribution (considering
only core, all three curves are on top of each other). Turning
on the final state hadronic cascade (upper right plots) will
provide the mass splitting as observed in the data. Although
this mass splitting was considered a great success of the
hydro approach, it is, in reality, provided by the (nonthermal)
hadronic rescattering procedure. It is this final state hadronic
rescattering that is responsible for the fine structure of the pt

dependence, although the magnitude of the integrated v2 is
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FIG. 23. (Color online) The transverse momentum dependence
of v2 for pions (circles, full lines), kaons (squares, dashed lines), and
protons (triangles, dotted lines) for the 20–60% most central events
in Au-Au collisions at 200 GeV. The symbols refer to data [82], the
lines to our full calculations.

produced in the early phase. Of course, it is still true that a
full thermal scenario provides a similar mass splitting, the
effect also being produced in the hadronic phase, but this
scenario is not considered realistic any more, for example,
it fails to reproduce the correct v2 at large rapidities. In
any case, thermalization is not needed to get the effect. The
lower panel of Figs. 22 and 23 shows a somewhat different
presentation of the same results: Here we plot the scaled
quantity v2/nq versus the scaled kinetic energy (mt − m)/nq ,
where nq is the number of quarks of the corresponding hadron
(2 for mesons, 3 for baryons). We show again the calculation
without (left) and with (right) hadronic cascade. Surprisingly
it is this final state hadronic rescattering that makes the three
curves for pions, kaons, and protons coincide. At least in
the small pt region considered here the key for understand-
ing “v2 scaling” is the hadronic cascade, not the partonic
phase.

VII. GLAUBER OR COLOR GLASS INITIAL CONDITIONS

There has been quite some discussion in the literature
concerning the possibility of increasing the elliptical flow
when using CGC initial conditions rather then Glauber ones
[83]. The latter ones are usually based on a simple ansatz,
assuming that the energy density is partly proportional to the
participants and partly to the binary scatterings.

In our case, we compute partial cross sections, which
gives us the number of strings (elementary flux tubes) per
nucleon-nucleon collision. So we also have contributions
proportional to the binary scatterings (the string contributions),
in addition to the remnant excitations, being proportional to
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FIG. 24. (Color online) Initial energy density as a function of the
radius r for azimuthal angles φ = 0 and φ = π/2, from six randomly
chosen flux tube initial conditions (full thin line: φ = 0, dotted thin
line: φ = π/2) and from Glauber initial conditions (full line: φ = 0,
dashed line: φ = π/2), for a semiperipheral Au-Au collision.

the participants. However, we do consider high parton density
effects introducing screening. In addition, the hydrodynamic
expansion only concerns the core and cutting off the corona
pieces will produce sharper edges of the radial energy density
distribution. In Fig. 24, we compare the energy density
distributions as obtained from a CGC calculation [20,84],
with six randomly chosen, different events from our flux tube
initial condition after removing the corona. In Fig. 25, we
compare the same distributions from the same six individual
events to calculations from the Glauber initial conditions
[20,84]. Seeing these large event-by-event fluctuations, it is
difficult to imagine that the differences between the CGC
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FIG. 25. (Color online) Initial energy density as a function of the
radius r for azimuthal angles φ = 0 and φ = π/2, from six randomly
chosen flux tube initial conditions (full thin line: φ = 0, dotted thin
line: φ = π/2) and from Glauber initial conditions (full line: φ = 0,
dashed line: φ = π/2), for a semiperipheral Au-Au collision.

results and Glauber are an issue when doing event-by-event
treatment.

VIII. TRANSVERSE MOMENTUM SPECTRA AND YIELDS

We discussed so-far very interesting observables such as
two-particle correlations and elliptical flow. However, we can
only make reliable conclusions when we also reproduce ele-
mentary observables such as simple transverse momentum (pt )
spectra and the integrated particle yields for identified hadrons.
We will restrict the following pt spectra to values less than
1.5 GeV (2 GeV in some cases), mainly to limit the ordinate
to three or at most four orders of magnitude, which allows us
still to see 10% differences between the calculations and data.

In the upper panel of Fig. 26, we show the pt spectra
of π+(left) and π− (right) in central Au-Au collisions for
rapidities (from top to bottom) of 0, 2, and 3. The middle
panels show the transverse momentum/transverse mass spectra
of π+ and π−, for different centralities and in the lower panel
the centrality dependence of the integrated particle yields per
participant for charged particles and π− mesons. In Fig. 27,
we show the corresponding results for kaons. In the upper
panels, for the y = 2 and y = 3 curves, we apply scaling
factors of 1/2 and 1/4 for better visibility, all other curves
are unscaled. We present always two calculations: the full
one (full lines), namely hydrodynamic evolution plus final
state hadronic cascade, and the calculation without cascade
(dotted lines). There is a slight increase of pion production, in
particular, at low pt during the hadronic rescattering phase, but
the difference between the two scenarios is not very big. We see
almost no difference between the calculation with and without
hadronic rescattering in the case of kaons. For both pions and
kaons we observe a change of slope of the pt distributions with
rapidity. Concerning the centrality dependence, we observe an
increase of the yields per participant.

In Figs. 28 and 29, we show pt spectra and the cen-
trality dependence of particle yields per participant for the
(multi)strange baryons , ̄, �, and �̄. The same conventions
apply as for the previous plots. Here we see a big effect due to
rescattering: for the λ’s, the yields are not affected too much,
but the pt spectra get much softer when comparing the full
calculation with the one without rescattering. Similarly the
slopes for the � and �̄ get softer due to rescattering.

We also show in the lower panels of Figs. 28 and 29 the
yields per participant in the case of a hydrodynamic calculation
till final freeze-out at 130 MeV (thin lines). We have almost no
centrality dependence, in contrast to the significant increase
seen in the data, for both λ’s and ξ ’s. Such a full thermal
scenario with late freeze-out is therefore incompatible with
the strange baryon data.

For ξ ’s, the softening of the pt spectra due to hadronic
rescattering is more pronounced for the antiparticles—an
absorption effect. Even the total integrated yields are affected:
rescattering will reduce the � yields and increase the �̄ yields
with centrality. Maybe too much absorption? In Fig. 30, we
replace the full hadronic cascade by an option where only
elastic rescattering is allowed (full lines). The dotted line refers
to the calculation without rescattering, as in the previous plots.
Here, by definition, the yields are unchanged, only the slopes
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FIG. 26. (Color online) Production of pions in Au-Au collisions
at 200 GeV. Upper panel: transverse momentum spectra for central
collisions at different rapidities (from top to bottom: 0, 2, 3). The
lower curves are scaled by factors of 1/2 and 1/4, for better visibility.
Middle panels: transverse momentum (mass) distributions at rapidity
zero for different centrality classes: from top to bottom: the 0–5%, the
20–30%, and the 40–50% most central collisions. Lower panel: the
centrality dependence of the integrated yields for charged particles
and pions. The symbols refer to data [85–88], the full lines to our
full calculations, the dotted lines to the calculations without hadronic
cascade.

are affected. It seems that this option reproduces the data better
than the full cascade.

In any case, the effect of rescattering decreases with
decreasing centrality: The interaction volume simply gets
smaller and smaller, reducing the possibility of rescattering.

We finally discuss proton and antiproton production. When
talking about spectra of identified hadrons, it is implicitly
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FIG. 27. (Color online) Same as Fig. 26, but for kaons.

assumed that these spectra do not contain contamination from
weak decays, so the experimental spectra should be feed-down
corrected, which is not always the case. This is, in particular,
important for protons, strongly affected by feed-down from λ

decays. So whenever we compare to data, we adopt the same
definitions: In the case of feed-down correction of the data, we
suppress weak resonance decays, and in the case of no feed-
down correction, we do let them decay. So for the following
discussion, in the case of the STAR data we use for comparison,
protons are contrary to the pions not corrected, we include
weak decay products. When comparing to the PHENIX and
BRAHMS data, we suppress weak decays. In Fig. 31, we show
the the proton and antiproton transverse momentum spectra
at different rapidities and different centralities for Au-Au
collisions at 200 GeV. Again we show the full calculation (full
lines) and the one without hadronic cascade (dotted lines).
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FIG. 28. (Color online) Production of λ’s (left) and anti-λ’s (right)
in Au-Au collisions at 200 GeV. Upper panel: transverse momentum
distributions at rapidity zero for different centrality classes: from top
to bottom: the 0–5%, the 20–30%, and the 40–50% most central
collisions. The lower curves are scaled by factors of 1/2, 1/4, and
1/8 for better visibility. Lower panel: the centrality dependence of
the integrated yields. The symbols refer to data [47], the full lines
to our full calculations, the dotted lines to the calculations without
hadronic cascade. The thin line refers to a hydrodynamic calculation
till final freeze-out at 130 MeV.

There is a huge difference between the two calculations, so
proton production is very strongly affected by the hadronic
cascade. Not only do the slopes change, but also the total
yields are affected.

To summarize the previous discussion on yields and pt

spectra: An early hadronization at 166 MeV gives a reasonable
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FIG. 29. (Color online) Same as Fig. 28, but for � and �̄.
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FIG. 30. (Color online) Same as Fig. 29, but comparing the
calculation without hadronic cascade (dotted) with the one with only
elastic hadronic rescattering (full thin line).

description of the particle yields, which are not much affected
by the hadronic final state rescattering, except for the protons.
The main effect of the hadronic cascade is a softening of the
pt spectra of the baryons.

IX. FEMTOSCOPY

All the observables discussed so-far are strongly affected
by the space-time evolution of the system, nevertheless we
investigate the momentum space and conclusions about space-
time are indirect, as, for example, our conclusions about
early hadronization based on particle yields and elliptical
flow results. A direct insight into the space-time structure at
hadronization is obtained from using femtoscopical methods
[89–93], where the study of two-particle correlations provides
information about the source function S(P, r′) being the
probability of emitting a pair with total momentum P and
relative distance r′. Under certain assumptions, the source
function is related to the measurable two-particle correlation
function C(P, q) as

C(P, q) =
∫

d3r ′ S(P, r′)|�(q′, r′)|2, (33)

with q being the relative momentum and where � is the
outgoing two-particle wave function, with q′ and r′ being the
relative momentum and distance in the pairs center-of-mass
system. The source function S can be obtained from our
simulations, concerning the pair wave function, we follow
Ref. [94], some details are given in Appendix F.

As an application, we investigate π+– π+ correlations.
Here, we only consider quantum statistics for �, no final
state interactions, to compare with Coulomb-corrected data. To
compute the discretized correlation function Cij = C(Pi , qj ),
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FIG. 31. (Color online) Transverse momentum spectra of protons
(left) and antiprotons (right) in Au-Au collisions at 200 GeV. Upper
panel: spectra for central collisions at different rapidities (from top to
bottom: 0, 2, 3). The lower curves are scaled by factors of 1/2 and 1/4,
for better visibility. Middle and lower panels: transverse momentum
(mass) distributions at rapidity zero for different centrality classes:
from top to bottom: the 0–5%, the 20–30%, and the 40–50% most
central collisions. The symbols refer to data [47,85,87], the full lines
to our full calculations, the dotted lines to the calculations without
hadronic cascade.

we do our event-by-event simulations and compute for each
event C ′

ij = ∑
pairs |�(q′, r′)|2, where the sum extends over

all π+ pairs with P and q within elementary momentum-
space volumes at, respectively, Pi and qj . Then we compute
the number of pairs Nij for the corresponding pairs from
mixed events, being used to obtain the properly normalized
correlation function Cij = C ′

ij /Nij . The correlation function
will be parametrized as

C(P, q) = 1 + λ exp
(−R2

out q
2
out − R2

side q2
side − R2

long q2
long

)
,

(34)

where “long” refers to the beam direction, “out” is parallel
to the projection of P perpendicular to the beam, and “side”
is the direction orthogonal to “long” and “out” [95–97]. In
Fig. 32, we show the results for the fit parameters λ, Rout,
Rside, and Rlong, for five different centrality classes and for
four kT intervals defined as (in MeV): KT1 = [150, 250],
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FIG. 32. (Color online) Femtoscopic radii Rout, Rside, and Rlong,
as well as λ, for π+– π+ pairs as a function of mT for different
centralities (0–5% most central, 5–10% most central, and so on). The
full lines are the full calculations (including hadronic cascade), the
stars data [98].

KT2 = [250, 350], KT3 = [350, 450], and KT4= [450, 600],
where kT of the pair is defined as

kT = 1
2 (| �pT (pion 1) + �pT (pion 2)|). (35)

Despite what appears in Ref. [98], this is the correct
definition of kT used by STAR in their analysis [99]. The results
are plotted as a function of mT =

√
k2
T + m2

π . The model
describes well the radii, the experimental λ values are sightly
below the calculations, maybe due to particle misidentification.
Both the data and theory provide λ values well below unity,
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FIG. 33. (Color online) The source functions for π+– π+ pairs
as obtained from our simulations, for three different centralities
(0–5% most central, 10–20% most central, and 30–50% most central),
representing the distribution of the space separation of the emission
points of the pairs in the “out”-“side”-“long” coordinate system
in the longitudinal comoving frame. The different curves per plot
correspond to the different kT bins, see text.
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FIG. 34. (Color online) The mean transverse momentum com-
ponent px of π+ as a function of the x coordinate of the emission
point. Also shown is the number of produced π+ as a function of x.
The different curves refer to different centralities: 0–5% = full line,
10–20% = dashed, 30–50% = dotted.

maybe due to pions from long-lived resonances. Concerning
the mT dependence of the radii, we observe the same trend as
seen in the data [98]: All radii decrease with increasing mT

and the radii decrease as well with decreasing centrality. This
can be traced back to the source functions, shown in Fig. 33.
These source functions are by definition the distributions of
the distances xi(pion 1) − xi(pion 2) of the pairs, where xi are
coordinates of the emission points. We use the “out”-“side”-
“long” coordinate system and the longitudinal comoving
reference frame. To account for the fact that only small values
of the magnitude of the relative momentum |q| provide a
nontrivial correlation, we only count pairs with |q| < 75 MeV.
The different curves per plot correspond to the different values
of kT bins: the upper curve (full red) corresponds to KT1,
the second curve from the top (dashed blue) corresponds to
KT2, and so on. In other words, the curves get narrower with
increasing kT , which is perfectly consistent with the decreasing
radii in Fig. 32. Concerning the centrality dependence, the
curves get narrower with decreasing centrality, in agreement
with the decrease of radii with decreasing centrality seen in
Fig. 32.

The reason for the decrease of radii with mT is the strong
space-momentum correlation. In Fig. 34, we show the average
px of produced π+ mesons as a function of the x coordinate
of their formation positions for different centralities. Clearly
visible is the strong x − px correlation, being typical for
radial flow. Also visible in the figure is the smaller spatial

a
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c

FIG. 35. (Color online) Radial flow effect on mt dependence of
femtoscopic radii.
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FIG. 36. (Color online) Same as Fig. 34, but for the calculation
without hadronic cascade.

extension for peripheral compared to central collisions. To
illustrate this phenomenon, we show in Fig. 35 a situation
of completely radial transverse momentum vectors, whose
magnitudes increase with increasing distance from the center.
We consider two pairs of momentum vectors a and b at some
distance r1 as well as c and d at some distance r2 < r1. We
chose the pairs such that the magnitude of their differences is
the same (and “small”), to mimic the fact that only pairs with
a small relative momentum are relevant or the femtoscopic
analysis. The spatial distance between the two momentum
vectors c and d is bigger than the one for the pair a and
b due to the fact that the latter vectors are longer than the
former ones (|a| ≈ |b| > |c| ≈ |d|). In this way we understand
the connection between increasing mt and decreasing space
separation.

We now consider two other scenarios: the calculation
without hadronic cascade (final freeze-out at 166 MeV) and the
fully thermal scenario, where we continue the hydrodynamical
evolution till a late freeze-out at 130 MeV (and no cascade
afterward either). In Figs. 36 and 37, we see a similar
space-momentum correlation as for the complete calculation
in Fig. 34: the mean transverse momentum components px are
roughly a linear function of the transverse coordinate x in the
region where the particle density is nonzero. The maximum
mean px is smaller in the no-cascade case and bigger in the
fully thermal case, as compared to the complete calculation.
Interesting are the dn/dx distributions: the no-cascade results
(with early hadronization) are much narrower than the full
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FIG. 37. (Color online) Same as Fig. 34, but for the full thermal
scenario (freeze-out at 130 MeV).
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FIG. 38. (Color online) The source function for π+– π+ pairs
considering the “out” coordinate for the three scenarios: complete
calculation, with hadronic cascade (full line), calculation without
hadronic cascade and therefore final hadronization at 166 MeV
(dashed), and full thermal scenario with hydrodynamic evolution till
the final freeze-out at 130 MeV (dotted).

thermal ones. The complete calculation of Fig. 34 is in-
between in the sense that the plateau of the dn/dx distribution
is similar to the no-cascade case, but the tails are much wider.

In Fig. 38, we compare the source functions for the three
scenarios, namely the complete calculation, the calculation
without hadronic cascade, and the full thermal scenario with
hydrodynamic evolution till the final freeze-out. For small
values of rout, the “complete calculation” and the “full thermal”
one coincide—as do the total widths of the single particle
source functions dn/dx. For large values of rout, the “full
thermal” scenario and the one “without cascade” coincide—as
do the shapes of the tails of the single particle source functions.
A similar behavior is found for all the source functions, as
shown in Figs. 39 and 40, where we plot the source functions
for the “full thermal” and the “without cascade” scenarios.

The previous discussion is important to understand the
results concerning the femtoscopic radii for the different
scenarios. The fitting procedure used to obtain the femtoscopic
radii is based on the hypothesis that the source functions
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FIG. 39. (Color online) Same as Fig. 33, but for a calculation
without hadronic cascade.
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FIG. 40. (Color online) Same as Fig. 33, but for a calculation
where the hydro evolution is continued till freeze-out at 130 MeV
(being the final freeze-out, no cascade afterward).

are Gaussians, the fit is therefore blind concerning the non-
Gaussian tails. Due to the fact that the source function from
the complete calculations and the full thermal scenario are
identical apart from the tails, we expect similar results for
these two scenarios, whereas the calculation without cascade
should give smaller radii. This is exactly what we observe in
Fig. 41, where we show femtoscopic radii for the calculations
without hadronic cascade (full line) and with hydrodynamical
evolution till final freeze-out at 130 MeV (dashed line). We
observe always a decrease of the radii with mT , but the
dependence is somewhat weaker as compared to the data. But
the magnitude in case of “no cascade” is very low compared to
the two other scenarios, which are relatively close to each other
and to the data. Here the radii do not allow us to discriminate
between two scenarios which have nevertheless quite different
source functions. This is a well known problem and there are
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FIG. 41. (Color online) Same as Fig. 32, but the calculations are
done without hadronic cascade (full line) or with a hydrodynamic
evolution through the hadronic phase with freeze-out at 130 MeV
(dashed line).
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methods to go beyond Gaussian parametrizations [100–105],
but we will not discuss this any further.

Although the Gaussian parametrizations represent only
incomplete information about the source functions, the cen-
trality and transverse momentum dependence of the radii is
nevertheless very useful. It is a necessary requirement for all
models of soft physics to describe these radii correctly. For
many years there has been an inconsistency, referred to as
the “HBT puzzle” [66]. Although hydrodynamics describes
very successfully elliptical flow and to some extent particle
spectra, one cannot get the femtoscopic radii correctly when
one uses “simple” hydrodynamics. Using transport models
(and an event-by-event treatment) may help [92]. In Ref. [66],
it was shown that the puzzle can actually be solved by
adding pre-equilibrium flow, taking a realistic EoS, adding
viscosity, using a more compact or more Gaussian initial
energy density profile, and treating the two-pion wave function
more accurately. It was also shown [106–108] that using
a Gaussian initial energy density profile, an early starting
time (equivalent to initial flow) and a crossover EoS, and
a late sudden freeze-out (at 145 MeV) help to descibe the
femtoscopic radii, and to some extent the spectra.

The scenario in Refs. [106–108] is compatible with our
scenario “hydrodynamical evolution till final freeze-out at
130 MeV,” which allows us to get the femtoscopic radii
correctly (see Fig. 41), as well as some v2 results and
some spectra. One cannot describe, however, the yields and
spectra of ’s and �’s. Nevertheless, this scenario reproduces
the femtoscopic data already much better than “simple”
hydrodynamic calculations. But contrary to the latter ones,
we have initial flow, a realistic EoS, more CGC-like initial
profiles, which all lead to a reduction of Rside and even more
of Rout, as discussed in Ref. [66].

X. SUMMARY AND CONCLUSION

We present a sophisticated treatment of the hydrodynamic
evolution of ultrarelativistic heavy ion collisions based on
flux tube initial conditions, event-by-event treatment, use of
an efficient (3 + 1)-dimensional hydro code including flavor
conservation, employment of a realistic EoS, use of a complete
hadron resonance table, and a hadronic cascade procedure after
hadronization from thermal matter at an early time.

Such an approach is able to describe simultaneously
different soft observables such as femtoscopic radii, particle
yields, spectra, and v2 results. One obtains in a natural way a
ridge structure when investigating �η�φ correlations, without
adding a particular mechanism.

Considering such a multitude of observables, a clear picture
of the collision dynamics emerges: a hydrodynamic evolution
starting from initial flux tube structures till hadronization at
an early time in the crossover region of the phase transition,
with subsequent hadronic rescatterings being quite important
to understand the shapes of particle spectra.

An open problem remains a rigorous treatment of the
transition from the flux tube state at some very early time
τflux to the thermalized system at τ0 > τflux, where presently
we simply assume, based on some qualitative arguments, that
the energy momentum tensor of the flux tube state allows us

to determine the energy density at τ0. Furthermore, we do
not include viscous corrections, not because we consider them
unimportant, but we first want to see how far one gets with
a “sophisticated” treatment of ideal hydrodynamics, which is
technically already quite involved.
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APPENDIX A: POMERON STRUCTURE

We define a so-called profile function G associated to a
Pomeron exchange as

G(b) = 1

2s
2Im T̃ (b), (A1)

with T̃ being the Fourier transform of the Pomeron exchange
scattering amplitude T ,

T̃ (b) = 1

4π2

∫
d2q⊥ e−i �q⊥ �b T (t), (A2)

using t = −q2
⊥.

There are two contributions, a soft and a semihard one.
The energy-momentum dependence of the semihard profile
function may be expressed in terms of light cone momentum
fractions as

Gsemi(x
+
PE, x−

PE) = Fpart(x
−
PE) Fpart(x

+
PE) ω(x+

PEx−
PE), (A3)

where the vertex function Fpart is given as

Fpart(x) = αF xβF , (A4)

using

αF = sεG/2γh, βF = εG − αpart, (A5)

with parameters εG, γh, αpart, and with

ω(x+
PEx−

PE) =
∫

dx+
E dx−

E

∫
dt
∑
ij

Ei
(
M2

F , x+
E

)
Ej
(
M2

F , x−
E

)

× dσij

dt
(x+

PEx−
PEx+

E x−
E s, t). (A6)

The indices i and j refer to parton flavors, M2
F is the

factorization scale (here M2
F = tu/s). The quantity dσij /dt
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is the hard Born parton-parton scattering cross section and
Ei(M2

F , xE) the so-called complete evolution function, being
a convolution of the soft and the QCD evolution,

Ei
(
M2

F , x±
E

) =
∑

k

∫
dx±

softdx±
QCDEk

soft(x
±
soft)

×Eki
QCD

(
M2

F , x±
QCD

)
δ(x±

E − x±
softx

±
QCD). (A7)

The variables x± are light cone momentum fractions. The
QCD evolution function is computed in the usual way based
on the DGLAP equations

dE
jm

QCD(Q2, x)

d ln Q2
=
∑

k

∫ 1

x

dz

z

αs

2π
P̃ m

k (z) E
jk

QCD

(
Q2,

x

z

)
,

(A8)

with the initial condition

E
jm

QCD

(
Q2 = Q2

0, x
) = δm

j δ(1 − x). (A9)

Here P̃ m
k (z) are the usual Altarelli-Parisi splitting functions.

One introduces the concept of “resolvable” parton emission,
that is, an emission of a final (s channel) parton with a
finite share of the parent parton light cone momentum (1 −
z) > ε = p2

⊥res/Q
2 (with finite relative transverse momentum

p2
⊥ = Q2(1 − z) > p2

⊥res ) and use the so-called Sudakov
form factor, corresponding to the contribution of any number
of virtual and unresolvable emissions [i.e., emissions with
(1 − z) < ε]

�k
(
Q2

0,Q
2
) = exp

{∫ Q2

Q2
0

dq2

q2

∫ 1

1−ε

dz
αs

2π
P̃ k

k (z)

}
. (A10)

This can also be interpreted as the probability of no resolvable
emissions between Q2

0 and Q2. Then E
jm

QCD can be expressed

via Ē
jm

QCD, corresponding to the sum of any number (but at least
one) resolvable emissions, allowed by the kinematics

E
jm

QCD(Q2, x) = δm
j δ(1 − x) �j

(
Q2

0,Q
2
)

+ Ē
jm

QCD

(
Q2

0,Q
2, x

)
, (A11)

where Ē
jm

QCD(Q2
0,Q

2, x) satisfies the integral equation

Ē
jm

QCD

(
Q2

0,Q
2, x

)
=
∫ Q2

Q2
0

dQ2
1

Q2
1

[∑
k

∫ 1−ε

x

dz

z

αs

2π
P m

k (z) Ē
jk

QCD

(
Q2

0,Q
2
1,

x

z

)

+ �j
(
Q2

0,Q
2
1

) αs

2π
P m

j (x)

]
�m

(
Q2

1,Q
2
)
. (A12)

Here P k
j (z) are the Altarelli-Parisi splitting functions for real

emissions (i.e., without the δ function and regularization terms
at z → 1). Equation (A12) can be solved iteratively, see
Ref. [26].

We define the soft contribution Gsoft(s, b) as [26]

Gsoft(s, b) = 2γ 2
part

λsoft(s/s0)

(
s

s0

)αsoft−1

exp

(
− b2

4λsoft(s/s0)

)
,

(A13)

with

λsoft(z) = 2R2
part + α′

soft lnz, (A14)

with parameters αsoft, α′
soft, γpart, R2

part, and a scale s0 = 1GeV2.

APPENDIX B: SOLVING HYDRODYNAMIC EQUATIONS

The algorithm is based on the Godunov method: One
introduces finite cells and computes fluxes between cells using
the (approximate) Riemann problem solution for each cell
boundary. A relativistic Harten-Lax-van Leer-Einfeldt (HLLE)
solver is used to solve the Riemann problem. To achieve more
accuracy in time, a predictor-corrector scheme is used for the
second order of accuracy in time [i.e., the numerical error
is O(dt3) instead of O(dt2)]. To achieve more accuracy in
space, namely a second-order scheme, the linear distribu-
tions of quantities (conservative variables) inside cells are
used. The conservative quantities are (e + p ∗ v2)/(1 − v2),
(e + p) ∗ v/(1 − v2).

We rewrite equations in hyperbolic coordinates. These
coordinates are suitable for the dynamical description at
ultrarelativistic energies. It is convenient to write the equations
in conservative form, the conservative variables are

�Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qτ

Qx

Qy

Qη

QB

QS

QQ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ 2(ε + p) − p

γ 2(ε + p)vx

γ 2(ε + p)vy

γ 2(ε + p)vη

γ nB

γ nS

γ nQ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

where nB , nS , nQ are the densities of the conserved quantities
B, S, and Q. The components Qm are conservative variables
in the sense that the integral (discrete sum over all cells) of
Qm gives the total energy, momentum, and the total B, S, and
Q, which are conserved up to the fluxes at the grid boundaries.
The velocities in these expressions are defined in the “Bjorken
frame” related to velocities in laboratory frame as

vx = vlab
x · cosh y

cosh(y − ηs)
,

vy = vlab
y · cosh y

cosh(y − ηs)
, (B2)

vη = tanh(y − ηs),

where y = 1
2 ln[(1 + vlab

z )/(1 − vlab
z )] is the longitudinal ra-

pidity of the fluid element, ηs = 1
2 ln[(t + z)/(t − z)] is

space-time rapidity. The full hydrodynamical equations are
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then

∂τ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qτ

Qx

Qy

Qη

QB

QS

QQ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
quantities

+�∇ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qτ

Qx

Qy

Qη

QB

QS

QQ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�v +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�∇(p · �v)

∂xp

∂yp
1
τ
∂ηp

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
fluxes

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Qτ + p)
(
1 + v2

η

)
/τ

Qx/τ

Qy/τ

2Qη/τ

QB/τ

QS/τ

QQ/τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
sources

= 0, (B3)

with �∇ = (∂x, ∂y,
1
τ
∂η).

We base our calculations on the finite-volume approach:
We discretize the system on a fixed grid in the calculational
frame and interpret Qn

m,ijk as the average value over some
space interval �Vijk , which is called a cell. The index n refers
to the discretized time.

The values of Qn
m,ijk are then updated after each time step

according to the fluxes on the cell interface during the time
step �tn. One has the following update formula:

Qn+1
m,ijk = Qn

m,ijk − �t

�x1
(F(i+1/2),jk + F(i−1/2),jk)

− �t

�x2
(Fi(,j+1/2),k + Fi,(j−1/2),k)

− �t

�x3
(Fij,(k+1/2) + Fij,(k−1/2)), (B4)

where F is the average flux over the cell boundary, the
indexes +1/2 and −1/2 correspond to the right and the
left cell boundary in each direction. This is the base of
the Godunov method [109], which also implies that the
distributions of variables inside a cell are piecewise linear
(or piecewise parabolic, etc., depending on the order of the
numerical scheme), which forms a Riemann problem at each
cell interface. Then the flux through each cell interface depends
only on the solution of a single Riemann problem, supposing
that the waves from the neighboring discontinuities do not
intersect. The latter is satisfied with the Courant-Friedrichs-
Lewy (CFL) condition [110].

To solve the Riemann problems at each cell interface,
we use the relativistic HLLE solver [111], which approximates
the wave profile in the Riemann problem by a single interme-
diate state between two shock waves propagating away from
the initial discontinuity. Together with the shock wave velocity
estimate, in this approximation one can obtain an analytical
dependence of the flux on the initial conditions for the Riemann
problem, which makes the algorithm explicit.

We proceed then to construct a higher-order numerical
scheme:

(i) in time: the predictor-corrector scheme is used for the
second-order accuracy in time [i.e., the numerical error
is O(dt3), instead of O(dt2)];

(ii) in space: in the same way, to achieve the second-
order scheme, the linear distributions of quantities
(conservative variables) inside cells are used.

Some final remarks are presented here.
At each time step, we compute and sum the fluxes for each

cell with all its neighbors and update the value of conservative
variables with the total flux. Thus, we do not use operator
splitting (dimensional splitting) and thus avoid the numerical
artifacts introduced by this method (e.g., artificial spatial
asymmetry).

To treat grid boundaries, we use the method of ghost cells.
We include two additional cells on either end of the grid in each
direction and set the quantities in these cells at the beginning
of each time step. For simplicity, we set the quantities in
ghost cells to be equal to these in the nearest “real” cell,
thus implementing nonreflecting boundary conditions (outflow
boundary). This physically corresponds to a boundary that
does not reflect any wave, which is consistent with expansion
into a vacuum.

In our simulations we deal with spatially finite systems
expanding into the vacuum. Thus the computational grid in
the Eulerian algorithm must initially contain both a system
and surrounding vacuum. To account for the finite velocity
of the expansion into the vacuum, which equals c for an
infinitesimal slice of matter on the boundary, we introduce
additional (floating point) variables in each cell, which keep
the extent of matter expansion within a cell, having the value
unity for the complete cell, zero for an empty cell. The matter
is allowed to expand in the next vacuum cell only if the current
cell is filled with matter.

APPENDIX C: RESONANCE GAS

Whereas for hadronization we employ the correct quantum
statistics, we use the Boltzmann approximation for the calcu-
lation of the EoS. This is reasonable even for pions at zero
chemical potential, the excluded volume correction at nonzero
chemical potentials is considerably bigger than the difference
coming from quantum statistical treatment. We account for all
well-known hadrons made from u, d, and s quarks from the
Particle Data Group (PDG) table. For energy density, pressure,
and net charges we get

ε =
∑

i

gi

2π2
m2

i T

[
3T K2

(
mi

T

)
+ mi

2
K1

(
mi

T

)]
exp(µi/T ),

· (C1)

p =
∑

i

gi

2π2
m2

i T
2 · K2

(
mi

T

)
· exp(µi/T ), (C2)

nB =
∑

i

Bi

gi

2π2
m2

i T · K2

(
mi

T

)
· exp(µi/T ), (C3)
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nQ =
∑

i

Qi

gi

2π2
m2

i T · K2

(
mi

T

)
· exp(µi/T ), (C4)

nS =
∑

i

Si

gi

2π2
m2

i T · K2

(
mi

T

)
· exp(µi/T ), (C5)

with

µi = BiµB + QiµQ + SiµS, (C6)

where µB , µS , µQ are the chemical potentials associated to B,
S, Q, and Bi , Si , Qi are the baryon charge, strangeness, and
the electric charge of the ith hadron state, gi = (2Ji + 1) is the
degeneracy factor.

For a large baryon chemical potential the EoS correction
for the deviations from ideal gas due to particle interactions
becomes more important. We employ this correction in a form
of an excluded volume effect, like a Van der Waals hard core
correction. According to this prescription,

p(T ,µB,µQ,µS) =
∑

i

pboltz
i (T , µ̃i), (C7)

µ̃i = µi − vi · p. (C8)

If one supposes equal volume vi = v for all particle
species, then the correction can be computed as a solution
p(T ,µB,µQ,µS) of a fairly simple, however, transcendental
equation,

p(T ,µB,µQ,µS) = pboltz(T ,µB,µQ,µS)e−vp(T ,µB,µQ,µS )/T .

(C9)

We take the value v ≈ 1.44 fm3, which corresponds to the
hard core radius r = 0.7 fm.

APPENDIX D: IDEAL QGP

In this ideal phase, matter is made from massless u, d quarks
and massive s quarks (+antiquarks). Due to the possibility
of a large strange quark chemical potential, comparable to
its mass ms = 120 MeV which is taken in our calculations,
we perform the integration of the strange quark contribution
to thermodynamic quantities exactly, without Boltzmann or
zero-mass approximation. So we have

p = gl

6π2

[
1

4
µ4

u + π2

2
µ2

uT
2 + 7π4T 4

60

]

+ gl

6π2

[
1

4
µ4

d + π2

2
µ2

dT
2 + 7π4T 4

60

]

+ps(T ,µs) + ps̄(T ,µs) + ggπ
2

90
T 4 − B, (D1)

with ps̄(T ,µs) = ps(T ,−µs), and

ps(T ,µs)

= glT

2π2

∫ ∞

0
p2 ln

[
1 + exp

(
1

T

√
p2 + m2

s + µs

T

)]
dp,

(D2)

where we use the degeneracy factors gl = 6 for light quarks,
gg = 16 for gluons, and a bag constant B = 0.38 GeV/fm3.

Quark chemical potentials are

µu = 1
3µB + 2

3µQ, (D3)

µd = 1
3µB − 1

3µQ, (D4)

µs = 1
3µB − 1

3µQ − µS. (D5)

Using the relations ni = ∂p/∂µi , s = ∂p/∂T , and ε = T s +∑
µini − p, we get

ε = 3(p − ps − ps̄ + B) + εs + εs̄ + B, (D6)

nB = 1

3

gl

6π2

[
µ3

u + π2µuT
2 + µ3

d + π2µdT
2
]

+ 1

3
[ns(T ,µs) − ns̄(T ,−µs)], (D7)

nQ = 1

3

gl

6π2

[
2µ3

u + 2π2µuT
2 − µ3

d − π2µdT
2
]

− 1

3
[ns(T ,µs) − ns̄(T ,−µs)], (D8)

nS = −[ns(T ,µs) − ns̄(T ,−µs)] (D9)

with εs̄(T ,µs) = εs(T ,−µs) and

εs(T ,µs) = gl

2π2

∫ ∞

0

p2
√

p2 + m2
s

exp
(

1
T

√
p2 + m2

s − µs

T

)+ 1
dp,

(D10)

ns(T ,µs) = gl

2π2

∫ ∞

0

p2

exp
(

1
T

√
p2 + m2

s − µs

T

)+ 1
dp.

(D11)

APPENDIX E: PLASMA HADRONIZATION

We parametrize the hadronization hypersurface xµ =
xµ(τ, ϕ, η) as

x0 = τ cosh η, x1 = r cos ϕ,
(E1)

x2 = r sin ϕ, x3 = τ sinh η,

with r = r(τ, ϕ, η) being some function of the three parame-
ters τ, ϕ, η. The hypersurface element is

d�µ = εµνκλ

∂xν

∂τ

∂xκ

∂ϕ

∂xλ

∂η
dτdϕdη, (E2)

with εµνκλ = −εµνκλ = 1. Computing the partial derivatives
∂xµ/dα, with α = τ, ϕ, η, one gets

d�0 =
{
−r

∂r

∂τ
τ cosh η + r

∂r

∂η
sinh η

}
dτdϕdη, (E3)

d�1 =
{

∂r

∂ϕ
τ sin ϕ + r τ cos ϕ

}
dτdϕdη, (E4)

d�2 =
{
− ∂r

∂ϕ
τ cos ϕ + r τ sin ϕ

}
dτdϕdη, (E5)

d�3 =
{
r
∂r

∂τ
τ sinh η − r

∂r

∂η
cosh η

}
dτdϕdη. (E6)
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Cooper-Frye hadronization amounts to calculating

E
dn

d3p
=
∫

d�µpµf (up),

with u being the flow four-velocity in the global frame, which
can be expressed in terms of the four-velocity ũ in the “Bjorken
frame” as

u0 = ũ 0 cosh η + ũ 3 sinh η, (E7)

u1 = ũ 1, (E8)

u2 = ũ 2, (E9)

u3 = ũ 0 sinh η + ũ 3 cosh η. (E10)

In a similar way one may express p in terms of p̃ in the Bjorken
frame. Using γ = ũ 0 and the flow velocity vµ = ũ µ/γ , we
get

dn

dydφdp⊥
= p⊥

∫ {
−r

∂r

∂τ
τ p̃ 0 + r τ p̃ r

+ ∂r

∂ϕ
τ p̃ t − r

∂r

∂η
p̃ 3

}
f (x, p), (E11)

with p̃ r = p̃ 1 cos ϕ + p̃ 2 sin ϕ and p̃ t = p̃ 1 sin ϕ −
p̃ 2 cos ϕ being the radial and the tangential transverse
momentum components. Our Monte Carlo generation
procedure is based on the invariant volume element moving
through the FO surface

dV ∗ = d�µuµ = w dτdϕdη, (E12)

with

w = γ

{
−r

∂r

∂τ
τ + r τ vr + ∂r

∂ϕ
τvt − r

∂r

∂η
v3

}
, (E13)

and with vr = v1 cos ϕ + v2 sin ϕ and vt = v1 sin ϕ −
v2 cos ϕ being the radial and the tangential transverse flow.
Freeze-out is done as follows (equivalent to Cooper-Frye):
The proposal of isotropic particles production in the local rest
frame as

dni = α d3p∗ dV ∗ fi(E
∗), (E14)

is accepted with probability

κ = d�µ pµ

α dV ∗E∗ . (E15)

In the case of acceptance, the momenta are boosted to the
global frame.

APPENDIX F: PAIR WAVE FUNCTION
FOR FEMTOSCOPY APPLICATIONS

In the case of identical particles, we use

�(q′, r′) = 1√
2

(φ(k′, r′) ± φ(−k′, r′)), (F1)

and for nonidentical particles

�(q′, r′) = φ(k′, r′), (F2)

with k′ = q′/2. In the simplest case, neglecting final state
ineteractions, one has simply

φ(−k′, r′) = exp(−ik′, r′), (F3)

otherwise the nonsymmetrized wave function is given as (see
Eq. (89) of Ref. [94])

φ(−k′, r′) = exp(iδc)
√

Ac(η)

[
exp(−ik′, r′) F (−iη, 1, iξ )

+ fc(k′)
G̃(ρ, η)

r ′

]
, (F4)

with ξ = k′r′ + q ′r ′, ρ = k′r ′, η = (k′a)−1. The quantity a =
(µz1z2e

2)−1 is the Bohr radius of the pair, in the case of pion-
pion one has 387 fm. Furthermore, δc = arg �(1 + iη) is the
Coulomb s-wave phase shift, Ac(η) = 2πη(exp(2πη) − 1)−1

is the Coulomb penetration factor,

F (α, 1, z) = 1 + αz/1!2 + α(α + 1)z2/2!2 + · · · , (F5)

is the confluent hypergeometric function

G̃(ρ, η) = P (ρ, η) + 2ηρB(ρ, η)[ln |2ηρ| + 2C − 1 + χ (η)],

(F6)

with the Euler constant C = 0.5772, and

B(ρ, η) =
∞∑

s=0

Bs, P (ρ, η) =
∞∑

s=0

Ps, (F7)

with B0 = 1, B1 = ηρ, P0 = 1, P1 = 0, and

(n + 1)(n + 2)Bn+1 = 2ηρBn − ρ2Bn−1, (F8)

n(n + 1)Pn+1 = 2ηρPn − ρ2Pn−1 − (2n + 1)2ηρBn.

(F9)

The function χ is given as

χ (η) = h(η) + iAc(η)/(2η), (F10)

where h is expressed in terms of the digamma function ψ(z) =
�′(z)/�(z) as

h(η) = 1
2 [ψ(iη) + ψ(−iη) − ln(η2)]. (F11)

The amplitude fc can be written as

fc(k′) = f (k′)/Ac(η), (F12)

where f (k′) is the amplitude of the low-energy s-wave elastic
scattering due to the short-range interaction renormalized by
the long-range Coulomb forces. We may write

fc(k′) =
(

K−1 − 2χ (η)

a

)−1

, (F13)

with [112]

K = 2√
s

sth − s0

s − s0

3∑
j=0

Aj

(
2k′
√

sth

)2j

, (F14)

s =
(

2∑
i=1

√
m2

i + k′2
)2

, sth = (m1 + m2)2, (F15)

with the parameters as given in Ref. [112].
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