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Particle correlation measurements associated with a hard or semihard trigger in heavy-ion collisions may
reflect Mach cone shock waves excited in the bulk medium by partonic energy loss. This is of great interest
because, when compared with theory, such measurements can provide information on the transport properties
of the medium. Specifically, the formation of Mach cone shock waves is sensitive to the viscosity and speed of
sound, as well as the detailed nature of the jet-medium interaction. However, modeling the physics of shock-wave
excitation to obtain a meaningful comparison with measured correlations is very challenging, as the correlations
arise from an interplay of perturbative as well as nonperturbative phenomena at different momentum scales.
In this work we take a step in that direction by presenting a systematic study of the dependence of azimuthal
particle correlations on the spatiotemporal structure of energy deposition into the medium. Our results indicate
that detailed modeling of the evolution of an initially produced hard parton and the interaction of this evolving
state with the medium is crucial, as both the magnitude and the shape of the shock-wave signal show a strong
dependence on the assumptions being made.
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I. INTRODUCTION

It is useful to describe the dynamics in ultrarelativistic
heavy-ion collisions in terms of the “bulk” and of “probes.”
The bulk medium, that is, the quark-gluon plasma (QGP),
describes QCD matter produced in the collision that is strongly
coupled, exhibits collectivity, and behaves like a thermalized,
near-perfect liquid. The bulk matter is chiefly responsible
for the properties of low-transverse-momentum (PT ) hadron
production. In contrast, there are also hadrons produced at
higher momenta that are clearly not thermalized. Such hadrons
originate from hard partonic processes that probe such small
time and distance scales that they are essentially unmodified
by the medium. However, these high-pT partons undergo
a final-state interaction while they propagate through the
medium before hadronization. This “jet quenching” [1–6] has
been expected by theory and is experimentally confirmed in
measurements of the nuclear suppression factor RAA [7].

If there is energy loss from a high-pT parton, energy
conservation requires that this lost energy flows somewhere.
Measurements of particles associated with a high-PT trigger
hadron [8,9] have given a hint to answering this question:
Instead of a back-to-back jetlike correlation structure on the
near (trigger) side and the away side as observed in d-Au
collisions, the observed correlation shows a surprising splitting
of the away-side peak into a double-hump structure. Early on,
this was interpreted as the reaction of the bulk medium to
the hard probe in terms of a shock wave [10], and early phe-
nomenological investigations with a fluid-dynamics-inspired
approach to propagate the shock wave in the background
of an evolving bulk medium and with a full modeling of
the trigger bias [11–13] have confirmed that a shock-wave
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signature is not erased by medium-flow-induced distortion
or by averaging over many different triggered events but
can, indeed, account for the correlation observed in the data.
Since then, the focus has been on a more rigorous theoretical
formulation of coupling a source of energy and momentum
into the hydrodynamical equations using hard thermal loop or
anti-de-Sitter space/conformal field theory methods [14–18].

In bringing such proof-of-concept calculations closer to a
comparison with data, one of the key questions is the time
dependence of the energy and momentum deposition into the
medium. In this paper, we make the assumption that the energy
and momentum absorbed by the medium are related by an
on-shell condition so that udE/dt = dp/dt (see Sec. II C),
where dE/dt and dp/dt are the energy and momentum
deposition rates, respectively, and u is the velocity of the high-
pT parton. For this reason, we focus on the time dependence
of the energy deposition, which is potentially driven by many
different effects. First, the strength of the interaction between
hard parton and medium depends on the medium density, and
in a real heavy-ion collision this density varies as a function of
space roughly as given by the nuclear overlap and, owing
to the expansion of the medium, also drops as a function
of time. The expansion dynamics therefore tends to lead to
less interaction with the medium and hence less energy loss
at late times. In contrast, radiative energy loss in a constant
medium of length L has a characteristic L2 dependence owing
to Landau-Pomeranchuk-Migdal suppression of near-collinear
gluon radiation, and this effect tends to increase energy loss at
late times, to some degree even in an expanding medium. In
addition, in Ref. [19] it was suggested that gluons radiated
from a hard parton subsequently themselves interact with
the medium and hence contribute to the energy flow into
the medium, leading to a “crescendo” in the shock-wave
excitation and a large energy deposition at late times. In
contrast, low-energy partons undergoing strong energy loss
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cannot act for a long time as sources of energy, but become
absorbed by the medium after just a short time. This effect
again tends to lead to small energy deposition at late times,
as energy deposited into the medium early on is not available
later.

The arguments given so far assume that the source of energy
and momentum entering the medium is a single on-shell parton
that subsequently undergoes interactions leading to induced
gluon radiation. However, in a typical hard event, partons are
produced with large initial virtualities and, even in vacuum,
evolve into a parton shower where the individual quanta have
lower virtualities, and the time scale of the shower evolution
is such that it takes place at least partially before a medium
is produced. This implies that it may be wrong to think of a
single parton initially depositing energy into the medium: The
dynamics may rather be that a developed parton shower acts
as a strong source initially, but energy deposition decreases
rapidly, as the energy of subleading shower partons is quickly
depleted.

It follows from the preceding that modeling the time
dependence of energy deposition correctly is not a simple
and straightforward issue. It is the purpose of this paper to
demonstrate that the question is nevertheless highly relevant:
Modeling the time dependence of energy deposition in a
different way alters both the magnitude and the shape of
the shock-wave signal in a significant way. We illustrate
this point by using different model assumptions for the
energy deposition within a constant medium and solving
linearized hydrodynamical equations. The paper is organized
as follows: In Sec. II A we review the underlying formalism of
linearized hydrodynamics, while in Sec. II B we discuss how
to obtain the azimuthal hadron spectrum from the linearized
equations of motion. In Sec. II C we discuss the motivation
for the form of the hydrodynamic source term used in our
results and show how it depends sensitively on the time
dependence of the energy deposition. In Sec. II D we present
the different energy deposition scenarios used in our results
and discuss the underlying physics assumptions of each one.
The reader interested only in the results of our calculations
can skip directly to Secs. III A and III B, where specific
numerical inputs and resulting azimuthal spectrums are
presented.

II. MEDIUM EXCITATION

A. Linearized hydrodynamics

In what follows we consider a hard parton (parton here
refers to the parent parton and the associated secondaries)
propagating in an infinite and static QGP. Additionally, we ig-
nore any net baryon density, which is a reasonable assumption
for relativistic heavy-ion collision energies at midrapidity [21].
This parton acts as a source of energy and momentum that
is coupled to the linearized hydrodynamic equations of the
underlying medium. The linearized approximation is valid
when the energy and momentum density generated by the
hard parton is low compared to the equilibrium energy density
of the medium. More is said on the linearized approximation
in Sec. III.

The assumption of an infinite and static QGP is clearly
unrealistic for heavy-ion collisions. However, our purpose
here is not to present a study that is directly comparable
to experimental data but, rather, to show the effect of the
time dependence of energy deposition on the azimuthal
particle spectrum associated with a hard parton. The linearized
approximation in a static medium is a good toy model for
such a study because the effect of changing parameters such
as viscosity or energy deposition scenarios can be easily
extracted. Even within the linearized approximation one could
go beyond the static medium, for instance, by assuming an
underlying Bjorken expansion. This would introduce compli-
cations associated with underlying flow fields and boundary
conditions, however, and is beyond the scope of the current
paper.

In the linearized approximation, the effect of the source
is to create a local perturbation in the medium, so that the
energy-momentum tensor has the linearized form

T µν = T
µν

0 + δT µν, (1)

where δT µν is the perturbation generated by the source,
and T

µν

0 is the equilibrium energy-momentum tensor of the
underlying medium. The fast parton’s ability to perturb the
medium is encoded in the source term, J ν (specified later),
which couples to the gradient of the energy-momentum tensor

∂µδT µν = J ν, (2)

where ∂µT
µν

0 = 0.
The equations of motion for a medium coupled to a source

in linearized hydrodynamics are discussed in several places
(e.g., Refs. [10] and [16]). The solution for δT µν in terms of
J ν is most easily expressed in momentum space by taking
the Fourier transform of (2). The result to first order in shear
viscosity η for the perturbed energy density δT 00 ≡ δε and
momentum density δT 0i ≡ g are given by

δε(k, ω) = ikJL(k, ω) + J 0(k, ω)(iω − �sk
2)

ω2 − c2
s k

2 + i�sωk2
, (3)

gL(k, ω) = k̂gL = iωk̂JL(k, ω) + ic2
s kJ 0(k, ω)

ω2 − c2
s k

2 + i�sωk2
, (4)

gT (k, ω) = g − gL = iJT (k, ω)

ω + 3
4 i�sk2

. (5)

In the preceding result, cs denotes the speed of sound, �s ≡
4η

3(ε0+p0) = 4η

3sT
is the sound attenuation length, ε0 and p0 are the

unperturbed energy density and pressure, respectively, and s is
the entropy density. Also, the source and perturbed momentum
density vectors are divided into transverse and longitudinal
parts: g = k̂gL + gT and J = k̂JL + JT , with k̂ denoting the
unit vector in the direction of k. The position space result for
Eqs. (3)–(5) are obtained by reverse Fourier transform using
the general rule

F (x, t) = 1

(2π )4

∫
d3k

∫
dωeik·x−iωtF (k, ω). (6)
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B. The azimuthal spectrum

Once the source term has been specified, and a solution for
δε and g is obtained from Eqs. (3)–(6), we will be interested
in determining the azimuthal particle spectrum generated by
the source. Ignoring viscous corrections, the induced medium
flow velocity is given by

δu(x) = g
ε0 + p0

= g

ε0
(
1 + c2

s

) , (7)

where we have used c2
s = ∂p/∂ε ≈ p0/ε0 for T � Tc [22].

The total medium four-velocity, which is a sum of the
underlying medium and induced velocities, is given by

[u0 + δu(x)]µ =
(

1,
g

ε0
(
1 + c2

s

)
)

, (8)

where δu0 = 0 in the limit of a static background. An
expression for δT can similarly be found from dimensional
considerations. We write the medium energy density as ε =
AT 4, where A is some constant, from which one has

ε0 + δε ≈ AT 4
0

(
1 + 4

δT

T0

)
, (9)

leading to

δT (x) = δε

4ε0
T0. (10)

Having expressions for the flow velocity and temperature,
it is now possible to construct the medium’s distribution
function, which in the Boltzmann limit is given by

f (x, p) = e−βuµpµ = exp

[
− [u0 + δu(x)]µpµ

T0 + δT (x)

]
. (11)

Here, β ≡ 1/T is the inverse temperature. The distribution
is converted into an azimuthal particle distribution by using
a Cooper-Frye freeze-out scenario [23]. Consistent with the
approach discussed in Refs. [17] and [18], the final azimuthal
particle spectrum for massless particles at midrapidity (y = 0)
is given by

dN

dydφ
(y = 0) =

∫ p
f

T

pi
T

dpT pT

(2π )3

∫
d�µpµ[f (x, p) − f0],

(12)

where �µ is the freeze-out hypersurface and

pµ = [pT , 0, pT sin(φ), pT cos(φ)]. (13)

The isotropic background contribution, f0 = e−β0u
µ

0 pµ , is
subtracted in Eq. (12). In what follows, it is understood that
the source parton propagates along the ẑ axis, which also
determines the direction of φ = 0 in Eq. (13). We consider an
isochronous freeze-out, as appropriate for a constant medium,
in which case d�µ = dV (1, 0).

C. The source term

Nothing has been said up to this point about the form of
J ν to be used in Eqs. (3)–(5). A common choice is the simple

form

J ν(x) = dE

dt
δ(x − ut)Uν, (14)

where Uν ≡ (1, u), u is the velocity of the source parton, which
is assumed to be at the origin at t = 0, and dE/dt is the time-
dependent rate of energy loss into the medium (in principle,
this can be less than the total rate of energy loss, if energy lost
from a leading parton is, e.g., redistributed to nonthermalized
degrees of freedom). This expression contains an eikonal
assumption, as it describes a point source propagating with
the speed of light on a straight line. The advantage of the
source term in Eq. (14) is that it trivially conserves energy and
momentum at each step in time. One can see this by integrating
both sides of Eq. (2) over all space, from which it is found, for
the ν = 0 component, that

d

dt

∫
dx δε = dE

dt
, (15)

which shows that the energy going into the medium is
properly accounted for. A similar exercise holds for the other
components of ν as well.

However, one can go beyond the simple form of Eq. (14)
and still conserve energy and momentum at each step in time.
Consider adding a total derivative to Eq. (14),

J ν(x) = dE

dt
Uνδ(x − ut) → dE

dt
(Uν − λ∂ν)δ(x − ut),

(16)

where λ is a coefficient with dimension of length. Again,
integrating both sides of Eq. (2) over all space shows that
energy and momentum are still properly accounted for. λ acts
as a local medium excitation parameter; that is, its contribution
integrates to 0 globally. The replacement in Eq. (16) is
motivated by the form of the kinetic-theory-derived source
term for a parton in a perturbative QGP obtained in Ref. [15]
and is similar to the source term derived for a quark in a
strongly coupled supersymmetric Yang-Mills plasma [25]. The
relativistic limit (γ � 1) of the source derived in Ref. [15] can
be put in the form

J ν = αsC2m
2
D

8π

(
(1, u)

γ

(ρ2 + γ 2z2−)3/2
− ∂ν 1

2(ρ2 + γ 2z2−)

)
,

(17)

where C2 is the Casimir of the source parton, mD is the Debye
screening mass in the medium, ρ =

√
x2 + y2 and z− = z −

ut for a source parton propagating in the positive ẑ direction,
and γ = 1/

√
1 − u2.

If one considers the source to be localized, Eq. (17)
can be put into the mold of Eq. (16) by integrating the
distributions over all space and normalizing to a δ function. It
is helpful to add a damping factor, e−ρmD , to the distributions
in Eq. (17), which regulates an infrared divergence that arises
when integrating over all space. The form of our damping
factor is motivated by the fact that medium-induced screening
of the hard parton’s color fields occurs on the Debye scale.
The damping factor simulates the Debye screening of a
Lorentz-contracted distribution, hence the form e−ρmD .
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We find

e−ρmDγ

(ρ2 + γ 2z2−)3/2
≈ 4πG0

(
mD

2
√

EpT

)
δ(x − ut), (18)

where (2
√

EpT )−1 has been introduced as a short distance
cutoff (Ep is the energy of the hard parton and T the medium
temperature), and G0 is a representation of the incomplete
γ function

G0(z) =
∫ ∞

z

dt
e−t

t
. (19)

One can also show that

1

2(ρ2 + γ 2z2−)
≈ π2

γmD
δ(x − ut). (20)

With these approximations, Eq. (17) is thus written in the form
of Eq. (16) as

J ν = dE

dt
(Uν − λ∂ν) δ(x − ut), (21)

where

λ = π

4γmDG0
(

mD

2
√

EpT

) (22)

and

dE

dt
= αsC2m

2
D

2
G0

(
mD

2
√

EpT

)
. (23)

Localizing the source term to a δ function, as done in
Eq. (21), has the advantage of making the linearized hydro-
dynamics easier to solve, but also has a physics justification.
Hydrodynamics is a long-distance theory that assumes local
thermal equilibrium, whereas energy deposition occurs on
short distance scales and is a highly dissipative process.
There is a natural separation of distance scales between the
energy deposition and the medium response as described
by hydrodynamics [in perturbation theory these scales are
1/(gT ) and 1/(g4T ), respectively, where g � 1]. Localizing
the source term to a δ function is consistent with this separation
of scales.

As shown in the following results, the coefficient λ is
especially important for generating Mach-like signals in the
final azimuthal particle spectrum. This can be traced back to
Eqs. (3)–(5). Equation (5) is a diffusion equation and the quan-
tity gT is the diffusive momentum density generated by the fast
parton. Physically, the diffusive momentum contribution is a
wake that flows in the direction of the fast parton’s propagation
and is not a sound wave. Previous studies [17,24] have shown
that the diffusive momentum tends to fill up any double-peak
structure in the final spectrum. In contrast, Eqs. (3) and (4)
describe damped sound waves propagating at speed cs : it is
clear that δε and gL are the energy and momentum density
carried by sound generated by the fast parton and will be
responsible for Mach-like signals in the azimuthal spectrum.
When writing a source of the form of Eq. (16) in momentum

space, we find

J ν(k) =
∫

d4xe−ik·x+iωt dE

dt
(t) (Uν − λ∂ν) δ(x − ut)

=
∫ T

0
dt

dE

dt
(t)e−ikzt+iωt (Uν + iλkν) , (24)

where a time derivative on dE/dt as well as boundary terms
has been ignored, and the source is assumed to propagate from
time t = 0 to time t = T . We discuss why we have dropped
the derivative and boundary terms at the end of the results
(Sec. III B). Here we simply note that the derivative term is
numerically insignificant for the energy deposition scenarios
we consider and that the boundary terms are an artifact of stop-
ping and starting the source at a specific moment in time and
obscure the physics we are trying to explore. It is immediately
clear from Eq. (24) that the term proportional to λ does not
excite the diffusive momentum density, which is generated by
the transverse part of the source, but only excites the sound
modes. The contribution to the medium excitation coming
from the term proportional to λ is important for generating
Mach-like signals in the final azimuthal particle spectrum.

In what follows, we use Eq. (24) as our source term, treating
λ as an adjustable parameter and determining the rate of energy
deposition dE/dt from different theoretical models discussed
in Sec. II D. Our purpose here is not to suggest that the form
of λ given in Eq. (22) is necessarily the correct form for the
QGP created in heavy-ion collisions but, rather, to motivate the
general form of the source, Eq. (21). The ansatz thus provides
a connection between the hard, perturbative QCD physics of
jet quenching and the soft, nonperturbative QCD physics of
medium response.

D. Energy deposition scenarios

In the following, we investigate three scenarios for energy
deposition into the medium. In all three cases, we assume that
the medium properties do not change as a function of space
or time during the energy deposition. With this assumption,
the spatiotemporal structure of the energy deposition dE/dt

is independent of changes in medium properties and is a
function of the assumed physics of the source only. In
addition, to study the dependence of the shock-wave signal
on the functional form of dE/dt , we adjust the medium
properties for each scenario such that the integrated energy
deposition �Etot = ∫ ∞

0 dt dE/dt is the same. In contrast, if
one would do calculations in a given microscopical model
for parton-medium interactions and fix the medium to be, for
example, at a given T , �Etot would not necessarily be the
same in different scenarios of energy deposition.

We adopt the procedure of normalizing to the same �Etot

nevertheless because the relevant microscopical degrees of
freedom in the medium and their interaction with a hard
probe are not known. In a more realistic model, with a
hydrodynamically expanding medium, constraints from data
on high-PT observables could be utilized instead by requiring
each of the energy deposition scenarios to agree with the
observed suppression of high-PT hadrons. In the absence of
such data for a constant model, requiring the same �Etot is a
substitute for such a constraint.
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In the first scenario, we assume that the source entering
the medium is given by a single on-shell parton that interacts
with the medium only elastically. The energy transfer into the
medium is then given by the expression [26]

(
dE

dt

)
C

= αsC2m
2
D

2
ln

2
√

EpT

mD
, (25)

where αs = g2/(4π ) is the strong coupling, mD = gT the
Debye mass, C2 the appropriate color factor for a quark
(4/3) or a gluon (3), and Ep the energy of the hard parton.
Under the assumption that the hard parton is sufficiently
energetic such that Ep � �Etot, the weak dependence on
Ep can be neglected and ( dE

dt
)C assumes a constant value

if the medium temperature remains unchanged. Given this
functional shape of dE/dt , we henceforth refer to this scenario
as Flat.

In the second scenario, we still assume that the source
entering the medium is a single on-shell parton with sufficient
energy such that Ep � �Etot is realized, but we also allow
for inelastic interactions of this parton with the medium that
induce radiation. As outlined in Ref. [19] (see also Ref. [20]),
the gluons radiated from the hard parent partons become
themselves sources of elastic energy loss with the medium and
can also be absorbed by the medium if their energy becomes
O(T ).

In this formalism, the effect of radiated gluons depositing
energy into the medium can be cast in the form of an evolution
equation for the distribution function f (ω, t), which describes
the distribution of radiated gluons in the medium at time t with
energy ω. This evolution equation reads

∂

∂t
f (ω, t) − ∂

∂ω
[ε(ω)f (ω, t)] = dI

dωdt
(ω, t), (26)

where ε(ω) is the collisional energy loss rate for gluons
obtained from Eq. (25) as

ε(ω) = 3

2
αsm

2
D ln

2
√

ωT

mD
, (27)

and in the Armesto-Salgado-Wiedemann formalism [27] the
spectrum of radiated gluons is given by

dI

dωdt
= −

√
q̂αsC2

π
Re

(1 + i) tan
[
(1 + i)

√
q̂

ω
t
2

]
ω3/2

, (28)

where

q̂ = 2αsC2m
2
DT ln

2
√

EpT

mD
(29)

is used to adjust the strength of the inelastic interactions.
Equation (26) must be solved numerically. Given such a

solution, the rate of energy gained by the medium from radiated

gluons is [19](
dE

dt

)
R

=
∫ ωmax

ωmin

dωε(ω)f (ω, t) +
∫ ωmin

0
dωω

dI

dωdt

+ ωminf (ωmin, t)ε(ωmin) (30)

where ωmin = T and ωmax = Ep/2. The total energy deposi-
tion into the medium is then given as the sum of the collisional
and radiative contributions,

dE

dt
=

(
dE

dt

)
C

+
(

dE

dt

)
R

(31)

where (dE/dt)C is obtained from Eq. (25). This second
scenario leads to an increase in dE

dt
in time, therefore it has

been named Crescendo.
In the third scenario, we take the source entering the

medium to be a highly virtual parton that subsequently evolves
into a parton shower. In addition, we do not make the assump-
tion Ep � �Etot but consider finite energy kinematics for all
partons. For this, we utilize the Monte Carlo code YaJEM (yet
another jet energy-loss model) [28,29]. In the following, we
summarize the essential parts of the computation; details are
given in Ref. [29]. (The scenario used in this paper corresponds
to the DRAG (medium-induced drag force) scenario described
in Ref. [29].)

We model the evolution from the initial parton to a final-
state parton shower as a series of branching processes a → b +
c, where a is called the parent parton and b and c are referred
to as daughters. In QCD, the allowed branching processes are
q → qg, g → gg, and g → qq. The kinematics of a branching
is described in terms of the virtuality scale Q2 and of the
energy fraction z, where the energy of daughter b is given
by Eb = zEa , and that of the daughter c by Ec = (1 − z)Ea .
It is convenient to introduce t = ln Q2/�QCD where �QCD is
the scale parameter of QCD. t takes a role similar to that of
time in the evolution equations, as it describes the evolution
from some high initial virtuality Q0 (t0) to a lower virtuality
Qm (tm) at which the next branching occurs. In terms of the
two variables, the differential probability dPa for a parton a to
branch is [30,31]

dPa =
∑
b,c

αs

2π
Pa→bc(z)dtdz, (32)

where the splitting kernels Pa→bc(z) read

Pq→qg(z) = 4/3
1 + z2

1 − z
, (33)

Pg→gg(z) = 3
[1 − z(1 − z)]2

z(1 − z)
, (34)

Pg→qq(z) = NF /2[z2 + (1 − z)2]. (35)

We do not consider electromagnetic branchings. NF counts
the number of active quark flavors for given virtuality.
The resulting system of equations describing the branching
processes in vacuum is solved numerically using Monte Carlo
techniques utilizing the PYSHOW code [32].

To make the link from momentum space, where the shower
evolution takes place, to position space, where the medium
perturbations evolve, we assume that the average formation
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time of a shower parton with virtuality Q is developed on the
time scale 1/Q; that is, the average lifetime of a virtual parton
with virtuality Qb coming from a parent parton with virtuality
Qa is in the rest frame of the original hard collision (the local
rest frame of the medium may be different by a flow boost, as
the medium may not be static) given by

〈τb〉 = Eb

Q2
b

− Eb

Q2
a

. (36)

We assume that the actual formation time can then be obtained
from a probability distribution,

P (τb) = exp

[
− τb

〈τb〉
]
, (37)

which we sample to determine the actual formation time of the
fluctuation in each branching.

We assume that the medium induces an approximately
constant energy loss on each propagating parton. The medium
is then characterized by a drag coefficient D that describes
the energy loss per unit path length. In the simulation,
the energy (and momentum) of each propagating parton is
reduced by

�Ea =
∫ τ 0

a +τa

τ 0
a

dζD. (38)

For a propagating gluon the energy loss is increased by the
color factor ratio 2.25. While Eq. (38) describes the mean
energy loss, the actual energy loss owing to the medium is
randomized in each event.

The dynamics of energy deposition in YaJEM is rather
different from the Crescendo scenario. The initial branching
processes down from a highly virtual state happen very rapidly
and lead to a pronounced initial rise in energy deposition
as the number of partons undergoing elastic energy loss
increases. However, the finite energy of the parton shower
that is explicitly considered leads to a turnover: As partons
become absorbed by the medium, the number of additionally
radiated gluons is limited by kinematic constraints. As a result,
the functional shape of dE

dt
is decreasing in time, therefore the

scenario is henceforth labeled Decreasing.

III. RESULTS

A. Input values and qualitative expectations

In the following results we consider the following situation:
A source parton is created at time t = 0 and travels through the
medium until the energy deposition ceases at time t = 5 fm/c.
As discussed in Sec. II C, the source parton is assumed to excite
the medium through the source term, Eq. (21). We continue
to evolve the medium response until time t = 7 fm, at which
point the medium is assumed to hadronize into the spectrum
given by Eq. (12). Performing the freeze-out 2 fm after the
source is turned off improves the validity of the linearized
hydrodynamic assumption because the peak amplitude of the
energy and momentum density perturbations decays in time
once the source is turned off.

The underlying medium is at temperature T0 = 250 MeV
and has speed of sound c2

s = 1/3. The shear viscosity-to-
entropy density ratio η/s is treated as an input parameter that
we vary from η/s = 0.1–0.2. The range of input values for
η/s is consistent with phenomenological observations from
heavy-ion collisions [33]. The local excitation parameter λ,
mentioned in Sec. II C, is treated as an input parameter, which
we vary between 0 and 2 fm. Although we treat λ and η/s

as parameters, rigorous determination of their values must
come from the underlying theory. One may ask what sets an
upper limit for λ. From the point of view of hydrodynamics, λ

appears as the coefficient of a gradient, so in principle its value
sets a minimum resolution for the hydrodynamic equations of
motion. However, in the case we are considering, we allow the
medium response to decay in time, improving the validity of
hydrodynamics, in particular, linearized hydrodynamics, once
the freeze-out occurs. To quantitatively set an upper limit on λ,
one must solve for the medium response for a given scenario
and see how large the perturbations are. In each of the scenarios
we consider here, we find that the linearized approximation
holds [to the extent that δu appearing in Eq. (11) remains <1].

The primary goal of this paper is to demonstrate that the
time dependence of the energy deposition rate dE/dt , which
appears as a coefficient to the source, Eq. (21) is highly relevant
for the appearance of a shock-wave signal in the azimuthal
spectrum (12). We consider the three energy deposition
scenarios, Crescendo, Flat, and Decreasing, discussed in detail
in Sec. II D. To make the comparison consistent, in all three
scenarios the total energy deposited into the medium is 20 GeV
(see Fig. 1). Before examining the results of our calculations
it is useful to qualitatively consider what may be expected.
From Eqs. (11) and (12) one can see that the appearance of a
shock-wave signal is sensitive to the combination δu(x)pT /T ,
where, as discussed in Sec. II B, δu(x) is the four-velocity
induced by the source. In the limit of validity of linearized
hydrodynamics, δu < 1, thus, as mentioned in a previous work
[34], one expects the shock-wave signal to be more pronounced

0 1 2 3 4 5
t [fm]

0

5

10

15

dE
/d

t [
G

eV
/f

m
]

Crescendo
Flat
Decreasing

Time Dependence of Energy Loss Rate

FIG. 1. (Color online) Time dependence of the energy deposition
rate into the medium for a given �Etot = 20 GeV as calculated in three
scenarios—Crescendo, Flat, and Decreasing—for the in-medium
evolution of an initial hard parton (see text).
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for larger values of pT /T . However, it is not hard to see that this
expectation remains even for nonlinear hydrodynamics. Even
if one does not linearize the disturbance created by the hard
parton, Eqs. (11) and (12) still predict an enhanced signal for
larger pT .

Experimentally, the opposite trend is seen [8,9]: The
double-peaked structure observed in the away-side distribution
of dihadron correlations is more pronounced for smaller values
of pT . This observation does not mean that the Mach cone
shock wave is not responsible for the double-peaked structure
seen experimentally but, rather, exposes the limitations of
hydrodynamics. As pT increases, the driving mechanism
behind the correlation structure shifts from bulk recoil to hard
fragmentation. Most events produce correlations in the low-pT

hydrodynamical regime, but at higher pT values, there is an
increased bias to see the comparatively rare events in which
hard pQCD is the mechanism underlying the correlation. At a
pT beyond 5–6 GeV, these hard events completely dominate
the visible correlation. It is this transition from soft to hard
physics that governs the transition from shoulder region to
head region in the data and is beyond the scope of our current
work (see Ref. [35] for an analysis of this transition).

Generally speaking, one would expect that higher ampli-
tudes of the induced energy and momentum density perturba-
tions would be more likely to generate a shock-wave signal
in the azimuthal spectrum than lower ones would. In terms of
the time dependence of the energy deposition rate dE/dt , the
naive expectation is that an energy deposition rate that grows
in time is more favorable for the appearance of a shock-wave
signal than one that decreases or is flat. To make the argument
more concrete, consider a source that deposits some amount of
energy and momentum at an instant in time and is then turned
off. The time dependence of the medium perturbation owing
to such a source can be tracked by going back to Eqs. (3)–(5)
and using the reverse Fourier transform (6). Performing the ω

integration using contour methods and leaving the k integration

undone shows that, to first order in shear viscosity, as a function
of time,

δε, gL ∼ exp

[
−�sk

2t

2

]
(39)

and

gT ∼ exp

[
−3�sk

′2t
4

]
. (40)

The medium excitation decays exponentially as a function
of time, meaning that the azimuthal spectrum, Eq. (12), reflects
the strength of energy deposition at later times more than that at
earlier times. However, the situation is complicated by the fact
that the diffusive contribution gT decays more quickly in time
than the sound contribution δε and gL. It has been mentioned
in Sec. II C that the appearance of a shock-wave signal in
the azimuthal spectrum will come from δε and gL, whereas
gT tends to fill up any double-peak structure. Even though
the amplitude of the medium excitation decays exponentially
in time for both the sound and the diffusion modes, the
sound/diffusive ratio contribution actually grows in time. From
these considerations, it is not immediately clear whether an
energy deposition rate that grows in time or decreases in
time is more favorable for generating a shock-wave signal.
In Sec. III B we present the results of our calculations.

B. Numerical results

In this section we present results for the azimuthal hadron
spectrum, Eq. (12), obtained using the medium parameters
and energy deposition scenarios discussed. In all results we
show the spectrum for the three energy deposition scenarios,
Crescendo, Flat, and Decreasing, and for the bins pT = 2–3
and pT = 3–4 GeV. Results for a shear viscosity-to-entropy
density ratio η/s = 0.10 and local excitation parameter λ =
0 fm (λ is discussed in Sec. II C) are shown in Fig. 2.

-π/2 -π/4 0 π/4 π/2
φ
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dN
/d

φ 
(y

 =
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)

Crescendo
Flat
Decreasing

PT = 2-3 [GeV], λ = 0 [fm]            (a)
η/s = 0.10

-π/2 -π/4 0 π/4 π/2
φ

0.001
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0.0025

0.003

0.0035

0.004

Crescendo
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Decreasing

PT = 3-4 [GeV], λ = 0 [fm]            (b)
η/s = 0.10

FIG. 2. (Color online) Azimuthal hadron spectrum, Eq. (12), for the case of η/s = 0.10 and local excitation parameter, λ = 0 fm. The
shapes of the spectra for the different energy deposition scenarios are essentially the same for these parameters. The magnitude of the signal
is larger for Crescendo, which grows in time, than for Flat or Decreasing, even though the same total energy is deposited in each case. The
conical structure generated by the source, Eq. (21), when λ = 0 fm is not strong enough to overcome the diffusive wake in the final spectra,
where one sees a single peak at φ = 0, which defines the direction of source propagation. The larger (blue) tick marks on the φ axis indicate
where one would naively expect conical peaks to appear for the speed of sound used here, φ = arccos cs .
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PT = 2-3 [GeV], λ = 0.5 [fm]            (a)
η/s = 0.10
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PT = 3-4 [GeV], λ = 0.5 [fm]            (b)
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FIG. 3. (Color online) The same as Fig. 2, but for λ = 0.5 fm. The spectrum is noticeably flatter than that seen in the λ = 0 fm case,
especially for the pT = 3 − 4 GeV plot, where a double-peak begins to emerge in the Crescendo curve. The difference in the shapes of the
spectra generated by the different energy deposition scenarios is most noticeable in comparing the Crescendo and Decreasing scenarios. The
energy deposition that grows in time generates a stronger conical signal. The larger (blue) tick marks on the φ axis indicate where one would
naively expect conical peaks to appear for the speed of sound we have used.

Recall that the direction of the source propagation determines
the direction of φ = 0 in our plots. The results show that
the shape of the spectrum is roughly the same for all three
energy deposition scenarios, however, the magnitude of the
signal is larger for Crescendo, which grows in time, than
for Flat or Decreasing. This change in magnitude between
the different energy deposition scenarios reflects the viscous
nature of the medium. Energy that is deposited at earlier
times (such as in the Decreasing scenario) has more time to
equilibrate with the background medium before freeze-out.
What is noticeably missing in Fig. 2 is the appearance of
a double-peaked structure, or shock-wave signal. Apparently
the conical structure generated by the source, Eq. (21), when
λ = 0 fm is not strong enough to overcome the diffusive wake
in the final spectrum.

Next we consider results for η/s = 0.10 and λ = 0.5 fm,
which are shown in Fig. 3. The spectrum is noticeably flatter
than seen in the λ = 0 fm case, especially for the pT = 3–
4 GeV plot, where a double-peak begins to emerge in the
Crescendo curve. Note that not only the magnitudes of the
curves for the different energy deposition scenarios, but also
the shapes, are different. The difference is most noticeable in
comparing the Crescendo and Decreasing scenarios. The shape
of the Decreasing spectrum is very similar to the case of λ =
0 fm, however, the shape of the Crescendo spectrum is much
flatter, even showing a slight dip at φ = 0. The energy deposi-
tion that grows in time appears to generate a cleaner signal of
the underlying conical structure induced in the medium.

We continue by considering results for η/s = 0.10 and
λ = 1.0 fm presented in Fig. 4. Here the double-peaked

-π/2 -π/4 0 π/4 π/2
φ
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dN
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φ 
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 =
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)

Crescendo
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PT = 2-3 [GeV], λ = 1[fm]            (a)
η/s = 0.10
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Decreasing x 160

PT = 3-4 [GeV], λ = 1[fm]            (b)
η/s = 0.10

FIG. 4. (Color online) The same as Figs. 2 and 3, but for λ = 1.0 fm. The double-peaked structure is significantly enhanced, particularly in
the Crescendo and Flat spectra. The difference in the shapes of the spectra generated by the different energy deposition scenarios is obvious.
The larger (blue) tick marks on the φ axis indicate where one would naively expect conical peaks to appear for the speed of sound used here.
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FIG. 5. (Color online) The azimuthal hadron spectrum, Eq. (12), for the case of η/s = 0.15 and λ = 1.0 fm. The effect of viscosity to
smear out any double-peaked structure is obvious upon comparison to the results in Fig. 4, where we consider η/s = 0.10 and λ = 1.0 fm. The
larger (blue) tick marks on the φ axis indicate where one would naively expect conical peaks to appear for the speed of sound used here.

structure becomes quite pronounced for the Flat and Crescendo
curves, however, the Decreasing result remains mostly flat,
with a slight dip at φ = 0 in the pT = 3–4 GeV range. The
Flat and Crescendo spectra have a similar shape, however,
the Crescendo result shows a moderately more pronounced
double-peak. The trend is emerging that for fixed values of η/s

and increasing values of λ, an energy deposition scenario that
increases in time generates a more pronounced shock-wave
signal in the final azimuthal spectrum.

The results for η/s = 0.15 and λ = 1.0 fm are shown
in Fig. 5. By comparison with Fig. 4, one can see that a
50% increase in the shear viscosity has a significant effect
on the final azimuthal spectrum. The double-peaked shock-
wave signature has been smeared out by the viscous effects.
Continuing with η/s = 0.15 and increasing λ to 1.5 fm restores
the shock-wave signal in the Flat and Crescendo energy
deposition scenarios, as is evident from Fig. 6. However,

consistent with the preceding results, the Decreasing energy
deposition remains mostly flat. Finally, we present results for
η/s = 0.20 and λ = 2.0 fm in Fig. 7. Again, the result of
increasing the viscosity is to smear out the double-peaked
structure, even though we have increased λ by the same
fraction.

Here we discuss the form of the source, Eq. (24), which we
have employed for the results already presented. As mentioned
briefly in Sec. II C, we do not include a time derivative on
dE/dt or boundary terms that arise from the source being
turned on and off at t = 0 and t = T . As noted, we have
explicitly checked that the derivative term is numerically
insignificant for the energy deposition scenarios we consider
and can safely be ignored. However, the boundary terms—in
particular, the term resulting from turning the source off at time
t = T —is not numerically insignificant. In fact, the effect of
the boundary term at t = T is to create a strong inward flow
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FIG. 6. (Color online) Azimuthal hadron spectrum for η/s = 0.15 and λ = 1.5 fm. Increasing λ restores the shock-wave signal in the Flat
and Crescendo energy deposition scenarios (compare to Fig. 5, where λ = 1.0). However, consistent with these results, the Decreasing energy
deposition remains mostly flat. The larger (blue) tick marks on the φ axis indicate where one would naively expect conical peaks to appear for
the speed of sound used here.
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FIG. 7. (Color online) Resulting spectra for η/s = 0.20 and λ = 2.0 fm. Again, the result of increasing the viscosity is to smear out the
double-peaked structure, even though we have increased λ by the same fraction as presented in Fig. 6. Recall that the larger (blue) tick marks
on the φ axis indicate where one would naively expect conical peaks to appear for the speed of sound used here.

as the source is absorbed by the medium. This inward flow
tends to destroy the conical Mach cone signal and reduce the
differences in the three scenarios.

This feature is demonstrated in Fig. 8, where we show the
azimuthal spectrum for the bin pT = 2–3 GeV, η/s = 0.10,
and λ = 1.25 fm. The left plot in Fig. 8 shows the result
without including the boundary and derivative terms, whereas
the right plot contains those contributions (they are dominated
by the t = T boundary piece). The left plot is characteristic
of the plots already shown, in that the Crescendo curve has
the most pronounced double-peak structure, whereas the Flat
and Decreasing curves are less pronounced. In the right plot in
Fig. 8, however, one sees that the difference in the shapes of
the curves is less significant and, also, narrower. This results

directly from inward flow created by the absorption of the
source at an instant in time.

The absorption at t = T is an artifact of our procedure to
stop the simulation and tends to obscure the physics we are
trying to study. In a real physical situation, the source is not
simply absorbed at some fixed instant but may escape the
medium, run out of energy, etc. With an infinite-energy (for
the case of the Crescendo and Flat scenarios), static-medium
assumption, the problem of stopping the energy deposition is
not well defined (it would go on forever), so we have to make a
choice as to what we want to show as a freeze-out distribution.
We believe that we can get closer to what we are interested in
by dropping the boundary terms—which we have done in the
preceding. However, the complications just described illustrate
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FIG. 8. (Color online) Results for pT = 2–3 GeV, η/s = 0.10, and λ = 1.25 fm. The left plot shows the result without including the
boundary and derivative terms (as discussed in the text), whereas the right plot contains those contributions. In the right plot, one sees that
the differences in the shapes of the curves are less significant and, also, narrower. This results from inward flow created by the absorption
of the source at an instant in time and is an artifact of an infinite-energy (for the case of the Crescendo and Flat scenarios), static-medium
assumption. We have not included the boundary terms in these results, as they obscure the physics we are trying to study. The larger (blue) tick
marks on the φ axis indicate where one would naively expect conical peaks to appear for the speed of sound used here.
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the need for a more realistic description of both the medium
evolution and the source term.

We conclude this section by briefly considering how our
results depend on the specific choice of speed of sound
c2
s = 1/3 and temperature T0 = 250 MeV that we have used

here. Both the speed of sound and the temperature appear
explicitly in the medium distribution function [see Eqs. (8)
and (11)] used for freeze-out. Changing the temperature in the
medium distribution function, Eq. (11), will have an effect on
the strength of the freeze-out signal. Specifically, lowering the
temperature will tend to generate a stronger signal. Likewise,
lowering the speed of sound in the medium distribution
function will also tend to create a stronger freeze-out signal
(even more so than the temperature, as the speed of sound
appears only with the momentum flow).

The temperature also enters the sound attenuation length,
�s = 4η

3sT
, which appears in the equations of motion for

linearized hydrodynamics, Eqs. (3)–(5). Changing the tem-
perature in �s is effectively like changing η/s, which has
been analyzed in the preceding results, thus we do not
consider that aspect further here. However, the speed of sound
appears in a nontrivial way in the equations of motion. As
is well understood, the speed of sound governs the angle
of propagation of Mach cone shock waves generated by
a projectile. We present in Fig. 9 the effects of changing
the speed of sound on the azimuthal hadron spectrum
for the Crescendo and Flat energy deposition scenarios and
for the bin pT = 2–3 GeV. The results are for η/s = 0.10,
λ = 1 fm, and speed of sound cs = 0.577 and cs = 0.5. As
anticipated, the spectrum becomes more pronounced when
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FIG. 9. (Color online) Results for pT = 2–3 GeV, η/s = 0.10,
and λ = 1.0 fm with two different speeds of sound. As discussed in
the text, one would anticipate that the spectrum will become more
pronounced upon lowering the speed of sound and that the peaks
will appear at larger opening angles. These two features are indeed
observed. However, note that the peak angles do not correspond to
a naive prediction based on purely geometric arguments [the larger
(blue) ticks on the φ axis would naively correspond to cs = 0.577)
even for the simple scenario considered here.

lowering the speed of sound, and the peaks also appear at
larger opening angles. However, note that the peak angles do
not correspond to a naive prediction based on purely geometric
arguments even for the simple scenario considered here [the
larger (blue) ticks on the φ axis in Fig. 9 would naively
correspond to cs = 0.577]. One thus needs to be very careful
not to interpret the experimentally measured opening angle
of the correlation geometrically as being directly related to
the speed of sound: In a realistic medium, the combination of
trigger bias with a longitudinal, transverse, and elliptic flow
field will have an even more significant influence on the angular
structure than in our simplified medium study.

IV. CONCLUSIONS

We have conducted a systematic study of shock-wave
excitation for different models of the spatiotemporal structure
of energy deposition into the medium within a linearized
hydrodynamical framework in a constant medium under
different assumptions with regard to medium properties and
the interaction of the source with the medium. The results
exhibit a few generic trends, as follows.

(i) Only a strong gradient term (λ > 0) in the source,
Eq. (21), leads to an observable double-hump structure.
The observation that a gradient term is necessary
to excite an observable double-peak was made early
on [10], however, our implementation of the source,
Eq. (21), provides a way to quantify how strong the
gradient term must be.

(ii) For a fixed strength of the gradient term, viscous effects
(i.e., larger values of η/s) weaken the double-hump
structure. This has a natural explanation in terms of
entropy generation dissipating the shock wave, but
even for relatively small η/s the effect appears rather
pronounced.

(iii) Consistently for all assumptions about the structure of
the source term and the medium shear viscosity, an
energy deposition dE/dt that increases as a function
of time leads to more pronounced shock-wave-like
correlations than a dE/dt that decreases in time—both
in the absolute strength of the correlation and in the
shape. This effect is not small—the correlation strength
can be reduced more than an order of magnitude in
the Decreasing compared to the Crescendo scenario—
although the precise factor depends on the medium
properties.

Applied to the shock-wave interpretation of measured
correlations in heavy-ion collisions, these findings imply
that the measured signal depends strongly on the medium
properties, the local structure of the source term, and the
spatiotemporal pattern of energy deposition. Thus, if one is
able to model the evolution of an initial hard parton and its
interaction with the medium with sufficient precision, one can
determine medium parameters like η/s from the measured
correlations. In contrast, if one can extract the medium
properties with other methods, the correlations then place tight
constraints on the dynamics of hard parton evolution in the
medium. Which road will be taken first remains to be seen.
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