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Correlations probed in direct two-nucleon removal reactions
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Final-state-exclusive momentum distributions of fast, forward-traveling residual nuclei, following two-nucleon
removal from fast secondary radioactive beams of projectile nuclei, can and have now been measured. Assuming
that the most important reaction mechanism is the sudden direct removal of a pair of nucleons from a set of
relatively simple, active shell-model orbital configurations, such distributions were predicted to depend strongly
on the total angular momentum I carried by the two nucleons—the final-state spin for spin 0+ projectiles. The
sensitivity of these now-accessible observables to specific details of the (correlated) two-nucleon wave functions
is of importance. We clarify that it is the total orbital angular momentum L of the two nucleons that is the
primary factor in determining the shapes and widths of the calculated momentum distributions. It follows that,
with accurate measurements, this dependence upon the L makeup of the two-nucleon wave functions could be
used to assess the accuracy of (shell- or many-body-) model predictions of these two-nucleon configurations. By
using several tailored examples, with specific combinations of active two-nucleon orbitals, we demonstrate that
more-subtle structure aspects may be observed, allowing such reactions to probe and/or confirm the details of
theoretical model wave functions.
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I. INTRODUCTION

The momentum distributions of the residual nuclei, follow-
ing the removal of a single nucleon from a fast radioactive sec-
ondary beam, offer sensitive probes of both strongly bound and
weakly bound single-particle structure near the (asymmetric)
Fermi surfaces of neutron-rich and neutron-deficient nuclei.
Specifically, the shapes and widths of the exclusive residue
momentum distributions were shown to be characteristic of
the orbital angular momentum of the removed nucleon [1–5].

The simplest generalization to the case of direct
two-nucleon removal is to describe the wave function of the
two nucleons in the projectile by a product of nucleon wave
functions in assumed single-particle orbitals. Doing so, the two
nucleons are uncorrelated, other than both being bound to the
same core [6,7]. The heavy-residue longitudinal momentum
distributions in this limit, being essentially the convolution of
those of the single nucleons, depend on the assumed quantum
numbers of the two nucleons but, in the absence of explicit
antisymmetrization or total angular momentum coupling of
the two nucleons, are not characteristic of specific residue final
states [7].

More recent theoretical developments now treat fully the
shell-model correlations of the two removed nucleons in
the projectile many-body wave function [8,9]. In the fully
correlated models the product of nucleonic wave functions is
replaced by the shell-model two-nucleon overlap, incorporat-
ing (i) the two-nucleon parentage coefficients with respect to
each residue final state (the two-nucleon amplitudes, or TNAs),
(ii) proper antisymmetrization of the two removed nucleons,
and (iii) proper angular momentum coupling.

The resulting theoretical description, and the insights
developed here, are equally valid for reactions that remove
two loosely or strongly bound nucleons. However, as has been
discussed elsewhere [8], in the case of removal of two loosely
bound nucleons the direct removal cross sections, of interest

here, will be overwhelmed (experimentally) by indirect
reaction (one-nucleon removal plus evaporation) events. See,
for example, Ref. [10] for a quantitative consideration of the
direct and indirect two-neutron removal reaction contributions
along the neutron-rich carbon isotopic chain. For these
reasons we restrict our attention to examples for which the
removed nucleons are strongly bound, where the indirect
removal paths are effectively closed, and for which the direct
cross sections are accessible experimentally.

Demonstrative test cases, for example, in Ref. [11], as-
sumed the two nucleons originated from a single orbital—a
pure configuration. In this limit the TNAs enter only as a
multiplicative (spectroscopic-like) factor and thus the new
and interesting characteristics of the residue momentum
distribution are a result of the correlations arising from
antisymmetrization and angular momentum coupling.

These developments demonstrate the potential of two-
nucleon removal for exotic nucleus spectroscopy, showing the
final-state-exclusive residue nucleus momentum distributions
to have shapes and widths that are characteristic of the
total angular momentum, I , carried by the removed pair of
nucleons—and permitting final-state spin assignments to be
made [12]. For the spin Ji = 0+ projectile nucleus examples
used in Ref. [11], there was a high sensitivity of the residue mo-
mentum distributions to the final-state total angular momentum
Jf = I . Moreover, the shapes of these calculated distributions
were robust with respect to variations of other key structure
and reaction parameters, such as the nucleon separation energy.
Further, the consideration of pure configuration examples (e.g.,
two protons, assumed removed from a single active π1d5/2,
π1d3/2, or π2s1/2 orbital) showed considerable insensitivity
of the two-nucleon removal distributions to these individual
nucleon quantum numbers, in stark contrast to results from
single-nucleon removal reactions where the orbital angular
momentum is critical.
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Thus, although the two-nucleon removal process is
powerful for final-state spin spectroscopy in very exotic
systems, its sensitivity to and ability to probe finer details
of the shell-model wave functions and the two-nucleon
configurations and correlations therein remain less clear.
Already in Fig. 5 of Ref. [7], for the case of two-proton removal
from 28Mg, using the fully correlated shell-model wave
functions for the transitions to the first two low-lying 26Ne(2+)
final states, one observes momentum distributions with
different widths, demonstrating a sensitivity beyond the final-
state spin. Our objective here is to elucidate this sensitivity of
the calculated residue momentum distributions to the particular
two-nucleon configurations present and to understand the
sensitivity to the combination of orbitals involved for a given
value of the pair’s total angular momentum I .

In contrast to two-nucleon transfer reactions, such as the
(p,3H) reaction, wherein the 〈p|3H〉 light-ion structure vertex
preferentially selects the pickup of a spin-singlet (S = 0)
neutron pair, the two-nucleon removal mechanism is not
explicitly selective in the nucleon spins [8]. Both spin-singlet
and spin-triplet components of the two-nucleon overlap will be
probed and, under the assumption that the residue and nucleon-
target interactions (and S-matrices) are spin-independent,
the S = 0 and S = 1 terms contribute incoherently to the
reaction yield. We show specifically, in the same way that
single-nucleon removal is sensitive principally to the orbital
angular momentum � rather than the total angular momentum
j of the nucleon, that the two-nucleon removal reaction
momentum distributions are sensitive to the components in
the two-nucleon overlap with a given value of total orbital
angular momentum L, L = �1 + �2. The presence and relative
strengths of these L components are determined via the
shell-model overlaps and their TNAs. Because for a spin-zero
projectile the residue has total spin Jf , with Jf = L + S, the
total spin content of the overlap is determined by the nuclear
structure. However, all spin components present are sampled
by the reaction mechanism.

Recognizing the sensitivity to L allows greater probing of
the shell-model wave function, particularly in states where
the mixing of several available nucleon configurations may
be weak. Specific examples can exhibit particularly strong
sensitivity to the orbital combinations of the pair. In cases of
strong mixing and sharing of strength among several orbitals
a particular value of L may nevertheless be favored. In such
cases the residue momentum distribution will be characteristic
of the details of the states populated and not simply of the
total angular momentum value I of the nucleon pair. Of
particular interest are different regions of A and Z that affect
the originating, active orbitals of the two nucleons.

In Sec. II we outline the approximations assumed and
then present the required formalism for residue momentum
distributions within the LS-coupling scheme. We retain isospin
labels for clarification of the underlying symmetries. In Sec. III
the importance of the total orbital angular momentum is
elucidated by a detailed consideration of the spatial and
angular correlations of the two nucleons that are inherent in
the two-nucleon overlap function. This analysis also provides
insight into the possible sensitivity to the mixing of orbitals
across major shells. In Sec. IV we then consider particular

examples with projectiles of different A and Z, where
interesting effects are predicted. Examples look at specific final
states that could be populated in two-nucleon removal from
the p shell, 12C(−np), the sd-shell, 26Si(−2n), and also the
sdpf -cross-shell situation in 54Ti(−2p). We summarize the
article and draw conclusions in the final section.

II. FORMALISM

We discuss the sudden, direct removal of two nucleons
from a fast projectile beam incident on a light nuclear target
at energies of order 80 MeV per nucleon and greater. In this
intermediate energy range there have been extensive (positive)
assessments of the validity and accuracy of the sudden-
adiabatic and eikonal reaction dynamical approximations (see,
for example, Sec. 3.5 of Ref. [13] and references therein) and
of the theoretical ingredients used in their implementation,
such as the importance of Pauli blocking on the effective
nucleon-nucleon interaction used [14]. These wide-ranging
assessments, carried out within the one-nucleon stripping and
breakup contexts, remain valid in the present analysis, for ex-
ample, the role of strong absorption between the projectile and
the target in reducing the effective reaction time and the energy
for validity of the sudden (fast adiabatic) approximation [15].

We first briefly discuss the salient features of the approach,
previously developed in detail in Refs. [8,9,11]. Our emphasis
here is on the use of the LS-coupling representation to
describe the two-nucleon structure overlaps and to derive the
expressions for the residue momentum distributions in this
basis. We consider only those (stripping) reaction mechanism
events in which the two removed nucleons interact inelastically
with the target nucleus. The role on the cross sections and
momentum distributions of the other major class of events
(diffraction-stripping), where one of the nucleons is removed
by an elastic interaction with the target, were discussed fully
in Refs. [9] and [11], respectively. As was shown there, events
from this second mechanism give residue momenta that are
essentially identical to those of the stripping mechanism. These
conclusions remain unchanged and are not repeated here.

We assume the projectile nucleus to be an
antisymmetrized A + 2-body (shell-model) system, denoted
by �i ≡ �JiMiTiτi

(A, 1, 2), carrying total angular momentum
Ji and isospin Ti . In a high-speed collision with the light target,
two nucleons may be removed to produce an A-body reaction
residue in a final state f , often referred to as the core state
for simplicity. This final core state is �(F ) ≡ �Jf Mf Tf τf

(A).
Each residue final state is denoted by f , while F ≡ (f,Mf )
is used to refer to a state with a specific angular momentum
projection Mf . One is reminded that the final states of the two
nucleons and of the target nucleus are unobserved and that
the observables discussed are inclusive with respect to these
degrees of freedom.

A. Two-nucleon overlap

The direct reaction probes the two-nucleon overlap

�
(F )
i ≡ �

(F )
JiMiTiτi

(1, 2)

≡ 〈�(F )(A)|�i(A, 1, 2)〉
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=
∑
IµT α

CIT
α (IµJf Mf |JiMi)

× (T τTf τf |Tiτi) [ψβ1 (1) ⊗ ψβ2 (2)]T τ
Iµ, (1)

where �i and �(F ) were defined previously. The signed TNAs
CIT

α ≡ C
JiJf ITiTf T
α are taken from shell-model calculations.

They express the parentage (amplitudes) for finding each two-
nucleon configuration α and residue final state f in the overlap
with the projectile initial state i, assumed to be the ground state.
The two-nucleon configurations index, α ≡ [β1, β2], denotes
the spherical quantum numbers of the single-particle states
occupied by the nucleon pair. Hence, β ≡ n�j . Note that the
amplitudes CIT

α refer to a specific i → f , initial to final-state
transition, which is understood implicitly.

The details of the shell-model calculations (e.g., the
model spaces and interactions) used to construct these over-
laps are presented with each relevant example in the later
sections.

Expressed in LS coupling, the antisymmetrized two-
nucleon wave function in Eq. (1) is

[ψβ1 (1) ⊗ ψβ2 (2)]T τ
Iµ

= Dαĵ1ĵ2

∑
L	S


λ1λ2

(�1λ1�2λ2|L	)(L	S
|Iµ)

× L̂ŜχS
(1, 2)χT τ (1, 2)
[
ψ

λ1
β1

(r1)ψλ2
β2

(r2)

− (−)S+T ψ
λ1
β1

(r2)ψλ2
β2

(r1)
]
⎧⎪⎨
⎪⎩

�1 s j1

�2 s j2

L S I

⎫⎪⎬
⎪⎭ , (2)

with Dα = 1/
√

2(1 + δβ1β2 ) and where the angular momentum
and isospin couplings used are summarized in Fig. 1. The
nucleon-wave functions ψ

λ
β (r i) are

ψ
λ
β (r i) = uβ(ri)Y�λ(r̂ i). (3)

FIG. 1. (Color online) Angular momentum and isospin coupling
schemes used in the calculations. The projectile initial (ground)
state and final residue state have spin Ji (projection Mi) and Jf

(projection Mf ) and isospins Ti (projection τi) and Tf (projection τf ),
respectively. Each two-nucleon configuration α involves of a pair of
active orbitals β1 and β2 with spherical shell-model quantum numbers
ni , �i , and ji (projections λi and mi). In LS coupling, the nucleon
orbital angular momenta �1 and �2 are coupled to L (projection 	),
the intrinsic spins to S (projection 
), and L and S to a total angular
momentum I , which must also couple the initial and final-state total
angular momenta.

It is convenient to combine the statistical factors and 9j

coefficient from the two-nucleon overlap with the appropriate
jj -coupled TNAs to construct a set of LS-coupled TNAs, C, as

CIT
αLS = ĵ1ĵ2L̂Ŝ

⎧⎪⎨
⎪⎩

�1 s j1

�2 s j2

L S I

⎫⎪⎬
⎪⎭CIT

α , (4)

that satisfy the sum rule∑
LS

[
CIT

αLS

]2 = [
CIT

α

]2
. (5)

Antisymmetry requires, for configurations α where the
nucleons originate from the same orbital, the [n�j ]2 cases,
that L + S + T is odd. For nucleons originating from different
orbitals, this is no longer the case, though for two nucleons
from spin-orbit partner orbitals, [n�j<, n�j>] with very similar
radial wave functions, the L + S + T = even amplitudes are
also expected to be significantly suppressed.

B. Eikonal model of two-nucleon stripping

As was developed previously [8,9,11], we exploit eikonal
reaction dynamics. The elastic S-matrices describing the
absorptive interactions of the A-body core (in state f ) and
the two nucleons with the target are calculated in the optical
limit of Glauber’s multiple scattering theory [16,17] assuming
that these projectile constituents travel on straight-line paths in
the interaction field of the light target. The reaction is assumed
to be sudden, such that the projectile internal co-ordinates are
frozen on the time scale of this passing and interaction with the
target. The eikonal S-matrices are calculated from the nucleon-
and heavy-residue-target interactions. These interactions were
obtained by double folding the residue (core), nucleon
(δ-function), and target-point particle densities with the usual
effective nucleon-nucleon interaction, as used elsewhere, for
example, Ref. [8].

Following Refs. [8,9,11], from the total absorption cross
section for the projectile-target system,

σabs = 1

Ĵ 2
i

∑
Mi

∫
db 〈�i | 1 − |SfS1S2|2 |�i〉 , (6)

which includes all events where one or more of the projectile
constituents are absorbed by the target, we can identify and
extract the two-nucleon stripping cross-section terms,

σstr = 1

Ĵ 2
i

∑
Mi

∫
db 〈�i | |Sf |2(1 − |S1|2)(1 − |S2|2) |�i〉 .

(7)

As has been discussed elsewhere [11], the two-nucleon strip-
ping probability Ostr(b, b1, b2) = |Sf |2(1 − |S1|2)(1 − |S2|2)
weights the impact parameters that contribute to these stripping
events. Stripping requires an absorptive (inelastic) interaction
of two nucleons with the target, but a non-absorptive (elastic)
or non-interaction of the heavy residue with the target, and
strongly localizes the reaction to grazing collisions at the
projectile surface. This simplifies our picture of the reaction
mechanism and of that part of the overlap function that is
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probed in the knockout reaction. We also contrast the present
strong surface localization of the reaction with the term
peripheral used by some authors to mean impact parameters
that sample only the extreme tail (the Whittaker or Hankel
function asymptotics) of the nucleon bound-state wave func-
tion. This is certainly not the case for those impact parameters
selected by Ostr(b, b1, b2) at the projectile energies and with
the corresponding absorptive S-matrices of interest here.

Two further assumptions are made. The most important,
which is supported by the stripping mechanism’s selection of
non-absorptive or non-interactive events of the residue and
target, is to assume there is no dynamical excitation and/or
change of state of the reaction residue by Sf in the collision—
previously termed the spectator core approximation. This
being the case,

〈�(F ′)(A)| |Sf |2 |�(F )(A)〉 = |Sc|2δFF ′ , (8)

where the bra and ket integrate out the internal coordinates
of the residue and Sc is taken to be the residue ground-state-
target elastic scattering S-matrix. A lesser assumption is the
heavy-core (no-recoil) approximation, which in the required
integrals, such as Eq. (7), the residue impact parameter bc

entering Sf can be replaced with that of the center of mass
of the projectile b; that is, bc ≈ b. For the stripping terms,
this approximation is not, in fact, needed, because a change of
integration variable makes it unnecessary.

The result of these assumptions, together with the parentage
expansion for the two-nucleon structure overlap Eq. (1), is that
the exclusive stripping cross section to a given final-state f can
be written

σ
(f )
str =

∫
db|Sc|2 1

Ĵ 2
i

∑
MiMf

〈
�

(F )
i

∣∣ (1 − |S1|2)

× (1 − |S2|2)
∣∣�(F )

i

〉
. (9)

The assumption that the nucleon S-matrices are spin inde-
pendent allows one to carry out all spin coordinate sums,
in preparation for which we separate explicitly the nucleon
position and spin variable integrations as

〈
�

(F )
i

∣∣ · · · ∣∣�(F )
i

〉 =
∫

d r1

∫
d r2

〈
�

(F )
i

∣∣ · · · ∣∣�(F )
i

〉
sp , (10)

where the final bra-ket term denotes the spin integration.
Consideration of this (momentum-integrated) stripping

cross section using LS coupling was made in Ref. [8], with
an emphasis on the reaction mechanism’s lack of selectivity in
the total spin S of the two nucleons. In our previous analysis
of the longitudinal momentum distributions [11] the only
angular momentum projections not able to be summed over
algebraically were those of the orbital angular momenta of the
two nucleons.

With this observation made, we now consider the residue
longitudinal momentum distributions in the LS represen-
tation. The derivation follows a similar pattern to that in
the jj -coupled algebra and begins from the LS-coupled,
spin-integrated, modulus squared of the two-nucleon overlap,
averaged over initial projections Mi and summed over final

projections Mf . Explicitly,

1

Ĵ 2
i

∑
MiMf

〈
�

(F )
i

∣∣�(F )
i

〉
sp

= 1

Ĵ 2
i

∑
II ′µµ′
αα′T T ′

CIT
α CI ′T ′

α′
∑

MiMf

(IµJf Mf |JiMi)

× (I ′µ′Jf Mf |JiMi)(T τTf τf |Tiτi)(T
′τ ′Tf τf |Tiτi)

× 〈
[ψj ′

1
(1) ⊗ ψj ′

2
(2)]T

′τ ′
I ′µ′

∣∣[ψj1 (1) ⊗ ψj2 (2)]T τ
Iµ

〉
sp. (11)

On performing the sums over Mi and Mf the expression is
clearly incoherent in the coupled two-nucleon total angular
momentum Iµ, a consequence of the spectator-core approx-
imation Eq. (8). Using the antisymmetric two-nucleon LS-
coupled forms of Eqs. (2) and (4), and assuming the nucleon
S-matrices are also isospin-independent, we can perform the
isospin sums with the result that Eq. (11) is also incoherent with
respect to both S and T . Finally, summing over the projections
of I and S we obtain the result, incoherent also in L and 	,
namely,

1

Ĵ 2
i

∑
MiMf

〈
�

(F )
i

∣∣�(F )
i

〉
sp

=
∑
T

(T τTf τf |Tiτi)
2

∑
ILSαα′

CIT
αLSC

IT
α′LSDαDα′

L̂2

×
∑

	λ1λ2λ
′
1λ

′
2

(�1λ1�2λ2|L	)(�′
1λ

′
1�

′
2λ

′
2|L	)

× [
ψ

λ′
1

β ′
1
(r1)ψ

λ′
2

β ′
2
(r2) − (−)S+T ψ

λ′
1

β ′
1
(r2)ψ

λ′
2

β ′
2
(r1)

]∗

× [
ψ

λ1
β1

(r1)ψλ2
β2

(r2) − (−)S+T ψ
λ1
β1

(r2)ψλ2
β2

(r1)
]
. (12)

The exclusive two-nucleon stripping cross section is then given
by use of this structure overlap information in Eq. (9). In the
following we derive explicit expressions for the associated
exclusive momentum distributions in this LS representation.

C. Residue momentum distributions

Structurally, the expressions for the residue momentum
distributions in the LS-coupling scheme are similar to those
using jj coupling [11]. The derivations also follow a largely
parallel procedure. The coordinate system used is reproduced
in Fig. 2 for clarity of the following expressions.

The reaction samples the momentum content of the
bound-state wave functions of the stripped nucleons in the
direction of the projectile beam k̂ (i.e., the z axis). For fixed
values of the si , and hence fixed nucleon impact parameters
bi = |b + si |, i = 1, 2, this information is carried by the
functions

Rλ
β(i) = C�λ√

2π

∫ +∞

−∞
dzi uβ(ri) P

|λ|
� (cos θi) exp[iκizi],

(13)

where κi is the z component of the momentum of nucleon i in
the projectile’s rest frame. We note that the notation forRλ

β (i) is
changed from that of Ref. [11] consistent with the notation used
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FIG. 2. (Color online) Schematic of the particle coordinates used.
Vectors si are the components, in the plane perpendicular to the beam
direction (the z axis), of the position vectors r i of the knocked-out
nucleons relative to the core of nucleons to which they are initially
bound. The two nucleons have impact parameters bi = b + si relative
to the target nucleus.

for the uβ(ri). The correct weighting of the nucleon absorption
probability with the azimuthal angle ϕi , of si , is carried by the
functions Hλλ′(i) ≡ Hλλ′(b, si), given by

Hλλ′(i) =
∫ 2π

0
dϕi[1 − |Si(|b + si |)|2] exp[iϕi(λ − λ′)],

(14)

with si the components of the r i in the impact-parameter
plane; that is, r i = si + zi k̂. The remaining details of the
derivation are completely analogous to those in Ref. [11], to
which the reader is referred.

We obtain the projectile rest frame, stripping mechanism
momentum distribution as the incoherent LS, and isospin
decomposition

dσ
(f )
str

dκc

=
∑
LST

dσ
(f )
LST

dκc

=
∑
T

(T τTf τf |Tiτi)
2

∑
LSIαα′

2CIT
αLSC

IT
α′LSDαDα′

L̂2

×
∫

dκ1

∫
dκ2 δ(κc + κ1 + κ2)

∫
db |Sc(b)|2

×
∑

	λ1λ2λ
′
1λ

′
2

(�1λ1�2λ2|L	)(�′
1λ

′
1�

′
2λ

′
2|L	)

×
∫

ds1s1

∫
ds2s2 [direct − exchange], (15)

where the direct term is

direct = {
Hλ1λ

′
1
(1)Rλ1

β1
(1)Rλ′

1

β ′
1
(1)∗Hλ2λ

′
2
(2)Rλ2

β2
(2)Rλ′

2

β ′
2
(2)∗

}
,

(16)

and the exchange term,

exchange = (−1)S+T
{
Hλ2λ

′
1
(1)Rλ2

β2
(1)Rλ′

1

β ′
1
(1)∗

×Hλ1λ
′
2
(2)Rλ1

β1
(2)Rλ′

2

β ′
2
(2)∗

}
. (17)

It should be noted that Eq. (15) (which contains a factor of 2)
and these simplified forms for the direct and exchange terms
compared to those in Ref. [11] assume that the integrals
over both the κi and the si will be carried out, and so one is
computing quantities that are completely symmetric in the

two-nucleon coordinates. Also, unlike for the jj -coupled
scheme, no further recoupling is required to reduce the
angular momentum algebra.

Physically, Eq. (15) shows that the sums of the direct and
exchange terms over the λ are independent of I . The resulting
momentum distributions thus depend explicitly on L (and
S + T via the phase of the exchange term), but not on I . We
see that the significance of I and the nucleon total angular
momenta ji is that they will determine the relative strengths
of the different L and S via the amplitudes CIT

αLS . Thus, it is L,
and to a lesser extent S and T , that will determine the shape
of the residue’s momentum distribution. I , however, will be
important in determining the relative strengths of the L and S

that contribute.

III. TWO-NUCLEON CORRELATIONS

We observe that the expression for residue momentum
distributions is somewhat simpler when using LS coupling,
having a more transparent angular momentum dependence.
However, the dependence on the two-nucleon configurations,
via α (and α′), is still less than transparent in Eq. (15).
We attempt to elucidate this important nuclear structure
sensitivity by carrying out the λ projection sums. Before
doing so we introduce and discuss the two-nucleon joint
position probability that summarizes both the strength and
the spatial localization (and correlation) of the two nucleons
in the structure overlaps that affect the stripping yield.

A. Two-nucleon joint position probability

We consider the two-nucleon joint position probability
relevant to the removal reaction transition to a given final state
f ; that is,

ρf (r1, r2) = 1

Ĵ 2
i

∑
MiMf

〈
�

(F )
i

∣∣�(F )
i

〉
sp . (18)

While the production of a given residue final state by the
two-nucleon knockout mechanism will depend on the details
of ρf (r1, r2), specifically, the extent to which there is a
spatial proximity of the two nucleons at the projectile surface,
its overall normalization, and the LS composition of this
normalization,

Nf =
∫

d r1

∫
d r2 ρf (r1, r2)

=
∑
αIT

[
(T τTf τf |Tiτi)C

IT
α

]2

=
∑
LS

{∑
αIT

[
(T τTf τf |Tiτi)C

IT
αLS

]2

}
=

∑
LS

NLS
f , (19)

are measures of the likely transition strength. In the case of
a single (dominant) two-nucleon structure configuration this
LS breakdown can also guide the relative strengths expected
from the different contributing LS terms for a given final state.
However, when configurations are mixed or where the initial
and final states have different parity, interference effects may
strongly affect these relative strengths.
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Because the projectile is assumed to traverse a straight-line
path in the z direction, it is useful for what follows, and also
highly intuitive, to construct the projection of the two-nucleon
joint position probability onto the impact-parameter plane—
the plane perpendicular to the beam direction—by integrating
over the zi of the two nucleons,

Pf (s1, s2) =
∫

dz1

∫
dz2 ρf (r1, r2). (20)

The relevant spatial correlation for the reaction is now the
degree of localization of the probability with respect to the
two-nucleon coordinate projections si in this impact parameter
plane.

In what follows the correlation of the two nucleons is
concisely expressed as a function of the angular separation,
ω, of their position coordinates r i . Clearly, the zi-integrated
joint probability Pf (s1, s2) will see a smeared version of this
correlation function because fixed si will sample a range of
ω. However, because the reaction is surface localized and
the target is light (small), the effective thickness in the zi

will tend to be rather restricted and Pf (s1, s2) will remain a
useful construct and intuitive link to the magnitudes of the
two-nucleon knockout cross sections.

As was indicated by Figs. 2 and 3 of Ref. [18], and is
emphasized here, the total angular momentum of the final state
and the detailed TNAs of the wave function can strongly affect
the two-nucleon joint position probability, its projection, and
the magnitude of the removal cross sections. The (shell-model)
structural correlations may also enhance or suppress particular
total orbital angular momenta and so may affect the residue
momentum distributions also.

B. Angular correlations

Despite the relative simplifications introduced by LS cou-
pling, the momentum distribution expression Eq. (15) remains
a complicated weighted sum of wave-function transforms.
Moreover, it still depends on the orbital angular momentum
projections. To clarify the underlying sensitivity to two-
nucleon correlations, we simplify the spin-integrated two-
nucleon joint position probability of Eq. (18) by summing
out the λ projection labels.

The relevant terms we need to simplify are, for the direct
terms of Eq. (12),

�L
�1�2�

′
1�

′
2
(r̂1, r̂2) =

∑
	λ1λ2λ

′
1λ

′
2

(�1λ1�2λ2|L	)(�′
1λ

′
1�

′
2λ

′
2|L	)

×Y�1λ1 (r̂1)Y ∗
�′

1λ
′
1
(r̂1)Y�2λ2 (r̂2)Y ∗

�′
2λ

′
2
(r̂2).

(21)

Combining the spherical harmonics of the same argument,
summing the λ projections, and using the spherical harmonics
addition theorem, one obtains

�L
�1�2�

′
1�

′
2
(ω) = (−1)L

�̂1�̂
′
1�̂2�̂

′
2L̂

2

(4π )2

∑
k

W (�1�2�
′
1�

′
2; Lk)

× (−1)k(�10�′
10|k0)(�20�′

20|k0)Pk(cos ω),

(22)

where ω is the angular separation of the two nucleons; that is,
cos ω = r1 · r2/r1r2. A similar result can be found in Ref. [19].

The angular correlation function �L
�1�2�

′
1�

′
2
(ω) is seen to be

independent of the total angular momentum I and of the
individual angular momenta ji of the nucleons. However,
it depends explicitly on their orbital angular momenta and
on the total orbital angular momentum L. The form written
previously is that for the direct terms of Eq. (12). The exchange
terms differ by a phase owing to the reordering of the angular
momentum labels in the exchange form of Eq. (21), as is given
in what follows.

The radial behaviors associated with the direct and ex-
change terms of the joint-probability density are

UD
αα′ (r1, r2) = uβ1 (r1) uβ2 (r2) uβ ′

1
(r1) uβ ′

2
(r2)

+uβ2 (r1) uβ1 (r2) uβ ′
2
(r1) uβ ′

1
(r2),

(23)
UE

αα′ (r1, r2) = uβ1 (r1) uβ2 (r2) uβ ′
2
(r1) uβ ′

1
(r2)

+uβ2 (r1) uβ1 (r2) uβ ′
1
(r1) uβ ′

2
(r2).

In terms of these and the corresponding direct and exchange an-
gular correlation functions, the two-nucleon joint-probability
density is

ρf (r1, r2)

=
∑
LST

∑
Iαα′

CIT
αLSC

IT
α′LSDαDα′

L̂2
(T τTf τf |Tiτi)

2

× [
UD

αα′ (r1, r2)�L,D(ω) − (−)S+T UE
αα′ (r1, r2)�L,E(ω)

]
,

(24)

with �L,D(ω) ≡ �L
�1�2�

′
1�

′
2
(ω) given by Eq. (22) and

�L,E(ω) = (−)�
′
1+�′

2−L�L
�1�2�

′
2�

′
1
(ω). (25)

It is clear, therefore, that the angular correlation function
dictates how the spatial correlations change with angular
momentum coupling and that L is crucial, the U (r1, r2)
being dependent on the βi but independent of the angular
momentum coupling. Clear also is that, in cases where
the radial wave functions for all active orbits are similar,
the angular correlation function alone will determine the
differences in residue momentum distributions for the different
possible angular momentum couplings. As discussed earlier,
these differences, generated at the angular correlation function
and the two-nucleon density level, are more distinct than in
the projected density Eq. (20), where fixed co-ordinate pairs
(s1, s2) sample a range of angular separations ω and so smear
the spatial correlations.

Uncorrelated two-nucleon models, discussed in the In-
troduction and Refs. [6,8], that neglect antisymmetrization,
angular momentum coupling, and parentage coefficients, lead
to a constant, ω-independent correlation function. For two-
nucleon removal from a single [s1/2]2 configuration, the angu-
lar correlation function is also seen to be ω independent (k = 0)
and the uncorrelated (see Ref. [11]) and fully correlated residue
momentum distributions are identical.
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C. Cross-shell excitations

Here we consider briefly the implications for two-nucleon
knockout from configurations with β1 and β2 of different
parity. It is well established that the addition of shell-model
configurations with 1h̄ω, 3h̄ω single-particle excitations is
required to obtain a high degree of surface pairing (see, e.g.,
Refs. [20–25]).

We obtain a similar result here by considering the sym-
metry of the angular correlation function about ω = π/2.
In �L

�1�2�
′
1�

′
2
(ω), only the Legendre polynomial depends on

ω, with the property that Pk(cos[π − ω]) = (−1)kPk(cos ω).
Because the values of k are restricted to be odd or even by
the parity Clebsch Gordan coefficients, the angular correlation
will be even about π/2 for π�π�′ = +1 and odd about π/2 for
π�π�′ = −1. In the absence of single-particle excitations of
the kind 1h̄ω, the probability for finding the nucleon pair with
angular separation ω = 0 and π are equal and a high degree
of two-nucleon pair cluster structure will not be obtained.

So pair correlations will be enhanced in cases when there is
mixing between two-nucleon configurations where the orbital
angular momenta are of different parity. Whether the in-
terference is constructive or destructive will depend on the
sign of �L

�1�2�
′
1�

′
2
(ω) near ω = 0, the relative signs of the 9j

coefficients, and the relative signs of the TNAs. A specific
two-configuration example is presented in Sec. IV C.

These results are quite general in that they do not depend
on the pair total angular momentum I ; enhancements in the
spatial correlations in the two-nucleon density may be found
for I �= 0.

IV. ILLUSTRATIVE EXAMPLES

Previous calculations of exclusive two-nucleon removal
residue momentum distributions noted a strong sensitivity to
the total angular momentum of the removed nucleon pair. Here,
by writing this momentum-differential cross section in LS

coupling, and by a consideration of the angular correlations
inherent in the two-nucleon joint probability function, it
becomes apparent that the crucial sensitivity of this observable
is to the total orbital angular momentum values, L, contributing
to the transition. These different L components will contribute
incoherently to the cross section yields and their momentum
distributions. These theoretical observations and the resulting
sensitivity of the momentum distribution observable offer the
potential to probe more subtle features of the nucleon pair’s
configurations and the correlations present in the shell-model
wave functions used.

A generic first example arises if the predominant
two-nucleon configuration populating a given final state
involves one of the nucleons in an s-wave orbital. In this
case the total orbital angular momentum is restricted to the
orbital angular momentum of the second active orbit, L = �,
and thus L is pure. It is expected, therefore, that there can be
distinct differences in the momentum distributions, even for
states of the same total angular momentum I , for example, for
two 3+ final states built from [g7/2, s1/2] and from [d5/2, s1/2].
More generally, even where there is significant mixing and
several active configurations, the structure of specific states

in the spectrum can be rather L pure. So the reaction will
proceed by a particular L with a momentum distribution that
is characteristic of this structure.

In the following we discuss specific examples from different
A and Z regions of the nuclear chart. In each example the
nucleon bound-state radial wave functions required for the
two-nucleon overlaps are calculated using a Woods-Saxon
potential well with a spin-orbit term of depth 6 MeV and a
diffuseness parameter a0 = 0.7 fm. Unless stated otherwise,
the geometries (the radius parameters r0) of the potential wells
in each case were adjusted to reproduce the root-mean-square
radii and the separation energies of spherical Hartree-Fock
calculations using the Skyrme (SkX) interaction parametriza-
tion [26] for the active orbitals in question. The specific
procedure was detailed in Ref. [5]. These fitted geometries are
then used to calculate the radial wave functions needed using
the empirical, effective nucleon-separation energies. Where
required, shell-model calculations are performed using the
code OXBASH [27]. The model spaces and interactions used
are specified for each case studied in what follows.

A. p-shell example: 12C(−np)

Here we consider the removal of a (T = 0, 1) neutron and
proton (np) pair from 12C at 2100 MeV/nucleon on a 12C
target. The proton and neutron orbits are taken to be identical
with radial wave functions calculated in a Woods-Saxon
potential, using an average nucleon charge Z̄ = 0.5. The
geometry of the Woods-Saxon potential was fixed with r0 =
1.31 fm, a0 = 0.55 fm. Both the 10B residue and the 12C target
were assumed have Gaussian-shaped mass distributions, with
rms radii 2.30 and 2.32 fm, respectively. The isospin format
TNAs are calculated using OXBASH in a p-shell model space
using the WBP interaction [28], as in previous studies [29,30].
A more complete consideration of two-nucleon removal from
12C will be discussed in a forthcoming article.

As a specific example, we consider the first and second
T = 0, 10B(1+) final states. The TNAs for these states are
shown in Table I. The relative magnitudes of the contributing
two-nucleon configurations to these states are different and it
is of interest to consider how these differences might affect
the cross sections and their momentum distributions. The sum
of the squared TNAs for the first and second states are 1.45
and 1.47, respectively; thus, in the absence of interference
terms the incoherent sum of contributions from each of these
configurations would yield very similar cross sections.

That this is not the case is shown by the calculated
two-nucleon stripping cross sections presented in Table II.
The calculated momentum distributions are also rather
different, as is shown in Fig. 3.

TABLE I. Isospin format TNAs for the first and second 10B(1+)
T = 0 states populated by neutron-proton removal from 12C. The
relative strengths of the TNAs are different for the two states.

J π
f [1p3/2]2 [1p1/2, 1p3/2] [1p1/2]2

1+
1 0.698 99 0.978 68 −0.010 67

1+
2 −1.133 85 0.228 86 0.363 14
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TABLE II. Two-nucleon stripping cross sections σLS for populat-
ing the first two T = 0, Jf = 1+ final states in 10B for a 12C beam
energy of 2100 MeV per nucleon. All cross sections are in mb.

J π
f σ01 σ10 σ11 σ21 σstr

1+
1 2.41 0.00 0.00 0.06 2.47

1+
2 0.60 0.59 0.00 0.63 1.81

These differences can be understood by reference to the
projected two-particle joint position probabilities for the
two states, which are strikingly different (see Fig. 4). The
first 1+ state shows strong spatial localization of the two
nucleons, favorable for the two-nucleon removal cross section.
Both example position probabilities manifest the expected
symmetry about a nucleon angular separation of φ12 = π/2,
because the model space is restricted to the p shell and the
active orbitals have the same parity.

We can extend this p-shell example further to illustrate the
potential for large sensitivity to the underlying structure. It
is clear from Eq. (24) that within a p-shell model space the
relative strengths of different LS combinations are determined
solely by the TNAs and the nucleon configurations involved.
So, neglecting any minor differences in the p-wave radial
wave functions, owing to spin-orbit splitting, the entire square
bracketed term in Eq. (24) is independent of the total angular
momenta {ji} and, in the present model space, independent of
the configurations (α, α′) of the pair. It follows that the weight
of each L and S term in a state of given I and T is proportional
to

P IT
LS =

∑
αα′

CIT
αLSC

IT
α′LSDαDα′ . (26)

In the sprit of studying the extremes of possible sensitivity of
the momentum distributions, we may force any one of these
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FIG. 3. Normalized residue momentum distributions for the first
(solid) and second (dashed) 10B(Jf = 1+) states populated in np

knockout from 12C at 2100 MeV per nucleon. Though the same
two-nucleon configurations contribute to each state, the differently
weighted TNAs result in distinct momentum distributions.

FIG. 4. (Color online) Impact-parameter-plane-projected joint
position probabilities for (a) the first and (b) second T = 0 10B(1+)
states populated via np knockout from 12C. The plot shows the impact-
parameter-plane probability distribution of nucleon 2 for nucleon 1
positioned at sx = 2.9 fm, sy = 0 fm. The spatial correlations of the
nucleon pairs in these two states are fundamentally different, leading
to markedly different momentum distributions (see Fig. 3). The color
scale (white-blue-green-yellow-red-black) is common to both plots.

P IT
LS to be zero and solve for the relative strengths and phases

of the CIT
αLS and CIT

α needed to achieve this.
Figure 5 illustrates such examples for assumed I = 1,

T = 0 states populated via the configurations α1 = [1p1/2]2

and α2 = [1p3/2, 1p1/2]. Calculations for two sets of TNAs are
shown: one set chosen to eliminate L = 0, S = 1 contributions
(requiring C10

α1
= −4C10

α2
, dashed curve) and the other to

eliminate L = 2, S = 1 contributions (requiring C10
α1

= C10
α2

/2,
solid curve). These different 1+ state TNAs produce wide
and narrow residue momentum distributions, respectively,
the difference in the FWHM widths being almost a factor
of two. The figure also shows the I = 2, T = 1 momentum
distribution (open circles), populated via α2 = [1p3/2, 1p1/2]
and α3 = [1p3/2]2, where the TNAs were chosen to eliminate
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FIG. 5. Theoretical 10B residue momentum distributions at
2100 MeV per nucleon. Shown are the expectations for two I = 1
T = 0 states where the TNAs have been tailored to exclude L =
2, S = 1 (solid line) and L = 0, S = 1 (dashed line) contributions
from the two-nucleon wave function, respectively. The line with open
circles shows the expectation for an I = 2 T = 1 final state where the
TNAs were similarly chosen to eliminate L = 2, S = 1 contributions.
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L = 2, S = 1 contributions (requiring C21
α3

= −√
2C21

α2
). Once

again, this gives a relatively narrow distribution and, moreover,
this I = 2 distribution is narrower than that for the (L = 0
excluded) I = 1 distribution (dashed curve) described earlier.
These examples break the tie between the width of the
momentum distribution and the I value of the transferred pair.
Whether or not nuclear states with these TNAs are physically
realized, these limiting cases demonstrate how details of the
microscopic structure of a given state may strongly influence
the shapes and widths of the expected residue momentum
distributions.

Similarly, we note the expectation that transitions to
I = 2, T = 0 and I = 3, T = 0 states of 10B will, within a
p-shell model space, yield identical theoretical momentum
distributions because both transitions are pure L = 2 in nature.
In this instance, also the width of the momentum distribution
does not provide a direct measure of Jf = I .

We note that consideration has only been given to the
direct population of 10B. In principle, indirect population
by single nucleon knockout followed by evaporation of the
unlike nucleon may be possible, although we expect this
indirect, two-step pathway to be very weak, owing to the large
nucleon separation energies in the relevant A = 11 systems
and the very small predicted shell model strength for one
nucleon removal to states above these first A = 11 nucleon
thresholds. High-precision (stable beam) observations of final-
state exclusive 10B momentum distributions would clarify such
aspects of the reaction mechanism that are currently assumed.

B. sd shell: 28Mg(−2 p) and 26Si(−2n)

Exotic nuclei with valence nucleons in the sd shell have
been the focus of several two-nucleon removal experiments
studying the evolution of structure away from the valley of
β stability. The initial- and final-state structures are often
well described within conventional sd-shell model space
calculations offering good test cases for studies of the reaction
mechanism. Details of their residue momentum distributions
could offer an additional test of the shell model and the reaction
mechanism in this region.

We first review the two-proton knockout from 28Mg
at 83.2 MeV/nucleon on a 9Be target, previously studied
in Refs. [6,9,11]. To date, this is the only experimental
example with measured final-state exclusive 26Ne momentum
distributions. Four states were populated, being the 0+ ground
state, the first and second 2+ states, and the first 4+ state.
Previous work demonstrated the significant difference between
the ground state and 4+ residue momentum distributions,
despite strong experimental (reaction target) broadening of
the measured distributions.

We comment here on the effects on the 2.02 and 3.70 MeV
2+ state momentum distributions of the subtle differences
in their TNAs, tabulated in Ref. [8]. To remove the small
difference in the average separation energies of the protons
for the two states, calculations used identical radial wave
functions, but this binding effect is in practice negligible.
The calculated widths of the residue momentum distributions
are different by ∼10%. Clearly a higher statistics experiment
would be required to examine this difference predicted by the

TABLE III. USD shell-model TNAs for the first two 2+ states in
24Si, populated in two-neutron knockout from 26Si.

J π
f [1d5/2]2 [1d5/2, 1d3/2] [1d3/2]2 [2s1/2, 1d3/2] [2s1/2, 1d5/2]

2+
1 −0.700 74 0.434 99 0.005 94 −0.001 88 −0.027 81

2+
2 −0.380 21 −0.123 54 −0.129 45 −0.158 76 −0.582 92

shell model. There are, however, other examples where the
sd-shell model predicts TNAs that exhibit a larger degree of
sensitivity, as , for example, the following.

A second specific example is the two-neutron (T = 1)
knockout from 26Si. Measurements for this reaction, made
at 109 MeV per nucleon on a 9Be target, were reported in
Ref. [31]. Details of the nucleon radial wave functions and
S matrices can be found in Ref. [9]. Populations of two excited
states in 24Si were observed, the first 2+ state at 1.86 MeV,
and a state at 3.41 MeV corresponding to a theoretically
predicted (2+, 4+) doublet, with theoretical excitation energies
of 3.867 and 3.962 MeV. The cross sections for these measured
and theoretical states were analyzed [9] assuming that the
second excited state was the second 2+ state. Momentum
distributions, if available, would easily distinguish between
such I = 2 and I = 4 possibilities. Our interest here is more
subtle. We consider the expected differences in the momentum
distributions of the two 2+ states arising from their underlying
sd-shell model structures.

The TNAs were calculated using OXBASH within an sd-shell
model space using the universal sd-shell (USD) interaction
[32] and are presented in Table III. The TNAs calculated using
the more recent USDA and USDB variants of the original
USD interaction [33] were found to be very similar to the
USD values. Both states have mixed sd-shell configurations.
Inspection of the TNAs might suggest that because the second
state has a stronger [2s1/2, 1d5/2] configuration it may favor
L = 2 more strongly, but there is significant mixing.

Despite the strong mixing in both states, the shell-model
TNAs predict each state to be populated predominately by a
single and distinct total orbital angular momentum L, L = 1
and L = 2, respectively. The calculated LS-coupled two-
nucleon stripping partial cross sections reveal this, as is shown
in Table IV. The dominance of L = 1 and L = 2 in these
states generates the significantly different 2+ state momentum
distributions of Fig. 6, the 2+

2 state having a 30% larger
width. Exclusive measurements for these states would not
only clarify if the second excited state is the 2+

2 , but could also
confirm the L = 2 dominance prediction of the sd shell-model
calculations.

TABLE IV. Two-neutron stripping cross sections, σLS , for pop-
ulation of the first two 2+ final states in 24Si. All cross sections
are in mb.

J π
f σ11 σ20 σ21 σ31 σstr

2+
1 0.17 0.02 0.00 0.00 0.19

2+
2 0.01 0.17 0.01 0.00 0.19
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FIG. 6. Normalized residue momentum distributions for the first
(solid) and second (dashed) 24Si(2+) states populated in 2n knockout
from 26Si. Though the same sd-shell two-nucleon configurations
contribute to each state, their TNAs result in distinct L makeup and
momentum distributions. The full width at half maximum peak widths
are are 250 and 330 MeV/c, respectively.

To consolidate our understanding of such sensitivity, we
consider a further simplified example where a single con-
figuration is expected to dominate. We consider the two
configurations [1d5/2]2 and [1d5/2, 1d3/2], both of which can
contribute to 4+ states. States with such simple configurations
may not be realized in 24Si because 4+ states in 24Si are thought
to be unbound, but the example serves to illustrate the expected
differences that may occur elsewhere in the sd shell.

We construct the TNAs as C41
α = √

5/3, such that Nf = 1
[see Eq. (19)], and the resulting LS decomposition of strengths
is given in Table V. It is very clear that the [1d5/2, 1d3/2]
configuration weights L = 4 significantly more strongly than
does [1d5/2]2 and the expectation is a wider momentum
distribution. As noted in Sec. II A, in this case we would
expect L + S + T = even contributions to be significantly
suppressed owing to the two-neutron antisymmetry and the
similarity of the radial wave functions for the active spin-orbit
partner orbitals. This is indeed the case, as demonstrated by the
stripping cross sections of Table V. The estimated strengths,
NLS

f , are seen to give a reasonable guide to the expected cross
sections for these single-configuration examples.

The results of the calculations, shown in Fig. 7, confirm
the differences in the momentum distributions expected from
our simple consideration of the NLS

f . Again, the specifics of

TABLE V. LS-coupled strengths, NLS
f , and LS partial stripping

cross sections for pure [1d5/2]2 and pure [1d5/2, 1d3/2] two-neutron
configurations populating 4+ final states in 24Si. The cross section for
L = 4, S = 1 is negligible (see text).

α N 31
f N 40

f N 41
f σ31 σ40 σ41

[1d5/2]2 0.8 0.2 0.0 0.23 0.09 0.00
[1d5/2][1d3/2] 0.1 0.4 0.5 0.06 0.35 0.00
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FIG. 7. Examples of the projectile rest frame residue momentum
distributions for I = 4 states in the 26Si(−2n) reaction, arising
from different neutron pair configurations. The solid lines and open
points assume [1d5/2]2 neutron removal; the dashed lines and solid
points assume [1d5/2, 1d3/2] neutron removal. The full distributions
are normalized to 1 at κc = 0, with each contributing L partial
distribution scaled by the same factor. Circles show L = 3, S = 1
contributions and squares show L = 4, S = 0, with the total shown
by the line. The different relative strengths of L = 3 and L = 4 for the
two configurations generate significantly different 24Si momentum
distributions for states of the same I (the dashed and solid curves).

the underlying structure predict considerable and observable
differences in the expected residue momentum distributions.

C. Cross shell: 54Ti(−2 p)

This (T = 1) reaction, reported in Ref. [34], demonstrated
the potential for two-nucleon knockout to probe cross-shell
proton excitations in neutron-rich nuclei. In particular, a
52Ca(3−, 3.9 MeV) state was populated in two-proton removal
from 54Ti(0+) on a 9Be target at 72 MeV per nucleon. Details
of the eikonal S-matrices and nucleon radial wave functions
can be found in Ref. [34]. Previous theoretical estimates for
the 3− state yield assumed pure [1f7/2, 2s1/2] or [1f7/2, 1d3/2]
configurations, providing an estimated upper limit for the cross
section to this state as an incoherent sum of these contributions.

Taking instead a coherent sum will give (i) a different
total cross section and (ii) a different residue momentum
distribution. Here we assess the expected sensitivity to the
relative strengths and phases of these two configurations.
We calculate the two-proton stripping cross sections and
momentum distributions as a function of the TNAs for
[1f7/2, 1d3/2] removal, C31

f d , and for [1f7/2, 2s1/2] removal,
C31

f s . For either of these pure configurations the stripping cross
sections scale with [CIT

f � ]2. To maintain an overall scaling when
the configurations are mixed, the two amplitudes are adjusted
such that [

C31
f s

]2 + [
C31

f d

]2 = 1 , (27)

with C31
f s assumed to be positive. The total incoherent strength

thus remains constant. We calculate the stripping cross sections

044616-10



CORRELATIONS PROBED IN DIRECT TWO-NUCLEON . . . PHYSICAL REVIEW C 82, 044616 (2010)

-1 -0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

0.12

σ LS
 (

m
b)

280

300

320

340

360

F
W

H
M

 (
M

eV
/c

)

Cfd
31

(b)

(a)

FIG. 8. (a) Two-nucleon stripping cross sections and (b) the
FWHM of the residue momentum distribution when populating the
52Ca(3−, 3.9 MeV) state. These observables are shown as a function
of the amplitude C31

f d . The (positive) amplitude C31
f s of the second

configuration is given by Eq. (27). The bottom panel shows the
partial cross sections with {L, S} for the values {2, 1} (dashed),
{3, 0} (solid), {3, 1} (dotted), and {4, 1} (dot-dashed). The total
stripping cross section is shown by the solid line with open triangles.
The calculations presented do not include the isospin Clebsch-Gordan
coefficient (C2 = 0.846).

for each contributing LS combination and the FWHM for
the residue momentum distributions. This is not the whole
story for the momentum distribution—there are also subtle
changes of shape beyond the nominal width—but this FWHM
width provides a guide to the expected behavior. The resulting
calculations are shown in Fig. 8. A few points follow
immediately; the [1f7/2, 2s1/2] configuration only contributes
to the L = 3 cross section, giving no interference with L = 2
and L = 4. So these latter terms are simply proportional to
[C31

f d ]2 and are zero at the center of the plot. The L = 4
contributions are also generally weak and the overall width of
the residue momentum distribution is largely determined by
the relative strengths of the L = 2 and L = 3 contributions.

Both the cross section and FWHM of the momentum
distribution show a strong sensitivity to the mixing of the
two configurations; the cross section varies by a factor of two
and the width of the momentum distribution by 25%. It is
clear that the underlying structure and the relative strengths of
the TNAs are critical to determining both the removal cross
section and the shape of the momentum distribution. Of interest

FIG. 9. (Color online) Impact parameter plane-projected two-
nucleon joint position probabilities, for L = 3, S = 0, for (a) C31

f d =√
2/2 and (b) C31

f d = −√
2/2 for the 52Ca(3−, 3.9 MeV) state

populated in two-proton knockout form 54Ti. The plot shows the
probability distribution of nucleon 2 when nucleon 1 is positioned at
the back circle. The color scale (white-blue-green-yellow-red-black)
is the same for both plots. The source of the differences in the
calculated cross sections (see Fig. 8) for these two choices of TNAs
is evident in the pair correlations manifest in these projected two-
particle joint position probabilities Note the asymmetry at ϕ12 = 90◦

(i.e., sx = 0), induced by mixing of different parity orbitals.

are the extremes of the plot, with |C31
f d | ≈ 1. Here both the

two-nucleon removal cross sections and momentum distribu-
tion widths are acutely sensitive to the small admixtures of the
[1f7/2, 2s1/2] configuration, but also strongly dependent on its
sign. If the two amplitudes are of opposite phase, then both
the cross section and width decrease rapidly. Conversely, they
increase rapidly if in phase. This is indicative of a sensitivity
to small cross-shell admixtures in many cases.

We now contrast the impact parameter plane-projected two-
nucleon joint probability distributions, for values of C31

f d =
±√

2/2, in Fig. 9. The difference in this cross-shell case is
now striking and it is clear that taking the amplitudes to be
in phase (the +ve choice) enhances the two-nucleon spatial
correlations, which then drives the significantly larger two-
nucleon knockout cross section and differences in the residue
momentum distribution.

As is clear from Fig. 8, a precise measurement of the
residue momentum distribution for this reaction would allow
an estimate of the relative strengths and phases of the am-
plitudes of the two assumed active two-nucleon (cross-shell)
configurations. The knockout cross sections themselves are
also shown to depend strongly on the mixing. To date, analyses
of two-nucleon knockout from exotic (asymmetric) systems
have shown that the theoretical cross sections overestimate
those measured experimentally by of a factor of about two,
quantified as Rs(2N ) = σexp/σtheor ≈ 0.55 (see, e.g., Ref. [9]).
This suppression effect thus introduces an ambiguity in the
absolute cross sections that is significant at the level of the dif-
ferences being shown in Fig. 8. Such suppressions of the
cross sections predicted using the shell-model spectroscopy
may themselves be, at least in part, a manifestation of the
use of TNAs calculated in a truncated shell-model space and
that exclude a large number of (small-amplitude) cross-shell
configurations. Based on the limited measurements available to
date, there is no indication that the (missing) physics that drives
the suppression of cross-section strength has implications for
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the shape of the residue momentum distribution. In addition,
more accurate exclusive final-state data are needed to assess
these expectations further.

V. SUMMARY

We discuss the momentum distributions of the heavy
residues after two-nucleon knockout reactions using LS

coupling. The main factor determining the width of these
momentum distributions is shown to be the transferred total
orbital angular momenta L of the two nucleons. We provide in-
sight into the expected widths of momentum distributions from
the removal of the nucleon pair from different configurations
showing that information can be gained from and upon the
strengths of the theoretical TNAs and the contributing L they
generate. The unambiguous observation of effects associated
with specific pairs of nucleon orbitals may require transitions
to final states that are relatively pure or simple configurations.
Some illustrative examples are presented and discussed.

The conclusion of previous work—that the residue momen-
tum distribution was simply characteristic of the final-state
spin—is considered in further detail. It is true that, generally,
higher-spin final states will lead to wider residue momentum
distributions, but the details of the shell-model two-nucleon
overlap are important in understanding the details of the
residue momentum distributions. Quantitative testing and
confirmation of such sensitivity to the underlying structure
will be essential for the exploitation of two-nucleon knockout
methods and their extension for deformed nuclei.

The critical importance of configurations of different parity
in enhancing pairing correlations is demonstrated by consid-
eration of the angular correlations inherent in the two-nucleon
density. While discussed here in the context of two-nucleon
removal reactions and enhancements of two-nucleon-removal
cross sections, such considerations of large basis TNAs and
the importance of small admixtures of different parity are

entirely general. In the context of the suppression of shell-
model strength, previous studies with radioactive beams have
demonstrated that the theoretical cross sections overestimate
experiment by about a factor of two. It will be important to
experimentally verify the influence of cross-shell excitations
on structurally better-understood cases, such as for 12C, 16O,
and 40Ca, to clarify the extent to which the necessary reductions
may depend (in part) on the truncated model spaces used. It will
also be important to further assess the importance of cross-shell
proton excitations in studies of islands of inversion using the
two-proton knockout methodology (see, e.g., Refs. [35–37]),
where very strong reductions of two-proton knockout cross
sections are observed.

Here our emphasis has been on light and medium mass
projectiles. Another interesting example is the two-proton
removal reaction from 208Pb; not only are there a large number
of active orbitals, producing a plethora of states, but the
majority of states are good two-proton hole configurations
with minimal mixing.

The study of such reactions with odd-mass projectiles
brings an added layer of complication, with, typically, each
final state being populated via several nucleon-pair total
angular momenta. The widths of the residue momentum
distributions are then no longer simply related to a single
final-state spin. However, the underlying structure sensitivity
discussed here may still yield characteristic widths for different
final states in the same residue, somewhat independent of the
final-state spin.
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