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Neutron density distributions of 204,206,208Pb deduced via proton elastic scattering at E p = 295 MeV
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Cross sections and analyzing powers for polarized proton elastic scattering from 58Ni, and 204,206,208Pb were
measured at intermediate energy Ep = 295 MeV. An effective relativistic Love-Franey interaction is tuned to
reproduce 58Ni scattering data within the framework of the relativistic impulse approximation. The neutron
densities of the lead isotopes are deduced using model-independent sum-of-Gaussians distributions. Their error
envelopes are estimated by a new χ 2 criterion including uncertainties associated with the reaction model.
The systematic behaviors of extracted error envelopes of the neutron density distributions in 204,206,208Pb are
presented. The extracted neutron and proton density distribution of 208Pb gives a neutron skin thickness of �rnp =
0.211+0.054

−0.063 fm.
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I. INTRODUCTION

The nucleon density distribution is one of the most
fundamental properties of nuclei. For the last few decades, new
phenomena such as skin and halo structures have been found
from the study of unstable nuclei, whose neutron number N is
very different from its proton number Z. The precise extraction
of the nucleon density distribution is very important in studying
these phenomena.

Heavy nuclei are also expected to have a neutron skin struc-
ture. Both relativistic and nonrelativistic mean-field models
suggest that the thickness of the neutron skin (�rnp), defined
as the difference between the neutron (rn) and proton (rp)
root-mean-square (rms) radii (�rnp ≡ rn − rp), depends on
the balance among the various nuclear matter properties. In
particular, the neutron skin thickness of 208Pb is strongly
correlated with the nuclear symmetry energy or the pressure
coefficients of the equation of states (EOS) in neutron matter
[1–3]. Moreover, it was suggested that a precise measurement
of the skin thickness of 208Pb is very important for studying the
radius, composition, and cooling system of neutron stars [4,5].

In the case of stable nuclei, the proton density and radius can
be derived from the nuclear charge. Charge distributions for a
variety of stable nuclei are now known accurately from a large
number of experiments [6,7]. For example, the charge radius of
208Pb is 5.5010(9) fm with an accuracy of 0.02% according to a

*juzo@rcnp.osaka-u.ac.jp; Present address: Research Center for
Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan.

†Present address: Research Center for Nuclear Physics, Osaka
University, Ibaraki, Osaka 567-0047, Japan.

‡Present address: Department KPII, GSI Helmholtzzentrum fur
Schwerionenforschung GmbH Planckstrasse 1, D-64291 Darmstadt,
Germany.

§Present address: Cyclotron and Radioisotope Center, Tohoku
University, Sendai, Miyagi, 980-8578, Japan.

‖Present address: Department of Physics, Tokyo Institute of Tech-
nology, Meguro, Tokyo 152-8551, Japan.

combined analysis of electron scattering, muonic atom x rays,
and isotope shift as shown in Ref. [7]. An electromagnetic
probe, due to its simple reaction mechanism, can extract
precise information about charge density deep inside a nucleus.

Neutron density and radius were studied by many re-
searchers using proton, α, pion scattering, and antiprotonic
atoms [8–19]. However, typical uncertainties of extracted
neutron rms radius are more than ten times as large as those of
the charge radius. Hadronic probes exhibit uncertainties in the
reaction mechanism, which is mainly caused by an incomplete
knowledge of the nucleon-nucleon (NN ) scattering amplitude
inside the nuclear medium. To extract precise information
about the neutron density distribution an appropriate probe
and an effective NN interaction must be carefully chosen.

Proton-nucleus elastic scattering at intermediate energies
(Ep ∼ 300 MeV) is a relatively good probe for extracting
information about both the nuclear surface and interior. The
energy of the incident protons is low enough to suppress
meson production and hence allow a shallow absorptive
potential to be obtained. It is also high enough to be described
by an impulse approximation. As mentioned previously,
however, uncertainties in the NN interaction in the nucleus
are a problem. In previous articles [20,21], we reduced the
uncertainties in the NN interaction inside the nuclear medium
by introducing a phenomenological medium modification in
the relativistic Love-Franey interaction in terms of the density-
dependent parameters. This correction is effectively described
as a modification of the masses and coupling constants of
the exchanged mesons according to the nucleon density. To
calibrate these “medium effect” parameters, we use proton
elastic scattering from 58Ni because the proton and neutron
densities are supposed to have almost the same shape and
radius in 58Ni [9,17,22,23]. Then, using the medium-effect pa-
rameters calibrated for 58Ni, we extracted the neutron density
distributions of tin isotopes in the form of model-independent
sum-of-Gaussians (SOG) distributions. The accuracy of the
neutron radii of tin isotopes were found to be less than 0.03 fm
including both the statistical and model uncertainties [21].
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The purpose of this work is to evaluate the sensitivity of
proton elastic scattering to the neutron densities in heavy nuclei
such as lead isotopes. We focus on the extracted neutron skin
thickness of 208Pb. There have been several attempts to extract
the neutron density distributions of 208Pb from proton elastic
scattering data [9,13]. The energy of the incident protons,
Ep = 650 and 800 MeV used in Refs. [9,13], are rather high,
where the real part of the optical potential is completely
repulsive and the imaginary part is about 50 MeV deep. Thus
the information about the nuclear interior is masked by the
strong absorption. To avoid this large ambiguity of the interior
structure, Starodubsky and Hintz [13] assumed that the nuclear
matter density in the nuclear interior is almost constant. They
did not use the model-independent function itself to extract
the neutron density, but instead used the Skyrme-Hartree-Fock
density plus a small correction expanded in a Fourier-Bessel
series to estimate the error envelopes of the neutron densities,
which reflect only the statistical errors of the experimental
data. They also used a density-dependent t matrix calibrated by
p-40Ca scattering data in the framework of the nonrelativistic
formalism. Their approach is very similar to ours, as seen
in our previous study for tin isotopes [21], but they did not
estimate the errors due to the model ambiguity, which is an
unavoidable problem in describing hadronic reactions.

There are several theoretical approaches for energy-
independent global analysis. Skyrme-Hartree-Fock models
with modern parametrizations were tested employing the
g-folding optical potential to explain the data obtained from
nucleon-nucleus elastic scattering from 208Pb at 40, 65, and
200 MeV [14]. It was suggested that 208Pb has a neutron
skin thickness of ∼0.17 fm because the SkM∗ model gives
the best agreement with the experimental data. Another
global analysis of proton-nucleus elastic scattering data in
the energy range from 500 to 1040 MeV based on the Dirac
phenomenological optical model in Ref. [15] gave a range
of �rnp from 0.083 to 0.111 fm for 208Pb. The obtained
range of �rnp changes depending on the momentum transfer
range and the NN interaction used for the global fit. In these
theoretical approaches, statistical errors and the effect of the
model dependence must be considered in the error estimation
of �rnp.

As a different experimental approach, a parity-violating
electron elastic scattering measurement to extract the neutron
radius in 208Pb (PREX) was proposed at Jefferson Laboratory
[24–26]. This challenging experiment is planned to measure
the model-independent neutron rms radius for 208Pb with an
accuracy of 1% assuming a simple model-dependent function
such as a Woods-Saxon for the nuetron density of 208Pb. The
advantage of this method is its model independence, but the
planned accuracy is larger than the recent measurements using
hadronic probes [13,18,19].

In this article we report our results of quantifying the
uncertainty of both the experimental data and the present
reaction model as the errors of the neutron densities in lead
isotopes. The experimental data of proton elastic scattering
from 58Ni, and 204,206,208Pb at Ep = 295 MeV are newly
obtained and several improvements are applied, as explained
in Sec. II, so as to reduce the systematic uncertainties
which have not been considered previously. This work is

mainly based on the approach and technique described
in Refs. [20,21]. A brief outline of the medium-modified
relativistic impulse approximation (RIA) model and the results
of the extraction of the neutron density distributions in lead
isotopes are given in Sec. III. We provide a summary in
Sec. IV.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the Research Center for
Nuclear Physics (RCNP), Osaka University. Polarized protons
produced by a high-intensity polarized ion source (HIPIS)
[27] were injected into an azimuthally varying field (AVF)
cyclotron to keep the polarization axis in the vertical direction.
The polarized proton beam at 53 MeV from the AVF cyclotron
was further accelerated to 295 MeV using the six-sector ring
cyclotron in a coupled mode. The spin direction and the
polarization of the beam were constantly monitored during
the measurement with a sampling-type beam line polarimeter
(BLP) placed before a scattering chamber. To determine the
vertical components py of the polarization, the BLP used left-
right asymmetries in p-H scattering from a (CH2)n foil [28]. A
typical beam polarization was about 70%. The beam extracted
from the ring cyclotron was achromatically transported to a
target in a scattering chamber. A typical size of the beam spot
was 1 mm in diameter. In the measurement at forward angles,
the proton beam was stopped in a Faraday cup placed inside the
scattering chamber (SCFC). In the measurement at backward
angles the proton beam was stopped in another Faraday cup
located about 25 m downstream from the scattering chamber
(WallFC). The beam current was monitored using a current
integrator (Model 1000C, Brookhaven Instruments Corpo-
ration). The relative charge collection efficiencies between
the SCFC and WallFC were monitored using the p-H cross
sections at the BLP during the measurement. The beam
current on the target was altered between 5 and 380 nA
to keep the dead time of the data acquisition less than
10%.

Targets consisting of, respectively, foils of three lead
isotopes (204,206,208Pb) and 58Ni were used, as shown in
Table I. Two types of targets of 206,208Pb and 58Ni, namely
thin and thick ones, were used for the measurements at
forward and backward angles, respectively. To reduce the
relative systematic errors due to instabilities of the beam
conditions or detectors, the four targets were automatically
interchanged every ∼5 minutes at each scattering angle.
The beam condition itself was constantly checked using
the BLP data. Beam viewers placed at the target position
and a momentum-dispersive position before the scattering

TABLE I. Target thicknesses and enrichments of Ni and lead
isotopes.

Nucleus Thin Thick Enrichment

204Pb 23.7 mg/cm2 not prepared 99.6%
206Pb 18.4 mg/cm2 50.9 mg/cm2 99.3%
208Pb 31.5 mg/cm2 78.8 mg/cm2 99.7%
58Ni 39.5 mg/cm2 100 mg/cm2 99.39%
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FIG. 1. Schematic view of the spectrometer “Grand Raiden” and
the focal plane detectors.

chamber were also used to check the beam condition after
each run. The uncertainty of the scattering angle was less than
±0.05◦.

Scattered protons were analyzed using the QSQDMD-
type high resolution magnetic spectrometer, “Grand Raiden”
(Q: quadrupole; S: sextupole; D: dipole; M: multipole) [29].
The trajectories of the scattered protons were determined with
two sets (X, U and X′, U′) of vertical-type drift chambers
(VDC’s), placed at the focal plane of Grand Raiden. Two
1-cm-thick plastic scintillators (PS1 and PS2) right behind
the VDC’s were used to generate the start signal of the data
acquisition. A 1-cm-thick aluminum plate was placed between
the two plastic scintillators to prevent δ electrons knocked out
by scattered particles at PS1 from entering PS2. A schematic
view of Grand Raiden and the focal-plane detectors is shown
in Fig. 1.

Protons were identified by using the information about both
the time of flight and the energy loss (�E) in PS1 and PS2. In
the previous analysis only the information about �E was used
for particle identification [20,21]. The proton peak in the �E

spectrum has a tail structure and the proton events in the tail
were cutoff together with the deuteron and triton events. This
causes the reduction of the yields, which accounts for more
than a few percent of the total and is not negligible for the
precise measurement of the cross sections.

Moreover, to reconstruct the trajectories of scattered parti-
cles from the VDC data, we applied the multicluster treatment
reported in Ref. [30]. This treatment is effective for avoiding
the severe reduction of the yields and efficiencies of a VDC
especially at the angles where the signal-to-noise ratios are
small. The energy resolution during the measurement was
better than 200 keV in full width at half maximum. A typical
position spectrum of 208Pb at the focal plane is shown in Fig. 2.

The absolute charge-collection efficiency of the SCFC and
the absolute trigger efficiency of PS1 and PS2 for protons at
295 MeV were recently measured in a separate experiment
[31]. A well-calibrated Faraday cup and triple coincidence of
three consecutive scintillators were arranged as references to
these efficiencies. In the present analysis, these efficiencies are
taken into account.
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FIG. 2. (Color online) Typical position spectrum at the focal plane
for 208Pb at a laboratory angle of 36.0◦.

As a result of these improvements, the new data set of cross
sections for 58Ni is about 10% larger than the previous set used
in Refs. [20,21].

Data sets of angular distributions of differential cross
sections and analyzing powers for polarized proton elastic
scattering from 58Ni and 204,206,208Pb were obtained over an
angular range of 7◦ < θ < 50◦, corresponding to a range of
momentum transfer from 0.55 to 3.5 fm−1.

III. RESULTS AND DISCUSSION

A. Relativistic impulse approximation

The details of our approach are described in Refs. [20,21]
and only a brief description of the method to extract the neutron
density distributions is given in this article.

The analysis method is based on the framework of the
RIA using the relativistic Love-Franey (RLF) NN interaction
proposed by Murdock and Horowitz (MH model) [32]. In the
MH model the nucleon-nucleus optical potential is calculated
by folding the RLF NN interaction with the nucleon vector and
scalar density of the target nucleus. Figure 3 shows the obtained
experimental data of cross sections and analyzing powers for
elastic scattering from 204,206,208Pb and 58Ni compared with
two kinds of model calculations. The solid and dashed lines
are the RIA calculations [32] with Dirac-Hartree (DH) [34]
densities of the target nuclei and the calculations using the
recent global Dirac optical model by Cooper, Hama, and Clark
[33], respectively. Although both calculations well reproduce
the analyzing powers, only the global Dirac optical model
is in good agreement with the cross sections. The MH model
poorly reproduces the angular distributions of the cross section
especially at backward angles. This is because neither the
RLF interaction nor the nucleon densities used in the MH
model are realistic. However, even though a realistic nucleon
density of 58Ni, as mentioned later, was used in place of the DH
density for the MH calculation (dash-dotted lines in Fig. 3), the

044611-3



J. ZENIHIRO et al. PHYSICAL REVIEW C 82, 044611 (2010)

FIG. 3. (Color online) Obtained data of differential cross sections
and analyzing powers for elastic scattering from 58Ni and 204,206,208Pb
at Ep = 295 MeV, whereas the lines are due to Murdock and Horowitz
(solid) [32] and the global Dirac optical potential (dashed) [33]. The
dash-dotted lines show the MH model calculations for 58Ni with the
realistic nucleon density by an unfolding charge density.

disagreement with the experimental data of 58Ni still remains.
To explain the experimental data we need the effective NN

interaction inside the nuclear medium in place of the RLF
interaction.

A realistic point proton density distribution was determined
by unfolding the nuclear charge distribution extracted from
electron elastic scattering [6,35] with the intrinsic charge
distributions of the proton and neutron. Using the Fourier
transform of the radial density ρ̃(q) = F{ρ(r)} where q

is the momentum transfer, the relationship between the
charge, proton, neutron, intrinsic proton-charge, and intrinsic
neutron-charge densities ρch, ρp, ρn, ρp

ch, ρn
ch is approximately

described as

ρ̃ch(q) � ρ̃p(q)ρ̃p

ch(q) + ρ̃n(q)ρ̃n
ch(q)

� ρ̃p(q)Gp

E(q2) + ρ̃n(q)Gn
E(q2), (1)

where, in the nonrelativistic limit, ρ̃
p(n)
ch � G

p(n)
E (q2) is the

experimentally determined Sachs electric form factor in
a proton (neutron). The correction term by the spin-orbit
and relativistic effects on the Sachs form factors in the
Breit frame, the so-called Darwin-Foldy correction, are
negligible because their effects on the nuclear size are
one order smaller than the neutron-charge radius and com-
parable with the error of a charge radius as shown in
Refs. [9,36].

For the intrinsic nucleon charge form factor ρ̃
p(n)
ch , we

adopted a new set of nucleon electromagnetic form factors
which were recently extracted from the re-analysis of the world
e-p and e-d scattering data at low-momentum transfers from

0.3 to 1 GeV2/c2 where the nucleon charge form factor is
very sensitive to its model-independent charge radius [37,38].
The proton-charge radius of 0.895(18) fm obtained from ρ̃

p

ch

in Refs. [37,38] is much larger than the value of 0.863(4) fm
used in the previous work [39], but is consistent with the value
of 0.883(14) fm obtained from the recent measurement of the
hydrogen 1S Lamb shift [40].

In the case of 58Ni, the neutron rms radius is expected to
be almost the same as the proton rms radius. Therefore we
assumed that the neutron density of 58Ni has the same shape
as the proton density, that is, ρn = (N/Z)ρp.

For the RIA calculations, scalar density distributions are
necessary as well as baryon density distributions. Scalar
density distributions cannot be extracted directly, unless
the wave functions of the ground state are known in ad-
vance. According to the DH calculations for heavy nuclei,
the ratios between the scalar and vector densities S/V

are almost constant at 0.96, as reported in Refs. [20,21].
Therefore, we simply assumed a scalar density ρS of ρS =
0.96ρV for a vector density ρV using the realistic nucleon
density.

B. Medium-modified RIA

The RLF interaction in the MH model is described by a
set of five Lorentz covariant functions and was determined
from the free NN phase shift analysis. It was found that the
free NN interaction cannot fully reproduce the experimental
data at high-momentum transfers even using the realistic
nucleon density. To explain the experimental data, we intro-
duced a medium modification into the RLF NN scattering
amplitudes by varying the coupling constants and masses
of the σ and ω mesons depending on the local density as
follows:

g2
j , ḡ2

j → g2
j

1 + ajρ(r)/ρ0
,

ḡ2
j

1 + āj ρ(r)/ρ0
(2)

mj, m̄j → mj

[
1 + bj

ρ(r)

ρ0

]
, m̄j

[
1 + b̄j

ρ(r)

ρ0

]

(3)
j = σ, ω,

where mj , m̄j , gj , and ḡj are the masses and coupling constants
of σ and ω mesons for real and imaginary amplitudes,
respectively. The normal density ρ0 is 0.1934 fm−3. In free
space, where the density of the target nucleus is zero, the
masses and coupling constants of the exchanged mesons are set
to be the same as those of the free NN interaction, but inside the
nucleus the modification is assumed to be proportional to the
nucleon density ρ(r) with the phenomenological parameters
aj , āj , bj , and b̄j . This density dependence describes the
first-order approximation in terms of the nuclear density and
partially explains various many-body effects such as Pauli
blocking, multistep processes, and the partial restoration of
chiral symmetry. Since the modification has a universal form
of local-density dependent terms, we can apply it to any other
nuclei once the parameters are calibrated with a real nucleus.
At the present stage we used four parameters assuming the
same modification for the real and imaginary parts of the NN

scattering amplitude (aj = āj , bj = b̄j ) because with eight
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parameters there are so many degrees of freedom that these
parameters have strong correlations with each other.

The extraction of the neutron densities of lead isotopes is
based on the medium-modified RIA calculation with realistic
proton densities. For this purpose we first need to determine
the medium-modification of the effective RLF interaction. In
the next section, we report the calibration of the medium-
effect parameters using the experimental data of proton elastic
scattering from 58Ni.

C. Calibration of the effective N N interaction

For the calibration of the four medium-effect parameters, aj

and bj (j = σ , ω), we have chosen p-58Ni elastic scattering
because 58Ni is the heaviest spherical nucleus with N ≈ Z

and the neutron density of 58Ni is expected to have a similar
distribution to the proton density [ρn = (N/Z)ρp]. Both the
experimental and theoretical results [9,17,22,23] support a
neutron rms radius for 58Ni that is almost the same as the
proton rms radius, while for N = Z nuclei, such as 40Ca or
56Ni, the proton rms radii are larger than the neutron rms
radii due to Coulomb repulsion. The realistic proton density
of 58Ni is extracted by unfolding the charge density with the
new intrinsic nucleon-charge density.

A fit to the 58Ni data of cross sections and analyzing powers
obtained in this experiment and spin rotation parameters
previously measured at the same energy [30] was carried out
by χ2 test [41] with the four medium-effect parameters. The
value of χ2 is given by

χ2 =
∑
θi

(
y

exp
θi

− ycalc
θi

)2/
�y2

θi
, (4)

where y
exp
θi

, �yθi
, and ycalc

θi
are the ith experimental data, error,

and medium-modified RIA calculation for 58Ni at each θi . The
best-fit parameters providing a minimum of χ2 (χ2

min) are listed
in Table II. The solid line in Fig. 4 is the medium-modified
RIA calculation with these best-fit parameters and the real-
istic nucleon densities deduced from the charge distribution.
Compared to the previous work [21], the modifications by the
best-fit parameters are very small. The best-fit calculations
are in better agreement with the experimental data than the
previous data even though the number and angular range of
the data points is much larger than for the previous data [20,21].
This means that the improvements to reduce the experimental
systematic uncertainties work very well. The standard error
of each best-fit parameter in Table II was determined from a
contour corresponding to an increase of 1 in χ2 from χ2

min by
allowing all the other parameters to vary freely to minimize
χ2 for each chosen value of the parameter.

TABLE II. Best-fit medium-effect parameters
aj and bj (j = σ , ω) in Eqs. (2) and (3).

j σ ω

aj −0.044 ± 0.026 0.037 ± 0.040
bj 0.097 ± 0.013 0.075 ± 0.021

FIG. 4. (Color online) Calibration of medium-effect parameters
by fitting to the experimental data for 58Ni. The solid line is
the medium-modified RIA calculation with best-fit parameters The
dashed and dash-dotted lines are from the original MH model with
DH and realistic nucleon densities.

D. Extraction of neutron density distributions

Using the effective NN interaction calibrated by 58Ni data
we extracted the neutron density distributions of 204,206,208Pb.
The realistic proton density distributions of lead isotopes were
also used by unfolding charge distributions.

To find the best-fit neutron density distribution, we used
a nSOG function, which has been originally investigated in
the model-independent analysis of charge distributions [6,35].
The SOG neutron density is described as

ρn(r) = N

2π3/2γ 3

12∑
i=1

Qi

1 + 2R2
i

/
γ 2

× (
e−(r−Ri )2/γ 2 + e−(r+Ri )2/γ 2)

, (5)

where N and Qi are the number of neutrons, and the fraction
of N in the ith Gaussian with the normalization condition∑

i Qi = 1, respectively. For simplicity we fixed the width
γ and position Ri of the ith Gaussian to the same values
used for the charge distributions of 208Pb in Ref. [6] since
the e-208Pb elastic scattering data covers a wider range of
momentum transfer from 0.44 to 3.7 fm−1 than our data
from 0.55 to 3.5 fm−1. We searched for the best-fit values
of Qi by the χ2 method. Figure 5 shows the results of the
medium-modified RIA calculations with the best-fit neutron
density distributions of 204,206,208Pb (solid lines). The medium-
modified RIA calculations with the DH nucleon density
(dash-dotted lines) well reproduce the analyzing powers and
the angular positions of the diffraction peaks and minima
compared with the original MH calculations (dashed lines),
but still overestimate the absolute values of the cross sections.
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FIG. 5. (Color online) Best-fit results for neutron density distri-
butions in 204,206,208Pb are shown as solid lines. The original MH and
medium-modified RIA calculations with the DH nucleon density are
also shown by dashed and dash-dotted lines.

The best-fit calculations (solid lines) are in good agreement
with the experimental data of both the cross sections and
analyzing powers even in the high-momentum transfer region
up to 3.5 fm−1. The nucleon density distributions are found to
affect the absolute values of the cross sections quite directly.
The typical reduced χ2

min, namely χ2
min/ν, where ν is the

number of degrees of freedom, is about 4.
The standard error envelopes of the neutron density dis-

tributions due to the experimental errors can be estimated by
the increase �χ2 corresponding to 1 standard deviation from
χ2

min, expressed as the following inequality:

χ2 � χ2
min + �χ2. (6)

For the error estimation of the neutron density we need to
know theone standard deviation region encompassed by the
joint variation of multiparameters. �χ2 for multiparameters
obeys the χ2 probability distribution function for m degrees of
freedom, where m is the number of fitted parameters [41] and is
roughly equal to m for 1 standard deviation (�χ2 ≈ m = 11 in
this case). By using the Monte Carlo technique, we determined
both the minimum and maximum envelopes of all the possible
neutron density distributions that satisfy Eq. (6) as the standard
error envelope. The errors of the neutron rms radii are also
determined from the maximum and minimum value of the rms
radii of the allowed neutron density distributions.

Figure 6 shows the case of 208Pb. The hatched area sur-
rounded by the solid lines in Fig. 6(c) shows the standard error
envelope of the neutron density in 208Pb estimated by Eq. (6),
together with the DH neutron density distribution (dashed
line). The three-parameter-Gaussian (3pG) neutron density
extracted from the p-208Pb elastic scattering at 800 MeV using

FIG. 6. (Color online) Results of fitting to the experimental data
and extracted neutron density of 208Pb with its standard error envelope
(solid lines). The dashed and dash-dotted lines are medium-modified
RIA calculations, but using the DH nucleon densities and the 3pG
neutron density by Ray [9], respectively.

the second-order Kerman-McManus-Thaler (KMT) model [9]
(dash-dotted line) is also shown for comparison. The inset in
Fig. 6(c) is a magnification of the density distributions in the
radial range from 4.5 fm to 6.5 fm.

The lines presented with the experimental observables for
p-208Pb in Figs. 6(a) and 6(b), are the medium-modified
RIA calculations with the best-fit neutron density (solid),
the 3pG neutron density (dash-dotted), and the DH nucleon
density (dashed). Although there seems to be little difference
between the medium-modified RIA calculations with the
best-fit and 3pG neutron density since the solid line overlaps
with the dash-dotted line extensively, χ2 for the 3pG neutron
density (=255.3) is about 5σ (=5�χ2 � 55) larger than χ2

min
(=192.5) especially at data points of high momentum transfer.
The difference also appears in the rms radii. Our analysis
gave a neutron rms radius for 208Pb of rn = 5.653+0.026

−0.029 fm,
which is 0.06 fm larger than the value of rn = 5.593 fm of
the 3pG neutron density. This means that the data even at
high-momentum transfers can affect the rms radius.

In addition to the experimental uncertainty, we evaluated
the error envelopes including the model uncertainties in the
medium-modified RIA. If the theoretical model was ideal,
the reduced χ2

min should be nearly equal to 1. However, the
value of χ2

min/ν in this case is about 4, which is far from 1 and
shows the incompleteness of this medium-modified RIA model
as well as the unknown systematic errors of the experiment.
To incorporate this incompleteness into Eq. (6) as the model
uncertainties, we simply multiplied the experimental errors by
a constant factor S which realizes χ2

min/ν = 1. Therefore, we
defined a new chi-square as χ̃2 ≡ χ2/S2 assuming that χ̃2
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FIG. 7. (Color online) Extracted neutron densities for 204,206,208Pb
with two types of error envelopes shown together with DH neutron
densities (dotted lines) and point proton densities by unfolding charge
densities (dash-dotted lines). The cross-hatched and hatched error
envelopes were estimated by Eqs. (8) and (6), respectively.

follows the same χ2 distribution and Eq. (6)

χ̃2 � χ̃2
min + �χ̃2, (7)

where χ̃2
min/ν ≡ (χ2

min/S
2)/ν = 1 and �χ̃2 = �χ2. Thus

Eq. (7) is equivalent to

χ2 � χ2
min + �χ2 × S2

= χ2
min + �χ2 × (

χ2
min

/
ν
)
. (8)

The error envelopes including the model uncertainties were
estimated by Eq. (8) for 204,206,208Pb data [42], where �χ2

for the 204,206,208Pb data is defined as the number of fitted
parameters m, namely 11. The cross-hatched areas in Fig. 7
show the error envelopes of the neutron density distributions
for 204,206,208Pb obtained from Eq. (8) and the hatched areas
are the standard error envelopes due to Eq. (6).

In this analysis for lead isotopes, we neglected the
density dependence of ρ and π mesons in the medium
modification because the difference between the proton and
neutron density is about 1/5 less than the normal density
and the modification for ρ and π mesons is expected to
be much smaller than for σ and ω mesons. The error from
this assumption is also included in the model uncertainties
described by Eq. (8). When using a model-dependent hadronic
process, it is important to show these error envelopes in-
cluding the model uncertainties, in parallel with the con-
ventional method of showing the experimental uncertainties
only.

Table III lists the best-fit values of the SOG parameters
Qi and χ2

min/ν for each lead isotope. In addition, a fit to
the upper and lower error envelopes including the model
uncertainties for each isotope was made by using the SOG

TABLE III. Best-fit SOG parameters of the neutron density
distributions for 204,206,208Pb. The width γ (=1.70/

√
3/2) and

position Ri of the ith Gaussian in Eq. (5) are fixed to the values
of the charge distribution [6]. The number in the parentheses are the
χ 2

min over the degrees of freedom ν for each isotope.

i Ri (fm) Qi (the fraction of N in ith Gaussian,
∑

i Qi = 1)
204Pb (180.1/47) 206Pb (185.3/47) 208Pb (192.5/47)

1 0.1 0.006 596 1 0.006 889 9 0.005 354 9
2 0.7 0.012 602 3 0.012 320 1 0.010 603 8
3 1.6 0.006 348 9 0.000 002 1 0.020 871 5
4 2.1 0.032 321 2 0.023 171 7 0.009 611 7
5 2.7 0.070 316 1 0.099 854 3 0.076 718 9
6 3.5 0.115 004 1 0.067 759 5 0.063 953 0
7 4.2 0.041 385 4 0.096 108 6 0.132 436 8
8 5.1 0.331 751 8 0.286 032 4 0.248 449 5
9 6.0 0.299 476 8 0.324 954 0 0.346 753 3

10 6.6 0.031 521 7 0.033 325 2 0.027 119 9
11 7.6 0.052 661 4 0.049 582 1 0.058 113 0
12 8.7 0.000 014 2 0.000 000 1 0.000 013 7

parameters Qi of Eq. (5) with the same γ , N , and Ri as used
in the investigation of the neutron densities. In this case the
normalization condition is not satisfied (

∑
Qi �= 1) because

the envelope is not the density distribution itself. The fitted
parameters Qi are listed in Table IV.

E. Neutron rms radii and skin thicknesses

The differences between the rms radius of the best-fit
neutron density and the maximum and minimum rms radii
in all the neutron densities constituting each error envelope
are listed in Table V as the upper and lower errors of the rms
radius of neutron δrmdl

n , with δrstd
n from Eq. (6). It is found that

the effect of the model uncertainty on the errors of rn for lead
isotopes is as large as that of the experimental uncertainty. The
neutron rms radii rn were determined with a good accuracy of
about 1% (�0.06 fm) even including the model uncertainty.

The systematic behavior of the extracted neutron skin
thicknesses �rnp for lead isotopes with the two types of
error bars due to δrstd

n and δrmdl
n is shown with previous

experimental and theoretical results [13,18,43–47], in Fig. 8.
The present result shows a slight increase of the neutron skin
thickness at 208Pb. As seen in Fig. 8, the resulting values of
the neutron skin thicknesses have similar values and tendency
to other results except for the case of NL3 parametriza-
tion [45]. The two relativistic models with DD-ME2 and
FSUGold parametrization are particularly consistent with our
result.

The obtained neutron skin thickness �rnp for 208Pb is
compared with those obtained from previous experiments
and theoretical models in Table VI. The listed experimental
results including this work are not very different within the
error bars. In Table VI we list the typical nonrelativistic
Skyrme-Hartree-Fock model with SkM∗ [43] and SkX [49]
parametrization. Several relativistic mean field models with
NL3 [45], DD-ME2 [46], and FSUGold [47] parametrization

044611-7



J. ZENIHIRO et al. PHYSICAL REVIEW C 82, 044611 (2010)

TABLE IV. Fitted SOG parameters Qi of the upper and lower error envelopes of the neutron density distribution for each lead isotope. γ ,
N , and Ri are the same as in Table III, but the normalization condition is not satisfied in the case of the envelopes (

∑
Qi �= 1).

i Ri (fm) Qi

204Pb 206Pb 208Pb

upper lower upper lower upper lower

1 0.1 0.009 468 8 0.000 001 6 0.014 027 5 0.000 122 7 0.008 476 8 0.000 129 2
2 0.7 0.012 764 7 0.018 955 6 0.000 767 8 0.015 513 1 0.009 671 9 0.017 256 2
3 1.6 0.000 059 8 0.014 077 7 0.000 003 5 0.000 393 6 0.013 254 2 0.015 742 5
4 2.1 0.031 187 9 0.006 374 8 0.070 476 9 0.004 632 6 0.028 044 0 0.000 087 7
5 2.7 0.145 576 0 0.059 554 9 0.086 465 2 0.062 461 2 0.085 035 4 0.072 394 6
6 3.5 0.008 087 5 0.139 696 2 0.039 842 1 0.090 942 0 0.076 442 2 0.051 604 9
7 4.2 0.139 414 0 0.001 907 1 0.151 639 3 0.022 570 7 0.124 397 3 0.141 671 1
8 5.1 0.284 311 0 0.353 469 1 0.247 764 0 0.227 317 2 0.260 787 3 0.229 630 2
9 6.0 0.339 661 0 0.267 744 0 0.358 047 1 0.241 556 3 0.354 038 1 0.343 433 1

10 6.6 0.018 130 3 0.046 450 1 0.023 135 5 0.021 632 6 0.024 505 4 0.0257194
11 7.6 0.059 342 8 0.045 261 8 0.056 652 6 0.033 057 6 0.066 303 3 0.050 261 0
12 8.7 0.000 022 4 0.000 009 3 0.000 001 8 0.000 002 8 0.000 009 5 0.000 009 5

are also shown. Previously, predictions of the neutron skin
thicknesses widely differed between the nonrelativistic and
relativistic mean-field models, but recent studies using newly
developed relativistic parametrizations such as DD-ME2 and
FSUGold have reported �rnp results closer to those of
nonrelativistic models than the relativistic model with NL3
parametrization. In the case of FSUGold parametrization, two
additional coupling constants that represent nonlinear vector
and isoscalar-isovector couplings were introduced based on
relativistic effective field theory [50]. The new relativistic
parametrization was calibrated to explain the measurements of
the giant monopole resonance in 90Zr and 208Pb and the isovec-
tor giant dipole resonance in 208Pb, without compromising the
quality of the other ground-state properties such as the binding
energy per nucleon and the charge radii. The predicted value
of �rnp = 0.21 fm for 208Pb by FSUGold parametrization is
in close agreement with our result.

The most recent theoretical studies [51–53], which are
constrained by recent experimental data, namely, the x-ray
cascade of antiprotonic atoms [18], isospin diffusion in heavy-
ion collisions, and pigmy dipole resonance (PDR) data [19],
have reported neutron skin thicknesses of 208Pb of 0.20(4) fm
[51], 0.22(4) fm [52], and 0.194(24) fm [53], respectively.
These obtained values are in remarkable agreement with ours
of �rnp = 0.211+0.054

−0.063 fm.

TABLE V. Root-mean-square radii of the charge rch, proton
runfold
p , and neutron rn used in this work. The two types of errors

for rn, δrmdl
n , and δr std

n , are listed (all in fm).

Nucleus rch runfold
p rn δr std

n δrmdl
n

204Pb 5.479(2) 5.420(2) 5.598 +0.029
−0.020

+0.047
−0.059

206Pb 5.490(2) 5.433(2) 5.613 +0.026
−0.026

+0.048
−0.064

208Pb 5.503(2) 5.442(2) 5.653 +0.026
−0.029

+0.054
−0.063

Correlations between the neutron skin for 208Pb and the
symmetry energy coefficients of nuclear matter were also
reported by various recent theoretical studies [1–3,52,54]. The
nuclear matter incompressibility K0, the symmetry energy J ,
and its slope L and curvature Ksym at saturation density ρsat

are usually expressed as

K0 = 9ρsat
d2E(ρ, 0)

dρ2

∣∣∣∣
ρ=ρsat

, (9)

J = S(ρsat), (10)

L = 3ρsat
dS(ρ)

dρ

∣∣∣∣
ρ=ρsat

, (11)

E(ρ, δ) = E(ρ, 0) + S(ρ)δ2 + O(δ4), (12)

S(ρ) = S(ρsat) + Lε + Ksym

2
ε2 + O(ε3), (13)

where ρ = ρn + ρp is the total density, E(ρ, δ) is the en-
ergy per nucleon at a density ρ, and a local asymmetry
δ = (ρn − ρp)/ρ. The so-called symmetry energy S(ρ) is
expanded around the saturation density [ε = (ρ − ρsat)/3ρsat].
The contributions of the higher-order terms in Eqs. (12)
and (13) are negligible at subnormal densities. The incom-
pressibility K0 is now expected to be about 210–250 MeV
[46,47,55,56] constrained by many measurements of isoscalar
giant resonances for various nuclei [57–59]. The symmetry
energy J at saturation is also known to be ∼32 MeV, but
L and Ksym are still less certain and their predicted values
vary widely among many theoretical models. Particularly the
slope coefficient L of the symmetry energy at saturation
density is strongly correlated with �rnp for 208Pb [52,54]. Our
results support a value of L ∼ 60 MeV predicted by FSUGold
parametrization, which is consistent with L = 88 ± 25 MeV
obtained from the analysis of isospin diffusion data [52] and
L = 65 ± 16 MeV determined by the energy-weighted sum
rule of PDR data [53]. However, the uncertainty of �rnp is
still so large that the constraint on the slope coefficient L is
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TABLE VI. Obtained values of rn, rp , and �rnp for 208Pb compared with several experimental and theoretical results (all in fm). Except for
this work, the errors are statistical only.

Model Experiment

SkM∗ SkX NL3 DD-ME2 FSUGold GDRa PDRb antiprotonc (p, p) at 800 MeVd (p, p) at 650 MeVe This work

rp 5.45 5.44 5.46 – – – – 5.44 5.45 5.46 5.442(2)
rn 5.62 5.60 5.74 – – – – 5.60 5.59(4) 5.66(4) 5.653+0.054

−0.063

�rnp 0.17 0.16 0.28 0.19 0.21 0.19(9) 0.18(4) 0.16(2) 0.14(4) 0.20(4) 0.211+0.054
−0.063

aThe isovector giant dipole resonance (GDR) from 208Pb(α, α′) at Eα = 120 MeV [12].
bThe measurement of “pigmy” dipole resonance (PDR) strength from 208Pb(γ, γ ′) [19].
cThe analysis of the x-ray cascade from antiprotonic atoms assuming two-parameter-Fermi distribution for both ρp and ρn [18].
dRef. [9].
eRef. [13].

30–90 MeV, roughly estimated by the correlation in Ref. [54].
Thus we need to develop our analysis and experimental data
for a more precise measurement of the neutron skin thickness.
Extending our analysis to other nuclei is also important to
improve the constraint on the value of the slope L.

IV. SUMMARY

We measured the angular distributions of cross sec-
tions and analyzing powers for polarized proton elastic

0.1

0.15

0.2

0.25

0.3

0.35

0.4

204 206 208

Mass Number

∆r
np

 (
fm

)

Experiment

This work

(p,p) at 650 MeV

antiproton

Model

SkM*

SkP

Sly4

NL3

DD-ME2

FSUGold

FIG. 8. (Color online) Systematic behavior of the neutron skin
thicknesses for 204,206,208Pb. The filled circles are the results of
this work with the two types of error bars. The filled squares
and triangle are from the analysis of proton elastic scattering at
650 MeV [13] and x rays from antiprotonic atoms [18], respectively,
with statistical errors only. The open triangles, crosses, and diamonds
show the calculations of relativistic mean-field models with NL3 [45],
DD-ME2 [46], and FSUGold [47] parametrization and the open
circles, squares, and stars are from nonrelativistic mean-field models
with SkM∗ [43], SkP [44], and Sly4 [48] parametrization.

scattering from 58Ni and 204,206,208Pb at Ep = 295 MeV.
Using the experimental data, we extracted the neutron
density distributions of 204,206,208Pb. To explain the proton
elastic scattering at intermediate energies, phenomenolog-
ical medium modifications were introduced into the free
NN interaction with density-dependent parameters. The
medium-effect parameters were determined from the ex-
perimental observables for 58Ni, whose nucleon density is
well known. After the calibration of the effective NN

interaction, we deduced the neutron density distributions
of 204,206,208Pb in the form of a model-independent SOG
distribution.

Furthermore, we evaluated the error envelopes of the
neutron densities due to both experimental uncertainties and
uncertainties associated with the various model assumptions
in the medium-modified RIA by means of a new χ2 criterion.
The rms radius of the neutron density for 208Pb is consistent
with past results and recent theoretical predictions such as
FSUGold parametrization. The experimental standard errors of
the neutron rms radii (δrstd

n � 0.03 fm) are slightly smaller than
the value of Ref. [13]. Even including the model ambiguity, the
estimated errors of the neutron rms radii (δrmdl

n � 0.06 fm)
were found to be relatively small with an accuracy of
about 1%, but not so small as to determine the slope
coefficient L of the nuclear symmetry energy at saturation
density.

Since unknown systematic errors are also included in the
model uncertainties, further progress from both the experiment
and theory are necessary.
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