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The thermodynamic properties of hot nuclei are described within the canonical and microcanonical ensemble
approaches. These approaches are derived based on the solutions of the BCS and self-consistent quasiparticle
random-phase approximation at zero temperature embedded into the canonical and microcanonical ensembles.
The results obtained agree well with the recent data extracted from experimental level densities by the Oslo group
for 94Mo, 98Mo, 162Dy, and 172Yb nuclei.
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I. INTRODUCTION

Thermodynamic properties of highly excited (hot) nuclei
have been a topic of much interest in nuclear physics. From
the theoretical point of view, thermodynamic properties of
any system can be studied by using three principal statistical
ensembles, namely, the grand canonical ensemble (GCE),
canonical ensemble (CE), and microcanonical ensemble
(MCE). The GCE is an ensemble of identical systems in ther-
mal equilibrium, which exchange their energies and particle
numbers with an external heat bath. In the CE, the systems
exchange only their energies, whereas their particle numbers
are kept the same for all systems. The MCE describes thermally
isolated systems with fixed energies and particle numbers.
For convenience, the GCE is often used in most theoretical
approaches, for example, the conventional finite-temperature
BCS (FTBCS) theory [1], and/or finite-temperature Hartree-
Fock-Bogoliubov theory [2]. These theories, however, fail to
describe thermodynamic properties of finite small systems
such as atomic nuclei or ultrasmall metallic grains. The reason
is that the FTBCS theory neglects the quantal and thermal
fluctuations, which have been shown to be very important
in finite systems [3–8]. These fluctuations smooth out the
superfluid-normal (SN) phase transition, which is a typical
feature of infinite systems as predicted by the FTBCS theory.

Because an atomic nucleus is a system with fixed parti-
cle number, particle-number fluctuations are obviously not
allowed. The use of the GCE in nuclear systems is therefore an
approximation, which is good so long as the effects caused by
particle-number fluctuations are negligible. The CE and MCE
are often used in extending the exact solutions of the pairing
Hamiltonian [8–10] to finite temperature, whereas the CE is
preferred in the quantum Monte Carlo calculations at finite
temperature (FTQMC) [11,12]. However, it is impracticable
to find all the exact eigenvalues of the pairing Hamiltonian
to construct the exact partition functions for large systems.
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For instance, in the half-filled doubly folded multilevel model
(also called the Richardson model) with N = �, where � is the
number of single-particle levels and N the number of particles,
this cannot be done already for N > 14 [8,9]. In addition,
the FTQMC method is quite time consuming and cannot be
applied to heavy nuclei unless a limited configuration space is
picked up. It is worth mentioning that the pairing Hamiltonian
can also be solved exactly by using Richardson’s method, that
is, by solving the Richardson equations. Using this method, the
lowest eigenvalues of the pairing Hamiltonian can be obtained
even for very large systems, for example, with N = � = 1000
(see, e.g., Ref. [13]). Nonetheless, these lowest eigenstates
(obtained after solving the Richardson equations) are not
sufficient for the construction of the exact partition function
at finite temperature since the latter should contain all the
excited states, not only the lowest ones. In principle, CE-based
approaches can also be derived from an exact particle-number
projection (PNP) at finite temperature on top of the GCE-based
approaches [14]. However, this method is rather complicated
for application to realistic nuclei.

The static-path plus random-phase approximation (SPA +
RPA) with exact number parity projection CSPA (p) [15] and
the later extension of the number-projected SPA (NPSPA)
[16] offer quite good agreement with the exact CE of the
Richardson model as well as the empirical heat capacities of
heavy nuclei. However, Ref. [15] makes no comparison with
experimental data, whereas Ref. [16] uses a thermal pairing
gap, which is obtained from a direct extension of the odd-even
mass difference to finite temperature. As has been pointed
out in Ref. [8], this simple extension fails in the region of
intermediate and high temperatures. In principle, the SPA
can also be used to evaluate MCE quantities based on the
GCE ones by fixing the energy and particle number of the
system [17]. However, this method is still quite complicated for
practical applications to realistic nuclei, especially the heavy
ones. From the experimental point of view, the CE and MCE
are usually used to extract various thermodynamic quantities
of nuclear systems. This is carried out by using the nuclear
level density, which can be experimentally measured at low
excitation energy E∗ < 10 MeV. Within the CE, the measured
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level densities are first extrapolated to high E∗ using the back-
shifted Fermi-gas (BSFG) model. The CE partition function is
then constructed, making use of the Laplace transformation
of the level density. Knowing the partition function, one
can calculate all the thermodynamic quantities within the
CE, such as the free energy, total energy, heat capacity,
and entropy. The thermodynamic quantities of the systems
obtained within the MCE are calculated via Boltzmann’s
definition of entropy. Although several experimental data for
nuclear thermodynamic quantities extracted in this way by
the Oslo group have recently been reported [18–21], most of
the present theoretical approaches, derived within the GCE,
cannot well describe these data, which are extracted within
the CE and MCE. Recently, we have proposed a method that
allowed us to construct theoretical approaches within the CE
and MCE to describe rather well thermodynamic properties
of atomic nuclei [22]. The proposed approaches are derived
by solving the BCS and self-consistent quasiparticle RPA
(SCQRPA) equations with the Lipkin-Nogami (LN) PNP for
each total seniority S (number of unpaired particles at zero
temperature) [23]. The results obtained are then embedded into
the CE and MCE. Within the CE, the resulting approaches are
called the CE-LNBCS and CE-LNSCQRPA, whereas they are
called the MCE-LNBCS and MCE-LNSCQRPA within the
MCE. The results obtained within these approaches are found
in quite good agreement with not only the exact solutions of
the Richardson model but also the experimentally extracted
data for the 56Fe nucleus. The merit of these approaches
resides in their simplicity and feasibility in application even to
heavy nuclei, where the exact solution is impracticable and the
FTQMC method is time consuming. The goal of the present
article is to apply these approaches to describe microscopically
the recently extracted thermodynamic quantities for 94,96Mo,
162Dy, and 172Yb nuclei.

The article is organized as follows. The pairing Hamiltonian
and the derivations of the GCE-BCS, CE(MCE)-LNBCS, and
CE(MCE)-LNSCQRPA equations are presented in Sec. II. The
numerical results are analyzed and discussed in Sec. III, and
the conclusions are drawn in the last section.

II. FORMALISM

A. Pairing Hamiltonian

The present article considers the pairing Hamiltonian

H =
∑

kσ=±
εka

†
kσ akσ − G

∑
kk′

a
†
k+a

†
k−ak′−ak′+, (1)

where a
†
kσ and akσ are particle creation and destruction

operators on the kth orbitals, respectively. The subscripts k

here imply the single-particle states in the deformed basis. This
Hamiltonian describes a system of N particles (protons or neu-
trons) interacting via a monopole pairing force with constant
parameter G. The pairing Hamiltonian (1) can be diagonalized
exactly by using the SU(2) algebra of angular momentum
[10]. At finite temperature T �= 0, the exact diagonalization
is done for all total seniority or number of unpaired particles
S because all excited states should be included in the exact

partition function. Here S = 0, 2, . . . , N for even-N systems,
and S = 1, 3, . . . , N − 1 for odd-N systems. For a system of
N particles moving in � degenerate single-particle levels, the
number nExact of exact eigenstates EExact

iS
(iS = 1, . . . , nExact)

obtained within exact diagonalization is given as

nExact =
∑

S

C�
S × C�−S

Npair−S/2, (2)

which combinatorially increases with N , where Cm
n =

m!/[n!(m − n)!] and Npair = N/2 [8]. Therefore, an exact
solution at T �= 0 is impossible for large-N systems, for
example, N > 14 for the half-filled case (N = �), because
of the huge size of the matrix to be diagonalized.

B. GCE-BCS approach

The well-known FTBCS approach to the pairing Hamilto-
nian (1) is derived based on a variational procedure, which
minimizes the grand potential

� = 〈H 〉 − T S − λN so that δ� = 0, (3)

where S is the entropy of the system at temperature T . The
chemical potential λ is a Lagrangian multiplier, which can
be obtained from the equation that maintains the expectation
value of the particle-number operator equal to the particle
number N . The expectation value 〈O〉 denotes the GCE
average of the operator O [6] (Boltzmann’s constant kB is
set to 1),

〈O〉 ≡ Tr[Oe−β(H−λN)]

Tre−β(H−λN)
, β = 1

T
. (4)

The conventional FTBCS equations for the pairing gap � and
particle number N are then given as

� = G
∑

k

ukvk(1 − 2nk), N = 2
∑

k

[
(1 − 2nk)v2

k + nk

]
,

(5)

where the Bogoliubov coefficients uk ,vk , the quasiparticle
energy Ek , and the quasiparticle occupation number nk have
the usual forms:

u2
k = 1

2

(
1 + εk − Gv2

k − λ

Ek

)
,

v2
k = 1

2

(
1 − εj − Gv2

k − λ

Ek

)
. (6)

Ek =
√(

εk − Gv2
k − λ

)2 + �2, nk = 1

1 + eβEk
.

The systems of equations (5) and (6) are called the GCE-
BCS equations. The total energy, heat capacity, and entropy
obtained within the GCE-BCS approach are given by

E = 2
∑

k

[
(1 − 2nk)v2

k + nk

] − �2

G
− G

∑
k

(1 − 2nk)v4
k ,

C = ∂E
∂T

, S = −2
∑

k

[nkln nk + (1 − nk) ln(1 − nk)] .

(7)
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C. CE-LNBCS

Unlike the GCE-BCS, the CE-LNBCS is derived based
on the solutions of the BCS equations combined with the
Lipkin-Nogami PNP [24] at T = 0 for each total seniority S

of the system. When the pairs are broken, the unpaired particles
denoted with the quantum numbers kS block the single-particle
levels k. As the result, these blocked single-particle levels
do not contribute to the pairing correlation. Therefore, the
LNBCS equations at T = 0 can be derived by excluding these
kS blocked levels. These equations are given as

�LNBCS(kS) = G
∑
k �=kS

ukvk, N = 2
∑
k �=ks

v2
k + S, (8)

where

u2
k �=kS

= 1

2

(
1 + εk − Gv2

k − λ(kS)

Ek

)
,

v2
k �=kS

= 1

2

(
1 − εk − Gv2

k − λ(kS)

Ek

)
, (9)

Ek �=kS
=

√[
εk − Gv2

k − λ(kS)
]2 + [�LNBCS(kS)]2, (10)

λ(kS) = λ1(kS) + 2λ2(kS)(N + 1),

λ2(kS) = G

4

∑
k �=kS

u3
kvk

∑
k′ �=k′

S
uk′v3

k′ − ∑
k �=kS

u4
kv

4
k( ∑

k �=kS
u2

kv
2
k

)2 − ∑
k �=kS

u4
kv

4
k

. (11)

As for the blocked single-particle levels, k = kS , their occupa-
tion numbers are always equal to 1/2. Solving the systems
of Eqs. (8)–(11), one obtains the pairing gap �LNBCS(kS),
quasiparticle energies Ek , and Bogoliubov coefficients uk and
vk , which correspond to each position of unpaired particles
on the blocked levels kS at each value of the total seniority
S. There are nLNBCS = ∑

S C�
S configurations of kS levels

distributed among � single-particle levels at each value of
S, which is also the number of eigenstates obtained within the
LNBCS theory. The LNBCS energy (eigenvalue) ELNBCS

iS
for

each configuration is then given by

ELNBCS
iS

= 2
∑
k �=kS

εkv
2
k +

∑
kS

εkS
− [�LNBCS(kS)]2

G

−G
∑
k �=kS

v4
k − 4λ2(kS)

∑
k �=kS

u2
kv

2
k . (12)

The partition function of the so-called CE-LNBCS approach is
constructed by using the LNBCS eigenvalues ELNBCS

iS
as [22]

ZLNBCS(β) =
∑

S

dS

nLNBCS∑
iS=1

e
−βELNBCS

iS , (13)

where dS = 2S is the degeneracy. Knowing the partition
function (13), we can calculate all thermodynamic quantities
of the system such as the free energy F , entropyS, total energy
E , and heat capacity C as follows:

F = −T ln Z(T ), S = −∂F

∂T
, E = F + T S, C = ∂E

∂T
.

(14)

The pairing gap is obtained by averaging the seniority-
dependent gaps �LNBCS

iS
= �LNBCS(kS) at T = 0 in the CE

by means of the CE-LNBCS partition function (13), namely,

�CE-LNBCS = 1

ZLNBCS

∑
S

dS

nLNBCS∑
iS

�LNBCS
iS

e
−βELNBCS

iS . (15)

D. CE-LNSCQRPA

As mentioned previously in Sec. II A, a complete CE
partition function should include all eigenstates. The LNBCS
theory (at T = 0) produces only the lowest eigenstates. For
instance, for even (odd) N there is only one state at S = 0(1),
which is the ground state. For S > 0(1) there are also excited
states in even (odd) systems, whose total number nLNBCS is
much smaller than nExact. Consequently, the results obtained
within the CE-LNBCS method can be compared with the exact
ones only at low T , because at high T , higher eigenstates
(excited states), which the LNBCS theory cannot reproduce,
should be included in the CE partition function. This can
be done by going beyond the quasiparticle mean field and
introducing the LNSCQRPA, which incorporates not only the
ground states but also the pairing vibrational excited states
predicted by the QRPA [23]. The derivation of the LNSCQRPA
equations has been presented in detail in Refs. [7,23,25], so
we do not repeat it here. The LNSCQRPA formalism at T = 0
for each total seniority S proceeds in the same way as that
of the LNBCS described in the previous section, namely, the
LNSCQRPA equations are derived only for the unblocked
levels k �= kS , whereas the levels blocked by the unpaired
particles k = kS do not contribute to the pairing Hamiltonian.
The SCQRPA equation at T = 0 has been derived in Ref. [23],
and the final form reads(

A B

B A

) (
Xν

k

Y ν
k

)
= ων

(
Xν

k

−Y ν
k

)
. (16)

The SCQRPA submatrices are given by

Akk′ = 2

[
bk + 2qkk′ + 2

∑
k′′

qkk′′(1 − Dk′′)

− 1

Dk

(∑
k′′

dkk′′ 〈0̄|A†
k′′Ak|0̄〉

− 2
∑
k′′

hkk′′ 〈0̄|Ak′′Ak|0̄〉
)]

δkk′

+ dkk′
√
DkDk′ + 8qkk′

〈0̄|A†
kAk′ |0̄〉√
DkDk′

, (17)

Bkk′ = −2

[
hkk′ + 1

Dk

( ∑
k′′

dkk′′ 〈0̄|Ak′′Ak|0̄〉

+ 2
∑
k′′

hkk′′ 〈0̄|A†
k′′Ak|0̄〉

)]
δkk′

+ 2hkk′
√
DkDk′ + 8qkk′

〈0̄|AkAk′ |0̄〉√
DkDk′

, (18)

where bk , dkk′ , hkk′ , and qkk′ (all k �= kS) are functions of uk ,
vk , εk , λ, and G as given in Eqs. (13), (15), (17), and (18) of

044316-3



N. QUANG HUNG AND N. DINH DANG PHYSICAL REVIEW C 82, 044316 (2010)

TABLE I. Number of eigenstates and computation time for the exact diagonalization of the pairing Hamiltonian as well as the numerical
calculations within the CE-LNBCS and CE-LNSCQRPA for the doubly folded equidistant multilevel pairing model at several values of N = �.
The computation time is estimated based on a shared large-memory computer Altix 450 with 512 gigabytes of memory in the RIKEN Integrated
Cluster of Clusters (RICC) system.

N Number of eigenstates Computation time

Exact LNBCS LNSCQRPA Exact LNBCS LNSCQRPA

10 8953 512 2560 1 h 1 s 10 s
12 73 789 2048 12 288 10 h 10 s 1 min
14 616 227 8192 57 344 24 h 1 min 10 min
16 5 196 627 32 768 262 144 – 10 min 1 h
18 44 152 809 131 072 1 179 648 – 1 h 3 h
20 377 379 369 524 288 5 242 880 – 3 h 10 h

Ref. [23]. The screening factors 〈0̄|A†
kAk′ |0̄〉 and 〈0̄|AkAk′ |0̄〉,

with A† ≡ α
†
kα

†
−k the creation operator of a two-quasiparticle

pair, are given in terms of the SCQRPA amplitudes X ν
k and Yν

k

as

〈0̄|A†
kAk′ |0̄〉 =

√
〈Dk〉〈Dk′ 〉

∑
ν

Yν
kYν

k′,

(19)
〈0̄|AkAk′ |0̄〉 =

√
〈Dk〉〈Dk′ 〉

∑
ν

X ν
k Yν

k′,

where 〈0̄| · · · |0̄〉 denotes the expectation value in the
SCQRPA ground state. The ground-state correlation factor
Dk is expressed in term of the backward-going amplitudes Yν

k

as Dk = [1 + 2
∑

ν(Yν
k )2]−1 with the sum running over all the

SCQRPA solutions ν.
After solving the LNSCQRPA equations (8) and (16)–(18)

for each total seniority S, we obtain a set of eigenstates,
consisting of the C�

S lowest eigenstates (the ground state at
S = 0 or 1) as well as higher eigenstates (excited states) on
top of these lowest ones, which come from the solutions of
the LNSCQRPA equations with the eigenvalues ω(S)

ν (ν =
1, . . . , � − S).1 As a result, the total number of eigenstates
obtained within the LNSCQRPA is given by

nLNSCQRPA =
∑

S

C�
S × (� − S). (20)

Consequently, the so-called CE-LNSCQRPA partition func-
tion is calculated as

ZLNSCQRPA(β) =
∑

S

dS

nLNSCQRPA∑
iS=1

e
−βELNSCQRPA

iS , (21)

which is formally identical to the CE-LNBCS partition func-
tion (13), but the LNBCS eigenvalues ELNBCS

iS
are now replaced

by ELNSCQRPA
iS

. From this partition function, the thermody-
namic quantities obtained within the CE-LNSCQRPA theory
are calculated in the same way as those in Eq. (14). Although
the number nLNSCQRPA of the LNSCQRPA eigenstates is larger

1The SCQRPA has altogether � − S + 1 solutions with positive
energies. However, the lowest one corresponds to the spurious mode,
whose energy is zero within the QRPA. Therefore it is excluded in
the numerical calculations.

than nLNBCS, it is still much smaller than nExact. This most
important feature of the present method tremendously reduces
the computing time in numerical calculations for heavy nuclei.
As an example, we show in Table I the number of eigenstates
and the total executing time (the elapsed real time) for the exact
diagonalization of the pairing Hamiltonian in CE-LNBCS and
CE-LNSCQRPA calculations within the Richardson model at
several values N of particle number, which is taken to be
equal to the number � of single-particle levels (the half-filled
case). This table shows that the execution time within the
LNSCQRPA (LNBCS) is shorter than that consumed by exact
diagonalization by about two (four) orders.

E. MCE-LNBCS and MCE-LNSCQRPA

The MCE entropy is calculated by using the Boltzmann
definition

S(E) = lnW(E), W(E) = ρ(E)δE, (22)

where ρ(E) is the density of states. In the LNBCS (LNSC-
QRPA), W(E) is the number of LNBCS (LNSCQRPA) eigen-
states within the energy interval (E, E + δE) [8]. Knowing
the MCE entropy, one can calculate the MCE temperature as
the first derivative of the MCE entropy with respect to the
excitation energy E , namely,

T =
[
∂S(E)

∂E

]−1

. (23)

The corresponding approaches, which embed the LNBCS and
LNSCQRPA eigenvalues into the MCE, are called the MCE-
LNBCS and MCE-LNSCQRPA, respectively.

F. Level density

The inverse relation of Eq. (22) reads

ρ(E) = eS(E)/δE, (24)

which can be used to calculate the density of states ρ(E) from
the fitted MCE entropy.

Within the CE, the density of states ρ(E) is calculated by
using the method of steepest descent to find the minimum
of the Laplace transform of the partition function [26]. As
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a result, the density of states ρ(E) at temperature T = β−1
0 ,

which corresponds to this minimum, is approximated as

ρ(E) ≈ Z(β0)eβ0E
[

2π
∂2lnZ(β0)

∂β2
0

]−1/2

≡ eS(E)

(
−2π

∂E
∂β0

)−1/2

, (25)

where Z(β0), S(E), and E are the CE partition function,
entropy, and total excitation energy of the systems, re-
spectively. The density of states ρ(E) is obtained within
the CE-LNBCS and CE-LNSCQRPA by replacing the par-
tition function Z in Eq. (25) with that obtained within
the CE-LNBCS in Eq. (13) and CE-LNSCQRPA in Eq. (21).

At finite angular momentum J , in principle, the approach
of LNSCQRPA plus angular momentum, which has been
proposed by us in Ref. [27], should be used to calculate
the angular-momentum-dependent level density ρ(E,M) with
M being the z projection of the total angular momentum. In
this case the former doubly degenerate quasiparticle levels are
resolved under the constraint M = ∑

k mk(n+
k − n−

k ) with the
quasiparticle occupation numbers n±

k , which are described by
the Fermi-Dirac distribution n

±,FD
k = {exp[β(Ek ∓ γmk)] +

1}−1 within the noninteracting quasiparticle approximation,
where mk is the spin projection of the kth single-particle
state |k,±mk〉, Ek is the quasiparticle energy, and γ is the
rotation frequency. Knowing ρ(E,M), one can find ρ(E, J ) =
ρ(E,M = J ) − ρ(E,M = J + 1) in the general case where
the total angular momentum J is not aligned with the
z axis [28]. The total level density ρtot(E) and experimentally
observed level density ρobs(E), are then defined as [29]

ρtot(E) =
∑

J

(2J + 1)ρ(E, J ), ρobs(E) =
∑

J

ρ(E, J ).

(26)

The empirical entropy Sobs(E) is extracted from the observed
level density ρobs(E) in the same way as in Eq. (22), replacing
ρ(E) with ρobs(E), namely,

Sobs(E) = ln[ρobs(E)δE]. (27)

Because the present article considers nonrotating nuclei at
low angular momentum, we assume that ρ(E, J ) 
 ρ(E, 0) ≡
ρ(E). Therefore, by fitting the MCE entropyS(E) in Eq. (22) to
the experimentally observed entropy Sobs(E) in Eq. (27), that
is, S(E) 
 Sobs(E), and inverting the result obtained by using
Eq. (24), what we get is actually a level density comparable
to the experimentally observed one, ρobs(E) = exp[S(E)]/δE .
This means that the density of states ρ(E) calculated by using
Eq. (24) or Eq. (25) without taking into account the effect
of finite angular momentum is identical to the level density
ρobs(E), not the total level density ρtot(E), because of the
absence of the factor (2J + 1).

III. ANALYSIS OF NUMERICAL RESULTS

The proposed approaches are used to calculate the pairing
gap, total energy, entropy, and heat capacity within the CE and
MCE for a number of heavy isotopes, namely, 94,98Mo, 162Dy,

and 172Yb.2 The single-particle energies are taken from the
axially deformed Woods-Saxon potential with the depth of the
central potential [30]

V = V0

[
1 ± k

N − Z

N + Z

]
, (28)

where V0 = 51.0 MeV, k = 0.86, and the plus and minus signs
stand for proton (Z) and neutron (N ), respectively. The radius
r0, diffuseness a, and spin-orbit strength λ are chosen to be
r0 = 1.27 fm, a = 0.67 fm, and λ = 35.0. The quadrupole
deformation parameters β2 are estimated from the experimen-
tal B(E2; 2+

1 → 0+
1 ) values, and are 0.15, 0.17, 0.281, and

0.296 for 94Mo, 98Mo, 162Dy, and 172Yb, respectively [21].
The pairing interaction parameters G are adjusted so that
the pairing gaps for neutrons and protons obtained within
the LNSCQRPA at T = 0 and S = 0 reproduce the values
extracted from the experimental odd-even mass differences,
namely, �N 
 1.2, 1.0, 0.8, and 0.8 MeV for neutrons, and
�Z 
 1.4, 1.3, 0.9, and 0.9 MeV for protons in 94Mo, 98Mo,
162Dy, and 172Yb, respectively.

It is well known that pairing is significant only for the levels
around the Fermi energy. Therefore, within the CE, we apply
the same prescription proposed in Ref. [12] to calculate the CE
partition function for medium and heavy isotopes. According
to this prescription, we calculate the LNBCS and LNSCQRPA
pairing gaps in the space spanned by 22 degenerate (proton
or neutron) single-particle levels above the doubly magic 48Ca
core for Mo isotopes; the same is done on top of the doubly
magic 132Sn core for the Dy and Yb nuclei. The partition
function obtained is then combined with those obtained within
the independent-particle model (IPM) by using Eq. (15) of
Ref. [12], namely,

ln Z′
ν = ln Z′

ν,tr + ln Z′
sp − ln Z′

sp,tr, (29)

where Z′
ν,tr ≡ Zν,tre

βE0 is the excitation partition function with
respect to the ground state energy E0 and Zν,tr is the CE
partition function obtained within the LNBCS [Eq. (13)] or
LNSCQRPA [Eq. (21)] for 22 degenerate single-particle levels
around the Fermi energy. Z′

sp is the CE partition function
obtained within the IPM [see, e.g., Eq. (8) of Ref. [12]] for the
space spanned by the levels from the bottom to the N = 126
closed shell, whereas Z′

sp,tr is the same partition function but
for the truncated space spanned by 22 levels around the Fermi
energy.

A. Results for molybdenum

Shown in Fig. 1 are the pairing gaps, heat capacities and
entropies for 94Mo [Figs. 1(a)–1(c)] and 98Mo [Figs. 1(d)–
1(f)] obtained within the CE(MCE)-LNBCS and CE(MCE)-
LNSCQRPA versus the experimental data from Refs. [20]
and [21]. There is a clear discrepancy in the heat capacities
extracted from the same measured level density in these two

2See, e.g. Fig. 1 of Ref. [22] and the Appendix of the present article
for the accuracy of the present approaches in comparison with the
exact solutions of the Richardson model.
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FIG. 1. (Color online) Pairing gaps � and heat capacities C

obtained within the CE as functions of T and entropies S obtained
within the MCE as functions of E∗ for 94Mo (left panels) and 98Mo
(right panels). In (a) and (d), the solid and dash-dotted lines denote the
pairing gaps for protons and neutrons, respectively, whereas the thin
and thick lines correspond to the CE-LNBCS and CE-LNSCQRPA
results, respectively. In (b) and (e), the thin and thick solid lines
stand for the CE-LNBCS and CE-LNSCQRPA results, whereas the
thin and thick dash-dotted lines depict the experimental results taken
from Refs. [20] and [21], respectively. Shown in (c) and (f) are
the MCE entropies obtained within the MCE-LNBCS (squares) and
MCE-LNSCQRPA (triangles), and extracted from experimental data
(circles with error bars) of Ref. [20].

papers [Figs. 1(b) and 1(e)]. The heat capacity, extracted in
Ref. [21], clearly shows a pronounced peak at T ∼ 0.7 MeV
for both 94Mo and 98Mo, whereas the corresponding quantity,
extracted in Ref. [20], shows no trace of any peak. The source
of the discrepancy is the difference in the scale of the excitation
energy E∗ that was used for extrapolating the measured level
density before evaluating the CE partition function using the
Laplace transformation of the level density. In Ref. [20], the
level density is extrapolated up to E∗ ∼ 40–50 MeV, whereas
in Ref. [21] this is done up to E∗ = 180 MeV. Given that
all the excited states should be included in the partition
function, the energy E∗ ∼ 40–50 MeV used in Ref. [20]
seems to be too low, which might affect the resulting heat
capacity. As Figs. 1(b) and 1(e) show, the heat capacities
predicted by the CE-LNSCQRPA are much closer to those
obtained in Ref. [21]. They are also consistent with the
FTQMC calculations for other nuclei [11,12]. It is important
to emphasize here that quantal and thermal fluctuations within
the CE-LNBCS(LNSCQRPA) indeed smooth out the SN
phase transition. As a result, the pairing gaps [Figs. 1(a)

and 1(d)] obtained for protons (solid lines) and neutrons
(dash-dotted lines) within both the CE-LNBCS (thin lines)
and CE-LNSCQRPA (thick lines) do not collapse at the critical
temperature T = Tc of the SN phase transition, as predicted
by the GCE-BCS approach, but monotonically decrease with
increasing T . The neutron gap in Fig. 1(a) obtained within the
CE-LNSCQRPA for 94Mo (thick dash-dotted lines) is close
to the three-point gap (dashed lines) obtained in Ref. [21]
by simply extrapolating the odd-even mass formula to finite
temperature. As has been pointed out in Ref. [8], such a
naive extrapolation contains the admixture with a contribution
from uncorrelated single-particle configurations, which do
not contribute to the pairing correlation. Therefore, to avoid
obviously wrong results at high T , this contribution should
be removed from the total energy of the system. Nonetheless,
in the low-temperature region (T < 1.3 MeV), as considered
here, where the contribution of uncorrelated single-particle
configurations is expected to be small, the simple extension of
the three-point odd-even mass formula to T �= 0 can still serve
as a useful indicator.

As has been discussed in Ref. [22], at low E∗ the genuine
thermodynamic observable is the MCE entropy because it
is calculated directly from the observable level density by
using the Boltzmann definition (22). The experimental MCE
entropies for 94,98Mo are plotted in Figs. 1(c) and 1(f)
along with the predictions by the MCE-LNBCS and MCE-
LNSCQRPA. These figures show that the MCE-LNSCQRPA
results fit the available experimental data remarkably well. It
is worth mentioning that the results obtained within the MCE-
LNBCS(LNSCQRPA) are sensitive to the choice of energy
interval δE , which is used to calculate the number of accessible
states W(E) in Eq. (22). Figure 2 shows the entropies obtained
within the CE-LNSCQRPA for 94Mo using several values of
δE ranging from 0.2 MeV to 1.0 MeV. It is clear from this figure
that the MCE entropies increase with δE . In this respect, we
found that the values of δE = 1 MeV for 94Mo and 0.7 MeV for
98Mo are reasonable to fit the experimental data. The reason
for choosing large values of δE for these two nuclei comes
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FIG. 2. (Color online) Microcanonical entropy as function of E∗

obtained within the MCE-LNSCQRPA for 94Mo using various values
of energy interval δE .
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from the deficiency of the CE-LNSCQRPA(LNBCS), which
includes only low-lying excited states.

B. Results for dysprosium and ytterbium

The results obtained for 162Dy and 172Yb are shown
in Fig. 3. Similar to the results for 94,98Mo, the CE heat
capacities and MCE entropies obtained within the CE(MCE)-
LNSCQRPA for both 162Dy and 172Yb are in good agreement
with the experimental data. The neutron and proton gaps
obtained within the CE-LNBCS(LNSCQRPA) do not collapse
at T = Tc but decrease with increasing T and remain finite at
high T even for the two heavy nuclei considered here. The
peak in the experimental heat capacity near T = 0.4 MeV is
seen in 172Yb, whereas it disappears in 162Dy. This is again
because the measured level densities for these two nuclei are
extrapolated only up to E∗ = 40 MeV instead of 180 MeV as
was done in Ref. [21] for other nuclei. This is confirmed by
the heat capacities obtained within the CE-LNSCQRPA (thick
solid lines), which clearly show a peak around T = 0.4 MeV.
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FIG. 3. (Color online) (a), (b), (e), and (f): Pairing gaps �, heat
capacities C as functions of T obtained within the CE; (c), (d), (g),
and (h): Entropies S and temperatures T as functions of E∗ obtained
within the MCE for 162Dy (left panels) and 172Yb (right panels).
Notations are the same as those in Fig. 1. Experimental data are taken
from Ref. [19].

In Figs. 3(d) and 3(h), one can see that the MCE tem-
peratures, extracted from the experimental data (circles with
error bars) by using Eq. (23), scatter around the experimental
(thick dash-dotted lines) or theoretical (thick and thin lines)
CE results. The results of calculations with the MCE-LNBCS
(squares) and MCE-LNSCQRPA (triangles) by using the same
definition (23) and δE = 0.5 also describe these values well.
The results for MCE entropies in Figs. 1 and 3 show the
importance of the effect beyond the quasiparticle mean field
included in the self-consistent coupling to QRPA vibrations.
In fact, the MCE-LNSBCS results for the entropy clearly
underestimate the experimental values. The discrepancy with
the MCE-LNSCQRPA results increases with E∗ to reach about
20% at E∗ = 20 MeV.

C. Level density

The level densities obtained within the CE-LNSCQRPA
using Eq. (25) and MCE-LNSCQRPA using Eq. (24) are
plotted in Fig. 4 as functions of excitation energy E∗ in
comparison with the experimental data [19,20] ρobs(E) = ρ0 ×
exp[Sobs(E)]. In the latter ρ0 is a normalization factor, which
should be put equal to 1/δE according to Eq. (27). However,
because of fluctuations in level spacings, which make the
entropy sensitive to δE , the authors of Ref. [19,20] chose the
values of ρ0 to obtain entropy Sobs = 0 at T = 0. In this way
the value of ρ0 is set to 1.5 MeV−1 for 94,98Mo [20] and
3 MeV−1 for 162Dy and 172Yb [19]. Figure 4 shows that the
level densities obtained within the MCE-LNSCQRPA offer
the best fit to the experimental data for all nuclei under consid-
eration. The results obtained within the CE-LNSCQRPA are
closer to the experimental data for 94,98Mo at E∗ � 4 MeV,
whereas at higher E∗ the MCE-LNSCQRPA offers a better
performance. The S shape in the MCE-LNSCQRPA level
density at low E∗ might have come from the fixed value of
the energy interval δE , within which the levels are counted,
according to the definition (22), whereas the denominator in
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the definition of the CE level density [at the right-hand side
of Eq. (25)] depends on E∗. A larger value of δE at E∗ �
4 MeV would eventually increase the MCE-LNSCQRPA level
density, improving the agreement with the observed level
density in this region, but there is no physical justification
for doing this. The discrepancy between the CE-LNSCQRPA
and experimental results seems to be larger and increases
with E∗ for 162Dy and 172Yb. This might be caused by the
absence of the contribution of higher multipolarities such as
dipole, quadrupole, etc., which are not included in the present
study and may be important for rare-earth nuclei. The use of
SCQRPA plus angular momentum [27], discussed previously,
may also improve the agreement.

IV. CONCLUSIONS

The present article applies the canonical and microcanon-
ical ensembles of the LNBCS and LNSCQRPA, derived in
Ref. [22], to describe the thermodynamic properties as well
as level densities of several nuclei, namely, 94,98Mo, 162Dy,
and 172Yb. The results obtained show that the CE(MCE)-
LNSCQRPA describe quite well the recent experimental level
densities and the thermodynamic quantities extracted for these
nuclei by the Oslo group [18–21]. They confirm that the SN
phase transition is smoothed out in nuclear systems because
of the effects of quantal and thermal fluctuations, leading to a
nonvanishing pairing gap at finite temperature even in heavy
nuclei [3–8]. The discrepancy between the heat capacities
obtained within the two different experimental works, which
extrapolate the same experimental level density to different
excitation energies, is also discussed. The heat capacities
obtained within the CE-LNBCS(LNSCQRPA) for all nuclei

show a pronounced peak at T ∼ Tc, whereas the results
extracted from the same experimental data by Refs. [20] and
[21] show different behaviors. The better agreement between
the predictions of our approaches as well as those of the
FTQTMC and the results of Ref. [21] gives a strong indication
of the fact that, to construct an adequate partition function for
a good description of thermodynamic quantities, the measured
level density should be extended up to very high excitation
energy E∗ ∼ 180 MeV or 200 MeV. The small differences
between the CE(MCE)-LNBCS(LNSCQRPA) results and the
experimental data might be caused by the absence of the con-
tribution of higher multipolarities such as dipole, quadrupole,
etc., which are not included in the present study. In order to
tackle this issue, the LNSCQRPA plus angular momentum [27]
should be used and extended to included also the multipole
residual interactions higher than the monopole pairing force.
This task remains one of the subjects of our study in the future.
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APPENDIX: MCE RESULTS WITHIN
THE RICHARDSON MODEL

The CE-LNBCS and CE-LNSCQRPA have been tested
within the Richardson model in Ref. [22] and the results
obtained are found in very good agreement with the exact
solutions whenever the latter are available. In order to
have more convincing evidence of the accuracy of present
approaches, we show in Fig. 5 the MCE entropies and
level densities obtained within the MCE-LNBCS and MCE-
LNSCQRPA versus the exact ones for the Richardson model
with N = � = 14 and G = 1 MeV. Two different values of
energy interval δE , namely, δE = 1 MeV (left panels) and
δE = 5 MeV (right panels), are used in calculations. This
figure shows that the MCE-LNSCQRPA always offers the
best fit to the exact results, whereas the MCE-LNBCS results
underestimate the exact ones. The decreasing of the entropy
as well as level density for the case with a small value of
δE = 1 MeV shown in Figs. 5(a) and 5(b) is due to the small
configuration space with N = � = 14 in the present case.
This feature is ultimately related to the problem of using
thermodynamics in very small systems with discrete energy
levels, where the temperature may decrease with increasing
excitation energy E∗ (see Fig. 2 of Ref. [8]). This shortcoming
can be effectively overcome by using a larger δE = 5 MeV.
As a result, the entropy and level density increase with
increasing E∗, as shown in the right panels of Fig. 5, although
there is no physical justification for using such a large value
of δE .
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