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Isospin mixing and the continuum coupling in weakly bound nuclei

N. Michel,1,2 W. Nazarewicz,3,4,5,6 and M. Płoszajczak7

1CEA/DSM/IRFU/SPhN Saclay, F-91191 Gif-sur-Yvette, France
2Department of Physics, Post Office Box 35 (YFL), University of Jyväskylä, FI-40014 Jyväskylä, Finland
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The isospin-breaking effects due to the Coulomb interaction in weakly bound nuclei are studied using
the Gamow shell model, a complex-energy configuration-interaction approach which simultaneously takes
into account many-body correlations between valence nucleons and continuum effects. We investigate the
near-threshold behavior of one-nucleon spectroscopic factors and the structure of wave functions along an
isomultiplet. Illustrative calculations are carried out for the T = 1 isobaric triplet. By using a shell-model
Hamiltonian consisting of an isoscalar nuclear interaction and the Coulomb term, we demonstrate that for weakly
bound or unbound systems the structure of isobaric analog states varies within the isotriplet and impacts the
energy dependence of spectroscopic factors. We discuss the partial dynamical isospin symmetry present in
isospin-stretched systems, despite the Coulomb interaction that gives rise to large mirror symmetry-breaking
effects.
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I. INTRODUCTION

The charge independence of nuclear force gives rise to
isospin symmetry [1,2] and the formalism of isotopic spin has
proven to be a very powerful concept in nuclear physics [3].
While useful, isospin symmetry is not perfectly conserved.
On the hadronic level, isospin is weakly violated due to the
difference in the masses of the up and down quarks [4–6]. The
main source of isospin breaking in atomic nuclei lies, however,
in the electromagnetic interaction [7].

The members of a nuclear isomultiplet, in particular mirror
nuclei, provide a unique playground for studying isospin
physics. The invariance under rotations in isospin space
implies that energies of excited states in an isomultiplet
should be identical; the deviations are usually attributed to
the Coulomb force [3,8–11]. However, for nuclear states close
to or above the reaction thresholds, the isospin breaking
can be modified by the coupling to the particle continuum.
Here, a spectacular example is the Thomas-Ehrman (TE)
effect [12–14] that occurs when one of the mirror states is
unstable against particle emission due to a large asymmetry
between proton and neutron emission thresholds. The resulting
TE energy shifts strongly depend on the angular momentum
content of the nuclear state and can be fairly large for low
partial waves [15,16].

The TE effect has also a direct consequence for the
structure of mirror wave functions [17–20]. Indeed, for near-
threshold states, the configuration mixing involving scattering
states strongly depends on (i) positions of particle emission
thresholds in mirror systems (the binding energy effect) [21]
and (ii) different asymptotic behavior of neutron and proton
wave functions. The latter leads to the universal behavior of
cross sections [22,23] and spectroscopic factors (SFs) [24,25]
in the vicinity of a reaction threshold.

Recently, SFs and asymptotic normalization coefficients
have been discussed in mirror systems within cluster ap-
proaches [19,20], and strong mirror symmetry-breaking in
mirror SFs has been predicted. The main focus of this work
is on the isospin mixing and mirror symmetry-breaking in the
isobaric analog states (IAS) of light nuclei. We show how
the different asymptotic behaviors within an isomultiplet and
the isospin-nonconserving (INC) Coulomb interaction impact
wave functions of IASs and resulting SFs. Our theoretical
framework is the complex-energy continuum shell model, the
Gamow Shell model (GSM) [26–29]. GSM is a configuration-
interaction approach with a single-particle (s.p.) basis given
by the Berggren ensemble [30] which consists of Gamow
(bound and resonance) states and the nonresonant scattering
continuum.

This article is organized as follows. Section II presents the
details of the GSM calculations, with a particular focus on
the treatment of the Coulomb potential and the recoil term.
SFs in IASs are discussed in Sec. III. Therein, we study the
dependence of SFs on the position of one- and two-particle
thresholds. Our calculations are performed for prototypical
T = 1 isotriplets consisting of Jπ = 0+ and 2+ IASs in 6He,
6Li, and 6Be. To remove the binding energy effect, we assume
identical 1n/1p emission thresholds. In this way, we isolate the
effect of the continuum coupling on isospin mixing and study
it in the vicinity of proton and neutron drip lines. The results
for 6He, 6Li, and 6Be are discussed in Sec. IV by considering
experimental and predicted one-particle thresholds. We point
out that the conservation of isospin in the low-lying states
of 6Be can be explained in terms of the partial dynamical
isospin symmetry present in the GSM wave functions of this
isospin-aligned system. Finally, the conclusions are contained
in Sec. V.
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II. THE MODEL

The GSM Hamiltonian is diagonalized in the many-body
Slater determinants spanned upon the Berggren s.p. basis. The
many-body resonant states of GSM obey the generalized vari-
ational principle [31]; they are obtained using the generalized
Davidson procedure that has been developed analogously to
the generalized Lanczos procedure in the context of GSM (see
Refs. [26,29] for details).

We assume in the following that the nucleus can be
described as a system of nπ valence protons or nν valence
neutrons evolving around a closed core. Since our discussion
concerns the isobaric triplet 6He-6Li-6Be, we take 4He as a
core. Consequently, the nuclei 5He and 5Li can be considered
as one-particle systems, and 6He, 6Li, and 6Be can be
considered as two-particle systems. In calculations involving
5He and 6He, the s.p. basis is generated by a Woods-Saxon
(WS) potential with the radius R0 = 2 fm, diffuseness d =
0.65 fm, and spin-orbit strength Vso = 7.5 MeV. The depth of
the central potential V0 has been varied to move the binding
energy of a one-neutron system, 5He (i.e., the one-neutron
threshold). For V0 = 47 MeV (the 5He parameter set), this
potential reproduces energies and widths of experimental 3/2−

1
and 1/2−

1 resonances in 5He.
The GSM results should be free from spurious center-

of-mass (c.m.) motion. To cope with this problem in our
GSM approach, we adopt a system of intrinsic nucleon-core
coordinates inspired by the cluster orbital shell model (COSM)
[32,33]. In the COSM coordinates, the translationally invariant
GSM Hamiltonian can be written as

H =
nπ +nν∑
i=1

[
p2

i

2µ
+ Ui

]
+

nπ +nν∑
i<j

[
Vij + 1

Ac

pi pj

]
, (1)

where µ is the reduced mass of the nucleon + core system,
Ui is the one-body WS potential representing the field of the
core, Vij is the two-body residual interaction between valence
nucleons, and the two-body term A−1

c pi pj , with Ac being
the mass of the core, takes into account the recoil of the active
nucleons.

The modified finite-range surface Gaussian interaction
(MSGI) used in this study is a variant of the finite-range surface
Gaussian interaction (SGI) [28]. To discuss the motivation
behind MSGI, we begin with the definition of the two-body
residual interaction SGI:

V SGI
J,T (r1, r2)

= V0(J, T ) exp

[
−

(
r1 − r2

µI

)2
]

δ(r1 + r2 − 2R0)

= V0(J, T )
+∞∑
�=0

exp

(
− r2

1 + r2
2

µ2
I

)
δ(r1 + r2 − 2R0)

× i�(2� + 1)j�

(
2r1r2

iµ2
I

)
Y �(r̂1) · Y �(r̂2), (2)

where µI is the interaction range; V0(J, T ) is the strength of
the interaction, which depends on the total angular momentum
J and isospin T ; R0 is the radius of the one-body Woods-Saxon
potential; and r̂ = r/r .

The contact term represented by the Dirac δ function in
Eq. (2) generates unwanted divergences in momentum space
analogous to those present for zero-range interactions. To
rectify this problem, we replace the radial form factors of
the multipole expansion of SGI by separable terms, chosen
independently of � for simplicity. With this choice, the
modified interaction MSGI reads

V MSGI
J,T (r1, r2)

= V0(J, T ) exp

[
−

(
r1 − R0

µI

)2
]

exp

[
−

(
r2 − R0

µI

)2
]

×F (R0, r1)F (R0, r2)
�max∑
�=0

Y �(r̂1) · Y �(r̂2), (3)

where

F (R0, r) =
[

1 + exp

(
r − 2R0 + rf

µF

)]−1

(with rF = 1 fm and µF = 0.05 fm) is a Fermi function that
makes MSGI practically vanish at r > 2R0.

The surface character of MSGI is incorporated through
the Gaussians centered at R0. Due to the separability of the
radial form factors and the presence of the radial Fermi cutoff,
two-body radial matrix elements of MSGI are products of one-
dimensional integrals that are nonzero only for 0 < r < 2R0;
hence, they are as easy to calculate as the radial integrals of SGI
[28]. The range of MSGI is fixed at µI = 1 fm. The coupling
constants V0(J, T ) are adjusted to the binding energies’ ground
states (g.s.) and the first 2+ states of 6He and 6Be. It is important
to point out that the two-body nuclear GSM interaction of
Eq. (3) is isoscalar by construction. That is, in our work, we
do not address the question of INC nuclear forces.

The valence space for neutrons and protons consists of
all partial waves of angular momentum � = 0, 1, and 2.
Consequently, the orbital angular momentum cutoff in Eq. (3)
is �max = 2. The p3/2 wave functions include a 0p3/2 resonant
state and p3/2 nonresonant scattering states along a complex
contour enclosing the 0p3/2 resonance in the complex k plane.
For the remaining partial waves, that is, s1/2, p1/2, d3/2, and
d5/2, we take the nonresonant contour along the real-k axis (the
broad 0p1/2 resonant state plays a negligible role in the g.s.
wave function of 6He and 6Be). For all contours, the maximal
momentum value is kmax = 4 fm−1. The contours have been
discretized with up to 80 points.

In calculations for systems having valence protons, one
has to consider explicitly the Coulomb interaction. For 5Li,
it is represented by a one-body Coulomb potential of 4He. In
principle, one could approximate it by a Coulomb potential
of a uniformly charged sphere of radius R0. However, such
a potential is inconvenient to use because of its nonanalytic
behavior at R0. Therefore, we use the dilatation-analytic
form of the Coulomb potential U (Z)

c [34–36], generated by
a Gaussian proton density:

U (Z)
c (r) = Ze2 erf(r/νc)

r
. (4)

In this equation, νc = 4R0/(3
√

π ), where R0 is the radius of
the WS potential, and Z is the number of protons of the target,
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for example, Z = 2 for the “proton + 4He core” system. This
choice of R0 assures that the Coulomb potential given by
Eq. (4) and the uniformly charged sphere potential are equal
at r = 0.

The nucleus 6Be has two valence protons outside the 4He
core. Consequently, the two-body Coulomb interaction Vc

has to be considered. Unfortunately, the calculation of the
two-body matrix elements of Vc in a basis generated by the
one-body part of the GSM Hamiltonian is impractical because
of difficulties associated with computing two-dimensional
integrals with the complex scaling method for resonant and
scattering basis states. A more practical procedure can be de-
veloped if one notices that at large distances the Coulomb term
U (2)

c + Vc must behave as U (3)
c (r) ∼ 3e2r−1. Consequently,

since U (Z)
c is additive in Z, one can rewrite the Coulomb

interaction in the 6Be Hamiltonian as U (3)
c + (Vc − U (1)

c ). The
short-range character of the operator Vc − U (1)

c suggests using
a method that consists of expanding two-body operators in a
truncated basis of harmonic oscillator (HO) states [37]:

Vc − U (1)
c � [

Vc − U (1)
c

](N)

= PN

[
Vc − U (1)

c

]
PN

=
N∑

αβγ δ

|αβ〉〈αβ|Vc − U (1)
c |γ δ〉〈γ δ|, (5)

where Greek letters label HO states, N is the number of HO
states used in a given partial wave, and PN is a projector:

PN =
N∑
αβ

|αβ〉〈αβ|. (6)

To justify the approximation stated in Eq. (5), let us
consider a normalizable two-body eigenstate |�〉. |�〉
can be either bound or resonant because resonant states
become integrable when complex scaling is applied to radial
coordinates [38]. In this case, |�〉 can be expanded in the HO
basis used in Eq. (5). According to Eq. (6), PN |�〉 → |�〉
when N → +∞. Hence, the matrix elements of the operator
[Vc − U (1)

c ](N) involving two-body normalizable states
converge to those of Vc − U (1)

c when N → +∞, that is,
〈�f |[Vc − U (1)

c ](N)|�i〉 → 〈�f |Vc − U (1)
c |�i〉. The latter

equality is independent of the basis used to expand |�i〉 and
|�f 〉. In particular, one can use the Berggren basis for this
purpose. The short-range character of the operator Vc − U (1)

c

implies that 〈�f |[Vc − U (1)
c ](N)|�i〉 should converge rapidly

with N . This argument can be easily generalized for
many-body wave functions with more than two particles.

The matrix elements in Eq. (5) can be calculated efficiently
using the Brody-Moshinsky transformation. The computation
of one-body overlap integrals between the Berggren basis and
HO states is straightforward, as these always converge along
the real axis due to the Gaussian tail of HO states; hence, no
complex scaling is needed. The recoil term in Eq. (1) can be
treated in the same way as the Coulomb interaction, that is,
by expanding pi in a HO basis [37]. The attained precision
of calculations on energies and widths is better than 0.2 keV
for calculations without recoil and Coulomb terms, and it is
around 1 keV for the full GSM scheme.

It has to be noted that because our model involves a core,
our treatment of the Coulomb interaction is not exact. In
particular, we neglect the contribution to the exchange term
arising from the core protons. We also ignore other known
charge symmetry-breaking electromagnetic terms such as the
Coulomb spin-orbit interaction.

III. SPECTROSCOPIC FACTORS IN ISOBARIC
ANALOG STATES

The SF in the GSM framework is given by the real part of
the squared norm S2 of the overlap integral between the initial
and final state in the reaction channel [24,25]. The imaginary
part of S2, which is an uncertainty of Re(S2), vanishes if both
states in nuclei A and A − 1 are bound. Using a decomposition
of the s.p. channel (�, j ) in the complete Berggren basis, one
obtains

S2 =
∫∑
B

〈
�̃

JA

A

∣∣|a+
�j (B)|∣∣�JA−1

A−1

〉2
, (7)

where a+
�j (B) is a creation operator associated with a s.p. basis

state |uB〉 and the tilde symbol above bra vectors signifies that
the complex conjugation arising in the dual space affects only
the angular part and leaves the radial part unchanged. Because
Eq. (7) involves summation over all discrete Gamow states and
integration over all scattering states along the complex contour,
the final result is independent of the s.p. basis assumed. This
feature is crucial for loosely bound states and near-threshold
resonances, where the coupling to the nonresonant continuum
can no longer be neglected. Indeed, the contribution of the
scattering continuum to SFs can be as large as 25% in such
cases [24,25].

In the context of this study, the direct use of Eq. (7) is
impractical when assessing effects related to the configuration
mixing. Indeed, because of the presence of reduced matrix
elements, S2 �= 1 in the absence of many-body correlations,
and its value depends on j , JA−1, and JA. Hence, we choose
to renormalize S2 by dividing it by the extreme s.p. value
(obtained by neglecting two-body interactions). Within this
convention, S2 = 1 if configuration mixing is absent.

The SFs for the two-neutron (6He) and two-proton (6Be)
g.s. configurations considered in our work correspond to
the [5He(g.s.) ⊗ νp3/2]0+

and [5Li(g.s.) ⊗ πp3/2]0+
channels,

respectively. For the T = 1 IASs in 6Li, we consider two
channels: [5He(g.s.) ⊗ πp3/2]0+

and [5Li(g.s.) ⊗ νp3/2]0+
.

A. Stability of HO expansion

The quality of the HO expansion of Eq. (5) has been
numerically checked for both the Coulomb interaction and
recoil term. Figure 1 displays the convergence with respect
to the number of HO states used in the expansion for the
total energy, width, and SF (real and imaginary part) of
g.s. configurations in 6Be and 6He. For 6Be, the results obtained
by assuming the inert core [no recoil, that is, Ac = +∞ in
Eq. (1)] are also presented. It is seen that with nine HO states
per partial wave, one obtains excellent convergence for both
energies and wave functions, the latter being represented by
SFs. For the complex energy, the associated numerical error is
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FIG. 1. The numerical check of the HO expansion (5) for the total
energy (top), width (middle), and spectroscopic factor (bottom) for
g.s. configurations of 6Be (solid symbols) and 6He (open squares).
The GSM predictions are plotted as the number of HO states used in
the expansion. The HO length is b = 2 fm [37].

of the order of 2 keV, and this is well below other theoretical
uncertainties of the model.

B. Threshold dependence of spectroscopic factors

The GSM SFs for 6He and 6Be are shown in the left column
of Fig. 2. The results are plotted as a function of one-nucleon
separation energy (S1n for 6He and S1p for 6Be) for three
different values of the one-particle threshold energy ET (i.e.,
negative of one-nucleon separation energy) in one-nucleon
systems: 5He and 5Li.

For the bound A = 5 systems (ET = −1.5 MeV), the
SFs in 6He and 6Be are different in the whole range of
separation energies considered. The difference of the SFs reach
the maximum at the one-nucleon emission threshold. As the
separation energy increases (both nuclei become more particle
bound), both SFs slowly approach the value of 1, as expected
from simple shell-model considerations [24]. A characteristic
irregularity in the � = 1 neutron SF at the neutron emission
threshold of 6He is the Wigner cusp. The cusp is absent in
the mirror system 6Be as a result of the different asymptotic
behavior of the proton wave function [22].

The energy dependence of SFs changes if the A = 5 system
happens to be at the particle emission threshold (ET = 0) or
is unbound (ET = 0.5 MeV). In both situations, a significant
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0

Re[S] Im[S]
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-1.5 -1.5

0.50.5

00

p3/2p3/2

FIG. 2. The spectroscopic factor S = √
S2, that is, the real

and imaginary parts of the square root of the overlap integral
(7) corresponding to 〈6He(g.s.)|[5He(g.s.) ⊗ νp3/2]0+〉 (solid line)
and 〈6Be(g.s.)|[5Li(g.s.) ⊗ πp3/2]0+〉 (dashed line) as a function of
one-nucleon separation energy (S1n for 6He and S1p for 6Be) for three
different values of one-particle threshold energy ET = −1.5, 0, and
0.5 MeV in A = 5 systems (indicated at the right of each panel).

difference of SFs in mirror states is seen in particle stable
(positive S1n or S1p) A = 6 systems. One may also notice
that the Wigner cusp disappears altogether if 5He becomes
unbound (cf. ET = 0.5 MeV variant in Fig. 2). It is interesting
to notice that SFs can be greater than 1 if the state of the A − 1
system is particle unstable. This unusual situation (see, e.g.,
Re(S) in 6He for ET = +0.5 MeV) is subsequently discussed.

The imaginary part of the expectation value of an operator
in a resonant state can be interpreted as the uncertainty in the
determination of this expectation value due to the possibility
of decay during the measuring process [39–42]. Figure 2 (right
column) shows the uncertainty Im(S) of SFs displayed in Fig. 2
(left column). The uncertainty vanishes if the wave functions
in both A = 6 and A = 5 systems are bound with respect
to the particle emission. Note that in Fig. 2, the appearance
of Re(S) > 1 cannot be fully explained by the Im(S) plot.
Indeed, for 6He at ET = 0.5 MeV and 0.05 < S1n < 0.1 MeV,
Re(S) > 1 corresponds to |Im(S)| � 0.

For the Jπ = 0+ IAS in 6Li, we consider two different SFs
for the (�, j ) = p3/2 channel, associated with adding a proton
to 5He or a neutron to 5Li (see Fig. 3). They are plotted in Fig. 3
as a function of one-proton (or one-neutron) separation en-
ergy. The channel wave functions |[5He(g.s.) ⊗ πp3/2]0+〉 and
|[5Li(g.s.) ⊗ νp3/2]0+〉 are obviously not orthogonal, as they
both share the dominant |[4He(g.s.) ⊗ π0p3/2 ⊗ ν0p3/2]0+〉
component. The two considered SFs for 6Li differ only
by continuum couplings induced in the proton and neutron
channels. Comparing Figs. 2 and 3, one can see p3/2 proton
and neutron SFs factors are very similar in both cases. Still,
slight differences are present. For instance, at ET = 0.5 MeV,
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FIG. 3. Same as in Fig. 2 except for 〈6Li(T = 1)|[5Li(g.s.) ⊗
νp3/2]0+〉 (solid line) and 〈6Li(T = 1)|[5He(g.s.) ⊗ πp3/2]0+〉 (dashed
line) as a function of one-nucleon separation energy (S1n for the
former and S1p for the latter) for three different values of one-particle
threshold energy ET = −1.5, 0, and 0.5 MeV in A = 5 systems. The
proton and neutron threshold energies are assumed to be identical.

small irregularities seen in 6He SFs are absent in the neutron
SF for 6Li. A close inspection of proton SFs for 6Li reveals
the presence of threshold cusps at zero separation, absent in
the 6Be case. This effect can be explained in terms of the
channel coupling, or flux conservation [24,25]. Indeed, since
in our model calculations both proton and neutron channels
open at threshold energy, the coupling between proton and
neutron channels can generate nonanalyticities in proton SFs,
even though Wigner estimates for proton cross sections are
analytical at the threshold energy.

To study the sensitivity of results to the CM treatment, we
carried out a set of calculations assuming the inert core (no
recoil). The results are practically identical to those of Figs. 2
and 3. The only noticeable difference is the absence of a small
fluctuation at S1n ≈ −0.05 MeV seen in the real and imaginary
parts of SF for 6He.

Another reason for the occurrence of Re(S) > 1 in some
cases, is the interplay between a final state �

JA−1
A−1 ≡ �

JA−1
A−1;R

(the many-body resonance) and states of the nonresonant
scattering continuum {�JA−1

A−1;c} with energies close to the
resonance energy [39]. The contributions to SFs Sc in 6He
and 6Be coming from the nonresonant continuum are shown in
Figs. 4 and 5 together with contributions from resonant states.

In all situations, the contribution of the Gamow resonance
to Re(S2) is dominant. It is interesting to note that the impact of
the nonresonant continuum does depend on ET and S1p/S1n.
For ET � 0 and S1p/S1n � 0, that is, for A = 5 and A = 6
bound ground states, the nonresonant continuum contribution
is basically negligible. This is also the case for 6Be when ET �
0 and S1p/S1n < 0, that is, for a bound 5Li but an unbound 6Be.
However, when either the A = 5 g.s. is unbound (ET > 0) or
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FIG. 4. The distribution of the real part of Re(S2
c ) in 6He (solid

line) and 6Be (dashed line) with respect to the 3/2− scattering states of
the 5He and 5Li systems, ordered according to their real-k value. The
calculations were performed for three different values of one-particle
threshold energy ET = −1.5 MeV (top), 0 (middle), and 0.5 MeV
(bottom) in A = 5 systems. The arrows indicate contributions from
resonant states. To facilitate presentation, the pole contributions were
multiplied by a scaling factor of 0.05.

ET � 0 and S1p/S1n < 0 for 6He, that is, when 6He is unbound
with respect to a bound 5He, the nonresonant continuum
plays a significant role in both real and imaginary parts. In
particular, when ET > 0 and S1p/S1n � 0, the contribution
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FIG. 5. Same as in Fig. 4, except for the imaginary part of Im(S2
c ).

The arrows indicate contributions from 0p3/2 resonant states if those
are not negligible. To facilitate presentation, the pole contributions
were multiplied by the scaling factors indicated in the figure.
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from the nonresonant continuum Re(S2
c ) becomes negative,

which translates into a value of Re(S2) that exceeds 1. One
can also see that Im(S2

c ) is comparable to Re(S2
c ), even though

this does not occur every time Re(S2) > 1. The lesson learned
from this discussion is that the SF obtained by considering the
many-body resonance only may often be a poor approximation
to the total SF, which can contain appreciable nonresonant
contributions.

IV. ISOSPIN MIXING IN 6He, 6Li, AND 6Be

So far, we have discussed the prototypical T = 1 multiplet
6He, 6Li, and 6Be with equal proton and neutron separation
energies to study the effect of different asymptotic behavior
on the configuration mixing in the vicinity of one-nucleon
thresholds. In a realistic situation, however, particle emission
thresholds change within the isotriplet due to the Coulomb
interaction. To assess this effect, we shall now apply the
GSM to describe spectra and SFs for the 0+ ground states
and first excited 2+ states of 6He and 6Be and the IASs
in 6Li. In calculations involving 5He and 6He, we use the
5He WS parameter set and the MSGI interaction with the
following strengths: V0(J = 0, T = 1) = −15.193 MeV fm3

and V0(J = 2, T = 1) = −12.505 MeV fm3. For 6He, this
Hamiltonian yields E0+ = −0.974 MeV, E2+ = +0.823 MeV,
and 	2+ = +89 keV. The experimental values are very close:
E

(exp)
0+ = −0.973 MeV, E

(exp)
2+ = +0.824 MeV, and 	

(exp)
2+ =

+113 keV. All binding energies are given relative to the
binding energy of the 4He core.

In the case of 6Li and 6Be, we carry out calculations in
two variants. In variant V1, we take the same WS potential
as for the He isotopes. Here, isospin is explicitly broken by
the one-body Coulomb potential and the two-body Coulomb
interaction between valence protons. In variant V2, the depth
of the WS potential has been changed to 47.563 MeV, to obtain
an overall agreement for the binding energies and widths of
3/2−

1 and 1/2−
1 resonances in 5Li and the 0+ g.s. of 6Be.

The readjustment of the one-body potential in V2 is supposed
to account for the impact of the missing Coulomb terms;
see discussion at the end of Sec. II. In both variants, MSGI
strengths are the same as in the He calculation.

The predicted g.s. energy of 6Be, E0+ = 1.653 MeV and
	0+ = 41 keV in V1 and E0+ = 1.371 MeV and 	0+ =

14 keV in V2, is close to experiment: E
(exp)
0+ = 1.371 MeV

and 	
(exp)
0+ = 92 keV. For the first 2+ state, we obtain

E2+ = 2.887 MeV and 	2+ = 0.986 MeV in V1 and E2+ =
2.679 MeV and 	2+ = 0.804 MeV in V2. The experimental
energy is E

(exp)
2+ = 3.041 MeV, 	

(exp)
2+ = 1.16 MeV.

Turning to the 0+ IAS of 6Li, the predicted energy
is E0+ = 0.0866 MeV and 	0+ = 8.85 × 10−3 keV in V1
and E0+ = −0.0706 MeV and 	0+ = 9.13 × 10−3 keV in
V2. This is fairly close to the experimental value (E(exp)

0+ =
−0.136 MeV, 	

(exp)
0+ = 8.2 eV). For the 2+ IAS in 6Li, we

obtain E2+ = 1.667 MeV and 	2+ = 0.404 MeV in V1 and
E2+ = 1.569 MeV and 	2+ = 0.329 MeV in V2. Both variants
are in a very reasonable agreement with the experimental
energy: E

(exp)
2+ = 1.667 MeV and 	

(exp)
2+ = 0.541 MeV.

The corresponding g.s. SFs for 6He and 6Be (in V1) are
S2 = 0.87 − i0.383 and 1.015 − i0.147, respectively, while
for 6Li, they are 1.061 − i0.280 for πp3/2 and 0.911 − i0.361
for νp3/2. For the 2+

1 state, the SFs are S2 = 1.061 + i0.0011
for 6He, 0.973 − i0.0142 for 6Be, 0.987 − i3.26 × 10−3 for
6Li (πp3/2), and 1.034 − i0.0235 for the 6Li (νp3/2). Despite
the fact that both real and imaginary energies in V1 and V2 are
slightly different, the SFs for 6Be in V2 are very close to those
obtained in V1. Namely, S2 = 1.015 − i0.177 for the g.s. and
S2 = 0.978 − i0.016 for the 2+

1 state. The V2 values of SFs in
the 0+ state of 6Li are S2 = 1.028 − i0.300 (πp3/2) and S2 =
0.898 − i0.369(νp3/2), while for the T = 1 2+ state they are
S2 = 0.993−i3.190×10−3 (πp3/2) and S2 = 1.043 − i0.0224.
This can be seen from Table I by comparing the corresponding
GSM wave function amplitudes for 6Be (columns 4 and 5) and
6Li (columns 6 and 7).

While their mean values differ by about 15%, considering
large imaginary parts, the SFs predicted for the Jπ = 0+ IASs
of the isotriplet agree within calculated uncertainty. However,
by examining the GSM wave function amplitudes displayed in
Table I, one notes that SFs, being integrated measures, do
not tell the whole story. The main effect of the Coulomb
interaction is the change in distribution of the (0p3/2)2 and
(S1)p3/2 g.s. components, the latter involving one particle in
the nonresonant p3/2 continuum. As a result, a rather different
interference pattern between the resonant 0p3/2 state and the
nonresonant continuum is predicted for 6He and 6Be, and
between resonant and nonresonant states of a different type
(proton or neutron) in 6Li.

TABLE I. Squared GSM amplitudes of the J π = 0+ IASs of the isotriplet 6He, 6Li, and 6Be. The symbols S1 and S2 indicate configurations
with one and two particles in the nonresonant continuum, respectively. The results for 6He assuming a rigid 4He core are shown in the third
column.

(Ck)2 6He 6He (rigid core) 6Be (V1) 6Be (V2) 6Li (V1) 6Li (V2)

(0p3/2)2 0.750 − i0.692 0.798 − i0.732 1.090 − i0.243 1.107 − i0.288 0.994 − i0.587 0.949 − 0.614
(S1)πp3/2 – – −0.115 + i0.218 −0.143 + i0.255 −0.084 + i0.226 −0.050 + i0.244
(S1)νp3/2 0.243 + i0.619 0.244 + i0.668 – – 0.066 + i0.308 0.0797 + i0.314
(S2)s1/2 0.009 + i0.0 0.0 + i0.0 0.022 + i0.0 0.023 + i0.004 0.011 + i0.0 0.010 + i0.0
(S2)p1/2 0.012 + i0.0 0.013 + i0.0 0.008 + i0.001 0.009 − i0.0 0.011 + i0.0 0.012 + i0.0
(S2)p3/2 −0.049 + i0.074 −0.063 + i0.065 −0.030 + i0.029 −0.028 + i0.034 −0.033 + i0.054 −0.033 + i0.055
(S2)d3/2 0.002 + i0.0 0.001 + i0.0 0.002 + i0.0 0.002 − i0.0 0.002 + i0.0 0.002 + i0.0
(S2)d5/2 0.032 + i0.0 0.006 + i0.0 0.025 − i0.0 0.031 − i0.004 0.031 + i0.0 0.031 + i0.0
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TABLE II. Same as in Table I, except for the first 2+ state.

(Ck)2 6He 6He (rigid core) 6Be (V1) 6Be (V2) 6Li (V1) 6Li (V2)

(0p3/2)2 1.132 + i0.006 1.149 − i0.022 0.977 − i0.023 0.987 − i0.0267 1.036 − i0.024 1.049 − i0.023
(S1)πp1/2 – – −0.004 − i0.001 −0.001 + i0.001 0.0 − i0.0 0.0 − i0.0
(S1)πp3/2 – – −0.003 + i0.022 −0.011 + i0.027 −0.001 + i0.001 −0.007 + i0.0
(S1)νp1/2 0.001 − i0.001 0.003 − i0.002 – – 0.0 − i0.0 0.0 − i0.0
(S1)νp3/2 −0.142 − i0.009 −0.147 + i0.016 – – −0.0492 + i0.021 −0.056 + i0.019
(S2)πp1/2πp3/2 – – 0.001 − i0.0 0.001 − i0.0 – –
(S2)νp1/2νp3/2 0.001 + i0.0 0.001 + i0.001 – – – –
(S2)p3/2 −0.004 + i0.006 −0.005 + i0.006 0.003 + i0.006 0.002 + i0.003 −0.004 + i0.008 −0.004 + i0.008
(S2)πd3/2πd5/2 – – 0.001 − i0.001 0.001 − i0.001 – –
(S2)νd3/2νd5/2 0.001 − i0.0 0.0 + i0.0 – – – –
(S2)πd3/2νd5/2 – – – – 0.001 − i0.0 0.001 − i0.0
(S2)νd3/2πd5/2 – – – – 0.001 − i0.0 0.001 − i0.0
(S2)d5/2 0.010 − i0.002 0.0 + i0.0 0.022 − i0.006 0.020 − i0.007 0.015 − i0.005 0.014 − i0.003

For the 2+ IASs, a meaningful comparison of SFs can
be done because they have small imaginary parts. This is
a consequence of the smaller configuration mixing induced
by the nuclear interaction. Indeed, as shown in Table II, the
structure of 2+ states is dominated by the resonant (0p3/2)2

component. Here we conclude that GSM predicts a mirror
symmetry-breaking in SFs of the order of 5%.

To assess the impact of the recoil term on our findings,
we carried out calculations in which the recoil of the core
is ignored. In this case, the coupling constants refitted to
the data are V0(J = 0, T = 1) = −18.237 MeV fm3 and
V0(J = 2, T = 1) = −14.942 MeV fm3, while the depth of
the proton WS potential is now 47.5 MeV. Without recoil,
energy observables are very similar to those obtained in full
calculations. Namely, for 6He, only the width of the first
excited state differs by a few keV, as it becomes 	2+ =
+84 keV. The energy and width of the 6Be g.s. in V2 remain
the same as with recoil, while there appears a small change
for the first excited state of 6Be: E2+ = +2.702 MeV and
	2+ = +0.755 MeV. For 6Li, the energy of the 0+ state differs
by a few keV in V1 and around 20 keV in V2, while the width
remains practically unchanged. For the 2+ state in 6Li, changes
are of the order of tens of keV.

The changes in SFs due to recoil are small as well. To show
it explicitly, in Table I we compare the GSM amplitudes of
the g.s. wave function of 6He in the COSM variant (second
column) and assuming the rigid 4He core (third column). The
main effect of recoil is to slightly redistribute partial wave
occupations, in particular the (d5/2)2 contribution. For instance,
for the 6He g.s., the sum of the square of amplitudes belonging
to the (d5/2)2 channel is 6 × 10−3 without recoil, while it is
3.2 × 10−2 with the full treatment of recoil. For 6Be, not shown
in Table I, these numbers in V2 translate to 4.2 × 10−3 and
3.1 × 10−2, respectively. There is also a small increase of
amplitudes in other continuum channels, for example, (s1/2)2,
but those wave function components are very small.

Another way of assessing the degree of isospin mixing is
by inspecting the structure of IAS within the isomultiplet. To
this end, we carried out calculations for the isotriplet 6He, 6Li,
and 6Be in V1 + COSM using the common neutron s.p. basis

of 6He. In this way, the isospin operator

T̂ − =
∫∑
B

a+
�jτz=−1/2(B)a�jτz=1/2(B) (8)

is properly defined [43]. The numerical error due to the use of
neutron s.p. basis on the g.s. energy of 6Be is very small: it
is about 20 keV for the real energy and 5 keV for the width,
and this accuracy is more than sufficient for the purpose of our
IAS analysis. The isobaric analogs of the T = 1 states in 6He
are given by

|6Li, IAS〉 = 1√
2
T̂ −|6He〉, (9a)

|6Be, IAS〉 = 1

2
(T̂ −)2|6He〉. (9b)

The IAS content of a GSM state can be obtained by
calculating its overlap with the state (IV). For the 0+ state
of 6Li, the squared overlap is 〈6Li|6Li, IAS〉2 = 0.995. This
indicates that the lowest 0+ state in 6Li is indeed an excellent
isobaric analog of 6He g.s. Indeed, the corresponding average
isospin value [28],

Tav = −1 +
√

1 + 4〈�|T̂ 2|�〉
2

, (10)

is Tav = 0.9995.
For the g.s. of 6Be, 〈6Be|6Be, IAS〉2 = 0.951 − i0.050,

that is, the mean value of the squared amplitude exhibits
a reduction with respect to the perfect isospin invariance.
This result is consistent with the large difference between
the GSM wave functions of 6He and 6Be: a significant
component of the 6Be g.s. wave function corresponds to a
nonresonant continuum of 6He. Interestingly, the total isospin
of 6Be states is perfectly conserved in our GSM space.
Indeed, having two valence protons, wave functions of 6Be are
completely aligned in isospace, regardless of the strength of
the Coulomb interaction. The isospin breaking in 6Be can only
happen through core polarization effects, that is, core-breaking
excitations [7,44,45]. Because 4He is a very rigid core, one
expects a fairly pure isospin in the low-lying states of 6Be.
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A similar situation is expected for any isospin-aligned shell-
model state corresponding to a semimagic nucleus having Zval

valence protons (or Nval neutrons). If one disregards core-
breaking effects, such a state has pure isospin T = Zval/2 (or
T = Nval/2), despite the presence of INC interactions that
manifestly break isospin. This is a nice example of a more
general phenomenon called partial dynamical symmetry, that
is, a symmetry that is obeyed by a subset of eigenstates, but
is not shared by the Hamiltonian [46,47]. We note that while
T̂ 2 and T̂z are preserved in the isospin-aligned states, this is
not the case for T̂ ± operators connecting 6Be with 6Li and 6Li
with 6He, which are affected by isospin mixing.

V. CONCLUSIONS

There are several sources of isospin (and mirror) symmetry-
breaking in atomic nuclei. Probably the most elusive are
consequences of the threshold effect [22] and the Coulomb-
nuclear interference effect [12–14]. The open quantum system
formulation of the GSM makes it possible to address the ques-
tion of the continuum-induced isospin symmetry-breaking in
a comprehensive and nonperturbative way, in terms of the
configuration mixing involving bound and unbound states.

As compared to previous GSM studies, present calculations
are based on a newly developed finite-range residual inter-
action MSGI. The Coulomb interaction and recoil term are
treated by means of the HO expansion technique. The stability
of this expansion has been numerically checked with a very
encouraging result: with only nine HO states per partial wave,
one obtains excellent convergence for both energies and wave
functions.

To study the sensitivity of results to the CM treatment, we
carried out two sets of calculations: one in COSM coordinates
in which the core recoil is treated exactly and another one
assuming no recoil. We find that the results of both variants
are very close for both energies and SFs; hence, the details of
CM treatment do not impact the conclusions of our work.

We have shown that the energy dependence of SFs of
mirror nuclei is different. Realistic estimates for the isotriplet
6He and 6Be yield an effect in SFs of the 2+ state which
is in a range of several percent. This is consistent with
results of recent cluster-model studies [19,20]. For the 0+
configuration, the situation is different. Here, the mean values

of SFs differ by about 16% and a different interference pattern
between the resonant 0p3/2 components and the nonresonant
p3/2 continuum is predicted. However, due to appreciable
imaginary parts, hence large uncertainty, g.s. SFs in 6He and
6Be, and SFs for the 0+ analog state in 6Li, calculated in GSM
do not offer a clear measure of the mirror symmetry-breaking.
The behavior of SFs in 6Li follows that predicted for 6He
and 6Be. Interestingly, proton spectroscopic factors show the
presence of threshold anomalies due to the strong coupling
with the neutron channel.

Due to the partial dynamical isospin symmetry present in
the GSM wave functions of 6Be, the low-lying states in this
isospin-stretched (T = 1, Tz = −1) system are expected to
show very weak isospin-breaking effects. This is despite the
Coulomb interaction present in this nucleus. For the Tz = 0
member of the isotriplet, 6Li, the isospin symmetry is explicitly
broken in the GSM space as a result of mixing between T = 0
and T = 1 states but the resulting mixing is very weak. We
thus conclude that the large mirror symmetry-breaking effects
seen in binding energies and SFs of the isotriplet are related to
T̂ ± components rather than the total isospin.

In summary, the coupling to the nonresonant continuum
can give rise to isospin and mirror symmetry-breaking effects
that are configuration dependent. Explanations of mirror
symmetry-breaking based on the traditional close quantum
system formulation of the nuclear shell model sometimes
invoke INC nuclear effective interactions [11,48]. We would
like to point out that any attempt to extract such interactions
from spectroscopic data should first account for the coupling
to the many-body continuum in the presence of isospin-
conserving nuclear forces. If neglected, or not treated carefully,
the continuum effects can alter the results of such analyses.
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