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Density distribution of 17Ne and possible shell-structure change in the proton-rich sd-shell nuclei
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Reaction cross sections (σR) for the proton drip-line nucleus 17Ne have been measured on 9Be, 12C, and 27Al
targets at 64 and 42 MeV/nucleon by the transmission method. From the energy dependence of the σR including
the high energy data, the density distribution of 17Ne was deduced through a modified Glauber-type calculation.
It is indicated that 17Ne has a long tail in the density, consistent with a (2s1/2)2-dominant configuration of two
valence protons.
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I. INTRODUCTION

17Ne(Iπ = 1/2−, T1/2 = 109.2 ms) is an interesting can-
didate for a two-proton halo nucleus. Since the Coulomb
barrier prevents proton-halo formation, the number of known
halo nuclides on the proton-rich side is less than that on the
neutron-rich side. Only for 8B, with a weakly bound valence
proton, is there clear evidence for a long tail in the density
distribution [1–4]. 17Ne has a Borromean structure, in which
none of its (15O + p + p) subsystems forms a bound state, and
the two valence protons are weakly bound (S2p = 0.93 MeV).
Because the two valence protons of 17Ne are considered to be in
the sd-shell, their radial wave functions exhibit configuration
mixing of the s and d orbitals. If they had a d-dominant
configuration, a centrifugal barrier would hinder the radial
extension of the wave function.

Early experimental studies of 17Ne suggested a possible
halo structure for 17Ne. The interaction cross sections (σI) for
17Ne at relativistic energies were found to be larger than those
for the mirror nucleus 17N, though σI for the nuclei of other
mirror pairs including proton-drip line nuclei with Z = 4 ∼10
are almost the same for both nuclei in the mirror pair [5].
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Moreover, the asymmetry of β-decay probabilities between
the A = 17 mirror pair of 17Ne and 17N is larger than those of
other mirror pairs, implying an abnormal nuclear structure of
the initial and/or final state [6].

Subsequent intensive theoretical and experimental studies
gave conflicting results. Measurements by Warner et al. of
the σR for 17Ne on a Si target around 40 MeV/nucleon [7],
suggested that 17Ne is not so large as other neutron halo nuclei.
However the comparatively narrow width of the longitudinal
momentum distribution of the projectile fragments and the
large two-proton removal cross section (σ−2p) for 17Ne mea-
sured by Kanungo et al. [8,9], suggest the possibility of a halo
structure. The recent measurement of charge radius of 17Ne
supports the existence of a tail in the proton distribution [10].

The results of theoretical studies on 17Ne are also controver-
sial. The structure of 17Ne calculated by Timofeyuk et al. with
a three-cluster model has a (2s1/2)2-dominant configuration
[11]. However a three-body model calculation by Garrido
et al. suggested almost equal occupation probabilities of the
(2s1/2)2 and (1d5/2)2 levels [12,13]. From the Coulomb mass
shift, Nakamura et al. suggested a (2s1/2)2 dominance [14],
however Fortune et al. suggested a (1d5/2)2 dominance [15,16].
Kitagawa et al. also proposed a (1d5/2)2 dominance through
calculations of the σI with a Hartree-Fock type wave function
and the Glauber model [17].

In the present study, there is additional interest in relation
to the new magic number 16. For some sd-shell nuclei on
the neutron-rich side close to the drip line, the shell structure
changes such that the 1d3/2 level energy increases [18] and
2s1/2 level energy decreases compared with those of stable
nuclei, which leads to the magic number 16 [19]. When the
2s1/2 level is lowered in energy, a level inversion of 2s1/2

and 1d5/2 can occur. In such a case for 17Ne, a larger 2s1/2

component in the proton configuration can be expected, which
can lead to a halo formation. In contrast, because the Coulomb
barrier impedes a shift of the 2s1/2 level, this new magic
number 16 might not emerge in proton-rich nuclei. To date,
few studies of the new magic number in the vicinity of the
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proton-drip line have been carried out, and thus it has not been
confirmed experimentally on the proton-rich side. A study
of the 17Ne nucleus would help to elucidate the mechanism
related to the new magic number 16 in proton-rich nuclei.

In order to solve the structure questions noted above,
we studied the nucleon density distribution of 17Ne through
σR . The σR were measured at several tens of MeV/nucleon
because the cross section is more sensitive to the dilute density
part at these energies than at higher energies. The density
distribution can be deduced from the energy dependence of
σR , including the high energy σI data, by using a modified
Glauber-type calculation. With these results, we can address
the question of the structure of 17Ne.

II. EXPERIMENT

We measured the σR for 17Ne on 9Be, 12C, and 27Al reaction
targets at 64 and 42 MeV/nucleon using the transmission
method. The nucleon-nucleon total cross section (σNN ) is,
respectively, about two times greater at 64 MeV/nucleon and
three times greater at 42 MeV/nucleon than at relativistic
energies [20]. The experiment was carried out at the RIKEN
accelerator research facility. A 135 MeV/nucleon 20Ne
primary beam with an intensity of 10 pnA was delivered
from the RIKEN ring cyclotron (RRC), and was directed onto
9Be production targets with 2–9 mm thicknesses depending
on the required secondary beam energy. The secondary
17Ne beam was separated from other reaction products
in the RIKEN projectile-fragment separator (RIPS) [21].
Wedge type aluminum energy degraders with a central
thickness of 1099 mg/cm2, a wedge angle of 6.1 mrad, or a
583 mg/cm2–3.1 mrad one were used at the momentum
dispersive focus F1 of RIPS. The typical intensity of the
17Ne beam was 100 cps and the purity was ∼10%. The main
contaminant in the secondary beam was 15O.

Figure 1 shows a schematic drawing of the experimental
setup located at the final focus F3 of RIPS. Before the reaction
target mounted at the F3 focus, three parallel-plate avalanche
counters (PPAC) [22] and two silicon detectors (Si) were
installed. The particles were identified by the magnetic rigidity
at D2 (Bρ), the time-of-flight (TOF) measured using PPACs
and the RF signal from RRC, and the �E of the two Si detectors
at F3 with dimensions 100 µm × 30 × 30 mm2. From the
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FIG. 1. (Color online) Experimental setup around the reaction
target.

correlation of the two Si spectra, mis-identifications due to
channeling events were greatly reduced.

TOF and �E were sufficient for particle identification after
the reaction target. Because 17Ne is a proton drip-line nucleus,
particles can be identified by knowing only the atomic number.
The experimental setup for the identification after the target
was similar to that of Ref. [4]. We measured TOF between the
PPACs before the target and a large plastic counter installed
about 1.7 m downstream of the target and �E in the three
Si detectors installed just behind the target. The large plastic
counter was 3 × 600 × 600 mm3 which covered a large enough
solid angle to detect scattered 17Ne beam due to elastic or
multiple scatterings in the reaction target. The first Si detector
behind the target was 100 µm ×30 × 30 mm2 in size, and that
of other two detectors were 200 µm × 50 × 50 mm2.

In the particle identification spectrum before the target, the
background ratio in the 17Ne peak was less than 10−5 which
is small enough to deduce σR . From TOF and �E after the
target, the atomic number Z can be determined. Because 17Ne
is a proton drip-line nucleus, a neutron removal implies a
change of Z, and therefore the Z identification was enough
to discriminate the nonreacted beam from reaction products.
To correct for reactions outside the target, mainly in the Si
detectors after the target and in the large plastic counter, we
also carried out a target-out measurement, in which the incident
beam energy at the first Si detector after the target was adjusted
to be the same as that in the target-in measurement.

III. RESULTS

Figure 2(A) shows a typical particle-identification spectrum
after the reaction target for the target-in measurement and
Fig. 2(B) for the target-out measurement. In Fig. 2(A), 17Ne is
clearly separated from all other reaction products. The upper
tail of the 17Ne peak with a constant �E was caused by nuclear
reactions in the materials behind the Si detectors such as the
vacuum window or He gas. The upper-right tail of the 17Ne
peak corresponds to inelastic scattering events in the target.

Because the 17Ne does not have any excited states, the
inelastic scattering events shown in the figure are due to a
transfer of energy to the target nucleus. Figure 3 shows a
spectrum of energy transferred to the target nucleus deduced
from the TOF spectrum of 17Ne after the reaction target of 9Be
for 64 MeV/nucleon setting. Though some inelastic events
are included in the unreacted 17Ne peak, they must be counted
as inelastic reaction events. This was done by the following
method. The main peak was fitted with a Gaussian function
and the tail part with an exponential curve. Point O is the
zero energy point on the horizontal axis which corresponds
to the center of the Gaussian. Point A is defined as the zero
energy point on the exponential curve. Point B is defined as the
intersection of the Gaussian and the exponential curve. Point
C is a projection of B on the horizontal axis. Then the area
below the exponential curve from A to B, as shown by the
hatched area in Fig. 3, was defined as the upper limit of the
inelastic-scattering correction. Additionally, a line is drawn
between O and B (dashed line in Fig. 3), and the area under
the line integrated from O to B, as shown by the shaded area
in Fig. 3, was defined as the lower limit of the correction.
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FIG. 2. Typical particle identification spectra after the 9Be reac-
tion target for the target-in (A) and target-out (B) measurements with
the 17Ne beam at 64 MeV/nucleon.

The correction was defined as an average of the upper and
lower limits and the error was given as the difference between
the correction value and the upper (or lower) limit. In this
study, the amplitude of the tail is not large enough to provide
an accurate exponential fit, and thus there is a non-negligible
ambiguity in the slope. The systematic error due to this ambi-
guity was included in the total error of the experimental results.
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FIG. 3. (Color online) Typical transferred-energy spectrum for
17Ne beam at 64 MeV/nucleon with a 9Be target, for the inelastic-
scattering correction. The hatched area shows the upper limit of the
inelastic-scattering correction and the shaded area the lower limit.

TABLE I. Experimental results for σR and σI obtained in the
present study. The σI at higher energies utilized to deduce the density
distribution are also shown.

Projectile Target Energy σR σI

(MeV/nucleon) (mb) (mb)

12N Be 69 1089 ± 26 1032 ± 25
46 1258 ± 23 1182 ± 22

13O Be 76 1120 ± 13 1090 ± 12
52 1262 ± 29 1203 ± 28

17Ne Be 700 968 ± 45a

64 1265 ± 22 1215 ± 14
42 1493 ± 40 1380 ± 32

C 680 1090 ± 76a

620 1044 ± 31a

64 1336 ± 22 1302 ± 19
42 1519 ± 68 1422 ± 22

Al 670 1412 ± 224a

64 1831 ± 49 1759 ± 23
43 2032 ± 48 1893 ± 37

aMeasured by Ozawa et al [5].

The σR is deduced as follows:

σR = −1

t
ln

(
Rin

Rout

)
, (1)

where t denotes the thickness of reaction target, Rin is the ratio
of the number of outgoing 17Ne particles to that of incident
17Ne for the target-in measurement, and Rout the same ratio
for the target-out measurement. The σR for 12N, 13O and 17Ne
measured in this study are summarized in Table I. The beam
energies indicated in Table I are mean energies in the targets
calculated as

Ebeam = 1

t

∫ Eo

Ei

E
dx

dE
dE, (2)

where Ebeam is the mean energy in a target, Ei is the incident
beam energy and Eo the beam energy at exit from the target.

The present experimental results are summarized in Table I.
The main source of the errors of σR is the statistical error.
The systematic error in estimating the amount of inelastic
scattering events increases the total error a little. The results
for the interaction cross section (σI) are also listed in the table.
The σI is the nuclide-changing cross section which can be
represented as σI = σR − σ (inelastic scattering). Table I also
includes the data from Ref. [5] obtained at high energies where
σI and σR are considered to be almost the same, which are used
in the analyses described later.

In Fig. 4, the σR from the present experiment are compared
with those calculated with the semiempirical formula which
reproduces σR for stable nuclei proposed by Kox et al. [23].
The σR for 17Ne, shown as the ratio to the calculated σR , are
larger than those for the stable nucleus 12C [24] by more than
10%.
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FIG. 4. The ratio of the measured σR on the 12C target to the σR

calculated with the Kox empirical formula, plotted as a function of
energy. The closed circles correspond to the data of 17Ne measured in
the present study. The open circles indicate those of the stable nucleus
12C measured by Takechi et al. [24]. The dashed lines are to guide
the eye.

IV. ANALYSIS AND DISCUSSION

A. Glauber-type calculation

The σR can be connected with a nucleon density distribution
through a Glauber-type calculation. The optical limit approxi-
mation of the Glauber calculation (OLA) is a basic and useful
method to calculate σR , though it has an inaccuracy for nuclei
having a dilute density part like a halo because the multiple
scattering effect (or few-body effect) is not taken into account
in this method [25]. Therefore, we adopted the modified optical
limit approximation (MOL), an improvement proposed by
Abu-Ibrahim and Suzuki [25]. Additionally, Takechi et al.
successfully included the Fermi-motion effect in the MOL as
a low energy correction [24] because these models are designed
to be used at relativistic energies. With this improved MOL
calculation, we deduced the nucleon density distribution of
17Ne through χ2 fits to the experimental σR , adopting several
different density shapes.

The Glauber-type calculation used in the present study to
deduce nucleon density distributions is described in detail in
Refs. [24,26], and formulated as follows. The σR is calculated
as

σR = 2π

∫
db b[1 − T (b)]C(E), (3)

where C(E) denotes the Coulomb effect that includes only
the bending of trajectory of the projectile [4]. T (b) denotes
the transmission probability at an impact parameter b. In the
MOL calculation, T (b) is expressed as [26]

T (b)MOL = exp

{
−

∫
dsρP

z (s)

(
1 − exp

[∫
d tρT

z (t)σNN

×�(b + s − t)
])}

exp

{
−

∫
d tρT

z (t)

×
(

1 − exp

[∫
dsρP

z (s)σNN�(b + t − s)

])}
,

(4)

where ρP
z , ρT

z are the z (beam direction)-integrated densities of
the projectile and the target nuclei, respectively, � the nucleon-

nucleon profile function, s and t the nucleon coordinates of
the projectile and the target in the plane perpendicular to the
beam axis. In this formulation, similarly to the OLA, σR can be
calculated uniquely with the three inputs, σNN , projectile and
target densities without free parameters. Among the inputs,
only the projectile density is unknown because the σNN and
target density can be taken from the precise experimental
data.

In the intermediate energy region, OLA underestimates σR

compared with the experimental value (σ exp
R ) even for the

stable nuclei [4]. To improve the accuracy of the Glauber-type
calculation, Takechi et al. measured σR precisely for the stable
nucleus 12C on 9Be, 12C, and 27Al targets [24] and proposed to
incorporate the Fermi-motion effect into MOL calculations.
They assumed the effective σNN based on the momentum
distribution of valence nucleons with the Goldhaber model.
The effective σNN in a nucleus is described as

σ eff
NN =

∫ ∞

−∞
dprelσNND(prel), (5)

where the function of momentum distribution D(prel) is
expressed with relative momentum between nucleons (prel)
in the projectile and the target as

D(prel) = 1√
2π

(〈
p2

P

〉 + 〈
p2

T

〉) × exp

⎡
⎣− (prel − pproj)2

2
√〈

p2
P

〉 + 〈
p2

T

〉
⎤
⎦ .

(6)

In this equation, pproj denotes the momentum of a nucleon
with the same velocity as the projectile, 〈p2

P 〉 a mean square
momentum of a nucleon in the projectile and 〈p2

T 〉 that
in the target. For stable nuclei, we employed the averaged
experimental value of 90 MeV/c as

√
〈pT

2〉. For 17Ne, the ρP

in Eq. (4) was divided into a core and two valence nucleons
part. For the core part we used the experimental value of
momentum width from the data for 15O (= 81 MeV/c) [27],
and for the valence part the data for 17Ne (= 51 MeV/c) [8].

B. Nucleon density distribution of 17Ne

Because the shape of the density distribution is restricted
by the functional shape chosen, it is important to test
several shapes to deduce a reliable density distribution of
the nucleus of interest. Using MOL with the Fermi-motion
correction, proposed by Takechi et al. [24], the best-fit density
distributions were deduced by optimizing the parameters in the
density functions through a χ2-fitting procedure to reproduce
the experimental σR for 17Ne. The error in the density for 17Ne
was determined by summing the error ranges for each density
function. The σR data used for the fitting procedure were the
present σR and the σI data at high energies [5]. These data are
summarized in Table I.

The density function was divided into a core and a valence
part. In this study, the harmonic oscillator type function (HO)
which is often used as the density shape for light stable nuclei
was used in each case as the core shape. The HO type function
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for the core part is expressed as

ρi
c(r) = ρi

c0 ×
(

1 + C − 2

3

( r

b

)2
)

exp

(
−

( r

b

)2
)

, (7)

where i denotes the proton or neutron and C is the number of
protons (Zc) or neutrons (Nc) in the core. The b is the core
width parameter and ρc0 is the normalization factor. The same
width was used for the proton- and neutron-core densities. In
the case of 17Ne, we assumed 15O (Zc = 8, Nc = 7) as the
core nucleus because 16F is unbound. For neutrons in 17Ne,
only the core part was assumed because of their larger binding
energies.

For the valence part of protons in 17Ne, we tested several
functions, while only the core part was assumed for neutrons.
The functions tested for valence protons are: a square of
the Yukawa (Yukawa-type) function, a single particle model
(SPM) function, and a HO function. The functional shapes of
the Yukawa and the SPM densities extend to long distance.
In contrast, the HO shape does not have a long-distance
component. By using these functions with different properties,
the density shape of 17Ne was reliably deduced. The results
for each shape of the density function for valence protons are
discussed below.

1. HO + Yukawa-type density

The square of the Yukawa function is a good function to
approximate the shape of the surface density not only for the
orbital angular momentum � = 0 case but also for the � �= 0
cases in which the centrifugal barriers exist [4]. It is useful
because of its simplicity and independence from the details of
nuclear structure [4,28–32]. The Yukawa-type nucleon density
function is defined as follows:
for protons

ρp(r) =
⎧⎨
⎩

X × ρ
p
c (r) r � rc

Y × exp(−λr)

r2
r > rc,

(8)

for neutrons

ρn(r) = ρn
c (r). (9)

Here rc is the intersection point of the core and the tail part,
λ the tail slope, and X and Y the amplitude of the core and the
tail part, respectively. Free parameters in these functions are
the core width b of the HO type function, the tail slope λ, and
the relative tail amplitude Y/X.

Figure 5 shows the density distribution of 17Ne deduced
using the Yukawa-type function. The best-fit density is shown
by the thick solid curve and the shaded area shows the
experimental error which does not include the systematic effect
in the calculation. The reduced χ2 for the best-fit curve is 0.95,
which shows this function is quite suitable for representing
the nucleon density of 17Ne. The best-fit parameters were b =
1.54 fm, Y/X = 16.8, and λ = 0.80 (fm−1) for this type of
density. In Fig. 5, a clear tail in the density can be seen. In order
to test the need for this tail in the model function, we tried to use
the HO type core only as a trial function. As shown in Table II,
the best-fit χ2 for this HO-only function is considerably larger
than that in the case of the (HO + Yukawa-type) function,
indicative of the need to include a tail in the density.
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FIG. 5. Density distributions of 17Ne deduced with the fitting pro-
cedure using (HO + Yukawa-type) density function. The thick-solid
line denotes the best-fit density and the shaded area indicates the error.
The dotted line shows the best-fit density with HO function only. The
dashed- and dot-dashed lines show the theoretical densities calculated
with Hartree-Fock model with (2s1/2)2 and (1d5/2)2 configurations,
respectively [17].

In Fig. 5, these fitted densities are compared with theoretical
densities calculated by Kitagawa et al. with the modified
Hartree-Fock model [17]. The tail parts of these theoretical
distributions are based on the (2s1/2)2 or (1d5/2)2 proton
configurations for which the proton binding energy is assumed
to be half of the experimental S2p of 17Ne. The tail part of the
deduced distribution is in good agreement with the theoretical
(2s1/2)2 distribution, especially in the r = 5 ∼8 fm region.

2. HO + single particle model density

The density distribution by the SPM is more realistic than
that of the Yukawa type in the tail region, because it takes
into account the Coulomb and the centrifugal barrier effects
which are not explicitly included in the Yukawa-type function.
The amplitude of the density of the two valence protons
should be normalized to two, which introduces a certain
restriction in this SPM, in contrast to the case of a Yukawa-type
function.

In this SPM, the wave function of the two valence protons
was calculated by solving the Schrödinger equation numer-
ically, assuming the Woods-Saxon potential, the Coulomb
barrier, and the centrifugal barrier. The nuclear part of the

TABLE II. Result of the χ 2 fitting for 17Ne. The χ 2 and the width
parameter for the fits with an HO core part only are compared to those
with the (HO+Yukawa) function.

Reduced χ 2 Total χ 2 HO Width

HO + Yukawa 0.95 6.65 1.54
HO 2.3 16.1 1.92
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potential assumed is written as

V =
(

−V0 + V1(l · s)
r2
l·s
r

d

dr

) [
1 + exp

(
r − Rc

a

)]−1

,

(10)

where a(= 0.6 fm) is the diffuseness parameter, Rc(= r0 A1/3,
r0 = 1.2 fm) the radius of the Woods-Saxon potential, rl·s
(= 1.1 fm) the radius for spin-orbit potential, and V1(=
17 MeV) is the l · s strength, taken from [33]. The depth of
this potential (V0) was adjusted to reproduce the experimental
binding energy of a valence proton. For 17Ne we cannot use the
binding energy of a single valence proton (Sp) because 16F is
not a bound nucleus. Therefore, we assumed that two valence
protons are bound independently on the 15O core. In this case,
Sp is a free parameter and is assumed to be in a range from
∼0 MeV to the two-proton binding energy (S2p = 0.93 MeV).
In this model, the ρ(r) of 17Ne consists of the HO-type core
and the two valence protons calculated with the SPM. The core
widths for protons and for neutrons were assumed to be the
same. Since the effect of the spin-orbit potential in Eq. (10)
on the wave function is not so large, the ρ(r) assuming d5/2

as a valence proton orbital and that assuming d3/2 are almost
the same. Therefore, we considered a configuration mixing of
2s1/2 and 1d5/2 for the two valence protons in 17Ne as follows:

φ(r) = {√
αφ[(2s1/2)2](r) + √

1 − α φ[(1d5/2)2](r)
}
, (11)

where α denotes the occupation probability of the (2s1/2)2

configuration. The free parameters in this model are the core
width b, the binding energy Sp and α. Thus the (HO + SPM)
function is defined as
for protons

ρp(r) = ρp
c (r) + |φ(r)|2, (12)

for neutrons

ρn(r) = ρn
c (r). (13)

Figure 6 shows the deduced density distribution of 17Ne
with the (HO + SPM) function. The deduced ρ(r) with
(HO + SPM) function is also in good agreement with
the theoretical curve with the proton (2s1/2)2 configuration.
Figure 7 shows the total χ2 with the SPM function as a function
of s-orbital occupancy α. Each line corresponds to a different
Sp from 0.1 MeV to 0.93 MeV (= S2p). At each plotted point,
the width of core b was optimized. The best-fit parameters for
(HO + SPM) density are b = 1.62 fm, Sp = 0.7 MeV, and α =
1.0. The reduced χ2 is 1.00. The error ranges indicated by the
shaded area in Fig. 7 are based on the χ2 minimum among all
the three types of density model in this study. Though we did
the parameter optimization by calculations at limited lattice
points on the Sp − α plane as shown in Fig. 7, this does not
affect the result seriously due to the fairly large error range
shown in this figure. From the error range in Fig. 7 with Sp =
0.1 ∼ 0.93 MeV, the s-orbital occupancy α was obtained as α =
1.0 +0.0

−0.55. This whole error range is covered by the deduced ρ(r)
in Fig. 6, though the error of ρ(r) in this figure does not appear
to be large. This is because the effects on ρ(r) of the parameters
α and Sp compensate for one another. The modified HF
calculation assuming the (2s1/2)2 configuration and the single
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FIG. 6. Density distribution of 17Ne deduced with the fitting
procedure assuming an (HO + SPM) density function. The thick-solid
line denotes the best-fit density and the shaded area indicates the error.
The other lines show the same theoretical calculations as in Fig. 5.

proton binding energy of Sp = S2p/2, reproduces the deduced
density distribution very well, especially at the tail region.

3. HO + HO density

In order to test the model dependence of the deduced density
distribution, especially on the necessity for including the tail,
a harmonic-oscillator (HO) type function which does not have
a long tail was tested as an alternative valence two proton
function. The (HO + HO) function of the proton density is
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FIG. 7. (Color online) Total χ 2 map plotted against α with the
(HO + SPM) density. Each plot shows deduced χ 2 with fixed
Sp parameter in the (HO + SPM) density. Lines are guides for
eyes only. The error range shown by shaded area is based on the
results with all types of density function considered in the present
study.
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FIG. 8. Density distribution of 17Ne deduced with the fitting
procedure assuming an (HO + HO) function. The thick-solid line
denotes the best-fit density and the shaded area indicates the error.
The other lines show the same theoretical calculations as in Figs. 5
and 6.

written as

ρp(r) = ρp
c (r) + ρp

v (r)
(14)

ρp
v (r) =

(
1 + η

(
r

bv

)4 )
exp

(
−

(
r

bv

)2 )
,

where ρ
p
c (r) is the core density of HO function for p-shell

nuclei shown by Eq. (7) and the density for valence protons
in the sd shell is taken to be ρ

p
v (r). For the valence part,

the 2s orbital is approximated by the first term and the 1d

orbital is represented by the second term. Thus the parameter
η roughly represents the relative strength of the 1d orbital. The
integral of this valence part was normalized to be two nucleons.
The free parameters in this (HO + HO) function are core
width bc, valence width bv and relative d-orbital amplitude
η. The optimized parameters obtained from the χ2 fitting are
bc = 1.55 fm, bv = 2.93 fm, and η = 0.17. The reduced χ2 is
0.97 for the (HO + HO) model. Figure 8 shows the deduced
density with the (HO + HO) model. The deduced density
agrees with the (2s1/2)2 theoretical curve in the region with
r = 5 ∼8 fm, though it departs from the (2s1/2)2 theoretical
curve as r increases in the region with r > 8 fm because of
the functional shape of the (HO + HO) model. This seems
to indicate insensitivity of the data to the dilute density in the
region with r > 8 fm. Therefore, this result dose not contradict
the results with the other two density shapes.

4. Summary of the density distribution

Figure 9 shows the density distribution deduced using the
three models described above. The error range shown in this
figure is taken to be the summed area of the errors in these mod-
els. Considering the several types of density shapes, the final
deduced density agrees well with the modified HF calculation

 (single-particle model)

 Best fit (Yukawa type)

 (HO + HO) 

 Hartree-Fock s-wave
 Hartree-Fock d-wave
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FIG. 9. (Color online) Density distribution of 17Ne in which all
the deduced densities and their errors are integrated. The thick-solid
line denotes the best-fit density with the (HO + Yukawa-type)
function, and the thin-solid line shows that with the (HO + SPM)
function. The dotted line indicates the distribution using the (HO +
HO) function. The dashed- and dot-dashed lines show the theoretical
densities calculated with the Hartree-Fock model with (2s1/2)2 and
(1d5/2)2 configurations, respectively [17].

with the (2s1/2)2 configuration, which shows a halo-like tail
in the outer region of the core. The present result supports the
result from the study on longitudinal momentum distribution
and σ−2p [8,9]. The root-mean-square radius of the nucleon
distribution in 17Ne was deduced for the best-fit density with
a (HO + Yukawa) function to be 1.68 ± 0.06 fm, consistent
with the results using the other two functional shapes. This
value is also consistent with those in the former works [5,34].

C. Possible shell-structure change on the proton-rich side

In weakly bound neutron-rich nuclei near the drip line, as
shown in Ref. [35], energies of levels with lower l, especially
with l = 0, exhibit less shift relative to the bottom of the
potential when the potential depth is varied, due to the large
radius of the potential at small binding energies. On the other
hand the level energy of the d orbital shifts more rapidly owing
to the narrower potential radius caused by the steeper potential
wall due to the centrifugal barrier. This difference could lead
to the level inversion and the new magic number N = 16 for
nuclei near the neutron drip-line.

When the valence neutron is bound weakly in a neutron-rich
nucleus, the energy shift of the 2s1/2 level as the depth of the
potential becomes shallower is smaller than that for a deeply
bound stable nucleus, because the radius of the potential for
the valence neutron near zero binding energy in a neutron-rich
nucleus is much larger than that in a stable nucleus. In the case
of the 1d5/2 level, however, the centrifugal barrier prevents
the potential radius from increasing rapidly as the binding
energy decreases near zero binding energy. Thus the shift of
the 1d5/2 level as the depth of potential becomes shallower is
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FIG. 10. (Color online) Effect of the Coulomb barrier with the
Woods-Saxon potential on a valence nucleon near zero energy for the
case of 15O core + p(n) in the 2s1/2 orbital. If the valence nucleon
is a neutron, the width of the Woods-Saxon potential extends rapidly
as the energy becomes nearly zero (dashed line). On the contrary, if
the valence nucleon is a proton, which leads to the addition of the
Coulomb barrier (solid line), the extension of the potential near zero
energy is limited.

fairly large, similar to those for stable nuclei, in contrast to the
case for the 2s1/2 level. In the case of proton-rich nuclei, this
increase of potential radius near zero energy is hindered by the
Coulomb barrier, as shown in Fig. 10. Therefore even for the
proton 2s1/2 level, the energy relative to the potential minimum
does not decrease strongly as the potential becomes shallower
compared with the case for the neutron 2s1/2 level in neutron-
rich nuclei. Thus, the inversion of the proton 2s1/2 and 1d5/2

levels might not readily occur. We therefore quantitatively
investigated the possibility of this kind of change in the single-
particle level structure for the s and d orbitals in proton-rich
nuclei.

A single particle model (SPM) calculation was used to test
the inversion of the s and d levels. The level energies of the
s and d levels can be obtained using the Woods-Saxon potential
shown in Eq. (10) and the Coulomb and the centrifugal barriers.
By changing the depth of potential, level energies of the 2s1/2

and 1d5/2 in 17Ne were calculated and plotted as a function
of potential depth in Fig. 11. In this model, it was assumed
that in 17Ne the two protons were bound independently in the
15O potential. With the standard parameters a = 0.6 fm and
r0 = 1.2 fm, the s and d levels intersect at Sp = 0.2 MeV
and the level inversion occurs when Sp is less than 0.2 MeV
as shown in Fig. 11(A). If the diffuseness of the potential is
larger, this level inversion occurs easily even with larger Sp.
For instance, in the case of a larger diffuseness a = 0.8 fm
shown in Fig. 11(A), the 2s1/2 level is still lower than 1d5/2

level when it is bound deeply as much as Sp = 7 MeV. On the
other hand, when the r0 parameter is smaller than the standard
value of r0 = 1.2 fm, the level inversion is also found to occur
even at larger Sp as shown in Fig. 11(B). Thus the level energy
at which level inversion occurs depends on the diffuseness and
radius parameters, a and r0.

Potential depth (MeV)

 a = 0.6

 a = 0.8

(A)

2s
1/2

1d
5/2

2s
1/2

1d
5/2

-10

-8

-6

-4

-2

0

L
ev

el
 e

n
er

gy
 (

M
eV

)

90858075706560

( r
0
 = 1.2)

2s
1/2

1d
5/2

2s
1/2

1d
5/2

 r
0
 = 1.2

 r
0
 = 1.1

2s
1/2

1d
5/2

 r
0
 = 1.0

( a = 0.6)

-10

-8

-6

-4

-2

0

L
ev

el
 e

n
er

gy
 (

M
eV

)

1201008060
Potential depth (MeV)

(B)

FIG. 11. (Color online) Level energies of 2s1/2 and 1d5/2 orbitals
are plotted against the potential depth. These are calculated with
the Woods-Saxon potential indicated in Eq. (10) plus the Coulomb
potential for one valence proton bound on 15O core. If these two levels
cross each other at a deep enough energy, the level inversion of 2s1/2

and 1d5/2 occurs. (A) shows the diffuseness parameter (a) dependence
with a fixed radius r0 = 1.2 fm of the Woods-Saxon potential, and
(B) the radius (r0) dependence with a fixed diffuseness a = 0.6 fm.

Figure 12 shows the diffuseness dependence of level
energy of the intersection of the 2s1/2 and 1d5/2 levels for
the proton drip-line and near-drip-line nuclei 17Ne, 17F, 20Na,
20Mg, 22Al, and 23Al. The calculations were done for cases
with several different r0 values. The plotted symbols indicate
intersection points of the s and d levels and the solid lines are
to guide the eye.

The large closed triangle in Fig. 12 indicates the potential
parameters which were deduced by unfolding the proton size
from the charge density determined by electron scattering. For
the case of 17Ne, the potential parameters for the core nucleus
15O were taken from the charge density of the mirror nucleus
15N, assuming mirror symmetry and the identical-parameter
distributions of protons and neutrons for deeply bound mirror
nuclei. The parameters used for the core of 17Ne are a =
0.472(5) fm and r0 = 0.904(14) fm, which are indicated by
the large closed triangle in Fig. 12(A). This means that in the
region where Sp is less than the binding energy for the triangle
(2.4 MeV), the 2s1/2 level becomes lower in energy than the
1d5/2 level. As seen in the figure, the experimental Sp, which
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FIG. 12. (Color online) Level energies at intersection points of 2s1/2 and 1d5/2 levels as shown in Fig. 11 for several proton drip-line/near-
drip-line nuclei are plotted as a function of diffuseness. Cases with several different r0 values are plotted for each nuclide. The dashed line
shows the experimental single proton binding energies of actual nuclei. In the 17Ne and 20Mg cases, S1p is defined as S2p/2. The large closed
triangles come from the electron-scattering charge densities of the assumed core nuclei or the corresponding equivalent nuclei.

is taken as a half of the experimental two-proton separation
energy in 17Ne, is indicated by the horizontal dashed line.

Therefore, in this model, the level inversion occurs for the
17Ne case with these potential parameters based on the electron
scattering data. This is consistent with the present experimental
result for 17Ne. On the other hand, in the case of 17F, the
values of potential parameters similarly deduced from the
electron scattering data [36] for the core nucleus 16O are a =
0.487(5) fm and r0 = 0.999(14) fm. These values are indicated
by the large closed triangle in Fig. 12(B). Therefore, the

experimental Sp indicated by the dashed line is in the region
where the 1d5/2 level is lower in energy than the 2s1/2 level.
This means that the level inversion does not occur in this case
with the present SPM. This fact is quite consistent with that
the valence proton in 17F is considered to be in the 1d5/2 level
[Iπ (17F) = 5/2+].

The case for 20Na is shown in Fig. 12(C). In this case, the
parameters for the potential of the core nucleus 19Ne were de-
duced from the electron scattering data for the mirror nucleus
19F, similar to the 17Ne case. Both 19Ne and 19F are also deeply
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bound nuclei. As shown in the figure, the large closed triangle
that indicates these parameters is in the region where the level
energy of 1d5/2 is lower than that of 2s1/2 as in 17F. Therefore,
the level inversion should not take place in this case either. This
is also consistent with the experimental spin-parity Iπ = 2+
of the ground state of 20Na for the following reason. The
valence neutron in 20Na is considered to be in 2s1/2 because
the spin-parity of the core nucleus 19Ne is Iπ = 1/2+ and
the magnetic moment of 19Ne, µ(19Ne) = −1.88542(8) n.m.
[37], is very close to the Schmidt value for a neutron in 2s1/2.
On the other hand, 19F, the mirror nucleus of 19Ne, was found
to be deformed with the quadrupole deformation parameter
β2 = 0.41 [38]. If this deformation is also applicable to
the mirror nucleus 19Ne, this prolate deformation creates the
proton Nilsson orbital of 3/2[211] from the 1d5/2 spherical
orbital. This proton spin of 3/2 of the Nilsson orbital occupied
by the valence proton in 20Na can couple with the neutron 2s1/2

to form Iπ = 2+ which is consistent with the experimental
value. These consistencies also support the plausibility of the
present simple SPM.

Figure 12(D) shows the case for 20Mg. In this case, potential
parameters for the core nucleus 18Ne were taken from the
electron-scattering data for the mirror nucleus 18O, similar to
the cases for 17Ne and 20Na. This figure indicates that the level
inversion does not take place in 20Mg. In order to assess the
consistency of this result, we consider the mirror system of
18O +n, i.e., 19O, instead of 18Ne +p system because it is not
bound. Because the ground state spin-parity of 19O is 5/2+,
the valence neutron in 19O is considered to be in 1d5/2. This is
consistent with the above result for 20Mg.

The 23Al and 22Al cases are shown in Figs. 12(E), and
12(F). For 23Al, the parameters from electron scattering are
indicated by the large closed triangle in Fig. 12(E). These
were taken from the potential parameters of 22Ne, which is the
mirror of the core nucleus 22Mg. This figure shows that s-d
level inversion does not occur in 23Al, which is also consistent
with the experimental spin value of 5/2 [39]. On the other hand
in the case of 22Al shown in Fig. 12(F), because information on
the potential parameters for the core nucleus 21Mg or the mirror
nucleus 21F does not exist, we cannot specify an experimental
point in the figure and cannot judge whether the level inversion
should occur. If the parameters are the same as those for 23Al,
the level inversion does not occur in 22Al. However, if the

radius parameter r0 is somewhat smaller or the diffuseness a

is a little larger compared to those for 23Al, the level inversion
takes place within the reasonable range of parameters.

As described above, the simple single particle model seems
to simulate the s-d level inversion very well. Thus, at present,
17Ne might be the only proton drip-line nucleus for which the
s-d level inversion takes place on the proton-rich side in the sd

shell. The drip-line nucleus 22Al is also interesting for future
investigation.

V. SUMMARY

We measured reaction cross sections for 17Ne on 9Be, 12C,
and 27Al targets at 64 and 42 MeV/nucleon through the
transmission method. Since the σR becomes sensitive to
the dilute density part at lower beam energies, we deduced
the density distribution of 17Ne by the energy dependence
of σR through fitting procedures using a Glauber-type
calculation.

To deduce an accurate density distribution, we applied
a Glauber calculation in which the higher-order multiple
scattering effect and the Fermi-motion effect were taken into
account. 17Ne was found to have a halo-like dilute tail in the
density distribution, consistent with the (2s1/2)2 configuration
for valence protons. Since in a naive picture the valence protons
should have the (1d5/2)2 configuration, this result supports a
change in the shell structure in the sd-shell region for proton
rich nuclei. With the simple single particle model calculation,
level inversions in 17Ne and neighboring proton rich nuclei can
be understood using the known electron-scattering parameters
for core nuclei. However, according to the simple calculation,
17Ne might be the only case, at present, in which level inversion
occurs in a proton rich nucleus.
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