PHYSICAL REVIEW C 82, 044306 (2010)

High-spin states in ^{96,97}Nb

N. Fotiades*

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

J. A. Cizewski

Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA

R. Krücken

Physik Department E12, Technische Universität München, D-85748 Garching, Germany

R. M. Clark, P. Fallon, I. Y. Lee, and A. O. Macchiavelli

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

J. A. Becker and W. Younes

Lawrence Livermore National Laboratory, Livermore, California 94550, USA (Received 6 August 2010; revised manuscript received 20 September 2010; published 7 October 2010)

The high-spin level structures of the 96,97 Nb isotopes have been studied. The isotopes were produced in the fission of the compound systems formed in two heavy-ion-induced reactions, 24 Mg (134.5 MeV) + 173 Yb and 23 Na (129 MeV) + 176 Yb. Gamma-ray spectroscopy was accomplished with the Gammasphere array. High-spin states are observed for the first time in both isotopes with excitation energies up to 5.2 and 6.6 MeV in 96,97 Nb, respectively. The coupling of the odd proton occupying the $g_{9/2}$ orbital to the yrast states in the subshell closure nucleus of 96 Zr can account for the first excited states of 97 Nb. A comparison with the first excited states in 95 Zr is also attempted. The addition of a neutron hole in 96 Nb results in a much more fragmented level scheme.

DOI: 10.1103/PhysRevC.82.044306 PACS number(s): 23.20.Lv, 27.60.+j

I. INTRODUCTION

The spectroscopic study of high-spin states of ^{96,97}Nb is very interesting because these isotopes differ by one or two particles from the subshell closure nucleus of ⁹⁶Zr₅₆. There is a plethora of spectroscopic information in the immediate vicinity of the subshell closure nucleus of ⁹⁰Zr₅₀. In contrast, high-spin-state information for nuclei neighboring ⁹⁶Zr is much more limited. This is due, in part, to their proximity to the line of stability which makes difficult the population of these isotopes as evaporation residues in heavy-ion fusion reactions with stable beam-target combinations. Hence, the study of high-spin states in ^{96,97}Nb brings new information important for understanding the coupling of nucleons to the subshell closure that occurs in ⁹⁶Zr.

The 97 Nb isotope has only one proton more than 96 Zr. The limited spectroscopic information that exists for this nucleus is summarized in Ref. [1] and comes from particle pick-up reactions and the β decay of 97 Zr. Only low-spin states (spin lower than the 9 /2 ground state) are known. The spin and parity of the ground state originate from the odd proton occupying the 99 /2 orbital. Theoretical attempts to predict states in this nucleus have been limited to low-spin negative-parity states [2,3], except for the shell-model calculations in Refs. [4,5] where the first 13 /2 state is predicted at $^{\sim}$ 1.5 MeV and $^{\sim}$ 0.6 MeV excitation energy, respectively.

The odd-odd 96 Nb isotope has one proton more and one neutron less than 96 Zr. The limited spectroscopic information that exists for this nucleus is summarized in Ref. [6] and comes from particle pick-up reactions. Several low-spin excited states above the 6^+ ground state and one higher-spin state, (7^+) at 233(5)-keV excitation energy, have been observed. No transition was reported to deexcite the latter. Previous theoretical attempts to predict states in this nucleus were limited to low-spin states [7], except for the shell-model calculation in Ref. [4] where the first 7^+ state is predicted at ~ 0.5 MeV excitation energy.

at \sim 0.5 MeV excitation energy. For nuclei near 96 Zr (e.g., 94,95,96 Y, 95,97 Zr, and 96,97,98 Nb) high-spin states are known in 95,96 Zr [8,9] and in 95 Y [10] from γ -ray spectroscopy of fission fragments, which is an alternative way to study these nuclei near the line of stability (see, for instance, Refs. [11,12] and references therein). Such technique was used extensively in the past to study high-spin states in nuclei near the line of stability, is complementary to studies based on Coulomb excitation and deep-inelastic processes, and helps bridge the gap in high-spin-state systematics in areas between the neutron-deficient and neutron-rich nuclei [11]. In the present work we used this technique to identify high-spin states in 96,97 Nb.

II. EXPERIMENTS

The 88-Inch Cyclotron Facility at Lawrence Berkeley National Laboratory and the Gammasphere array were used to populate compound nuclei and for subsequent γ -ray

^{*}fotia@lanl.gov

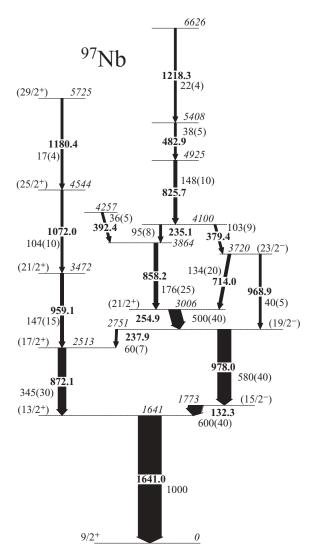


FIG. 1. Level scheme assigned to 97 Nb in the present work. Transition and excitation energies are given in keV. The widths of the arrows are representative of the relative intensity of the transitions, which is quoted for each transition. The uncertainty on the γ -ray energies varies from 0.4 to 0.9 keV.

spectroscopy in two similar experiments henceforth referred to as Experiments I and II. In Experiment I, Gammasphere comprised 92 Compton-suppressed large-volume HPGe detectors, whereas in Experiment II the number of Ge detectors was 100. The "heavimet" collimators for the escape suppression shields of Gammasphere were mounted during both experiments, hence, no information was possible to be extracted from "H-K" gating using the total γ -ray energy absorbed and the γ -ray multiplicity.

In Experiment I, a ¹⁹⁷Pb compound nucleus (CN) was formed in the ²⁴Mg + ¹⁷³Yb reaction at 134.5 MeV. The target consisted of 1 mg/cm² isotopically enriched ¹⁷³Yb, evaporated on a 7 mg/cm² gold backing (reactions of the beam in the backing produce a ²²¹Pa CN). In Experiment II a ¹⁹⁹Tl CN was formed in the ²³Na + ¹⁷⁶Yb reaction at a beam energy of 129 MeV. The target consisted of approximately 1 mg/cm²

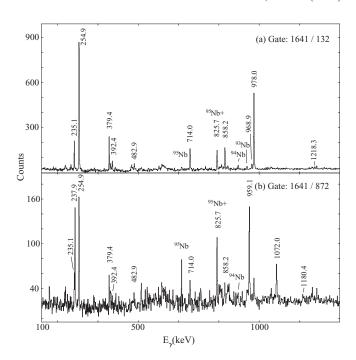


FIG. 2. Background subtracted spectra from the ¹⁹⁷Pb(CN) experiment gated on pairs of transitions (1641.0-, 132.3-keV and 1641.0-, 872.1-keV pairs) assigned to ⁹⁷Nb in the present work. The energies of the transitions are in keV. Transitions associated with the complementary ⁹³Nb [15], ⁹⁴Nb [16], and ⁹⁵Nb [17] isotopes are indicated. Unlabeled peaks in both spectra are most likely contaminants.

isotopically enriched $^{176}{\rm Yb}$ on a 10 mg/cm² Au backing (reactions of the beam in the backing produce a $^{220}{\rm Th}$ CN).

About 2.3×10^9 triples and 10^9 quadruples were collected in Experiment I and II, respectively. Symmetrized, three-dimensional cubes were constructed in all cases to investigate the coincidence relationships between the γ rays. Additional information for both experiments in the present work can be found in Refs. [13,14].

III. EXPERIMENTAL RESULTS

A. Levels and transitions in 97Nb

The level scheme of 97 Nb deduced in the present work is shown in Fig. 1; intensities of the transitions obtained in Experiment I are quoted. This is the first observation of highspin states in this nucleus, whereas previous information [1] on the structure of 97 Nb was obtained from particle transfer reactions and the β decay of 97 Zr. Eighteen new transitions and 15 new states are included in the level scheme establishing excitations up to \sim 6.6-MeV excitation energy.

The quality of the data obtained in Experiment I can be seen in the gated spectra in Fig. 2. Most of the transitions assigned to ⁹⁷Nb are present in the spectra in Fig. 2. Transitions from the complementary fragments ⁹³Nb [15], ⁹⁴Nb [16], and ⁹⁵Nb [17] relative to the ¹⁹⁷Pb compound nucleus are also indicated. Above the energies shown, there were no statistically significant peaks in the spectra in Fig. 2.

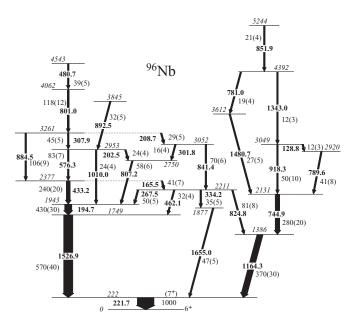


FIG. 3. Level scheme assigned to 96 Nb in the present work. Transition and excitation energies are given in keV. The widths of the arrows are representative of the relative intensity of the transitions, which is quoted for each transition. The uncertainty on the γ -ray energies varies from 0.4 to 0.9 keV.

Spin and parity assignments of all levels of ⁹⁷Nb reported in this work are difficult to deduce experimentally because of the lack of directional correlation information for the fission products. However, based on comparison with experimental

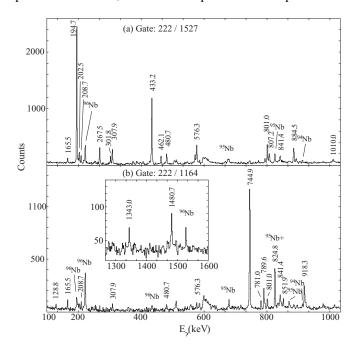


FIG. 4. Background subtracted spectra from the ¹⁹⁷Pb(CN) experiment gated on pairs of transitions (221.7-, 1526.9-keV and 221.7-, 1164.3-keV pairs) assigned to ⁹⁶Nb in the present work. The energies of the transitions are in keV. Transitions associated with the complementary ⁹⁴Nb [16] and ⁹⁵Nb [17] isotopes are indicated. ⁹⁶Nb is also a complementary fragment to itself. Unlabeled peaks in both spectra are most likely contaminants.

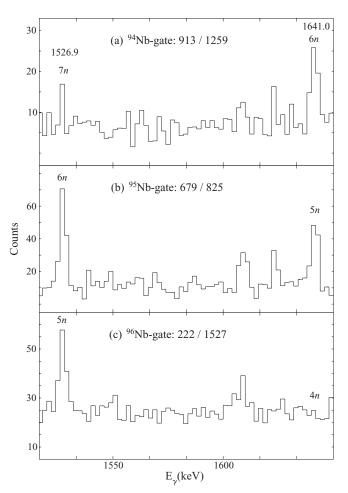


FIG. 5. Background subtracted spectra from the ¹⁹⁷Pb(CN) experiment gated on transitions belonging to (a) ⁹⁴Nb [16], 912.6-and 1258.85-keV transitions, (b) ⁹⁵Nb [17], 679.0- and 824.7-keV transitions, and (c) ⁹⁶Nb, 221.7- and 1526.9-keV transitions. The energies of the transitions are in keV. The 1526.9- and 1641.0-keV transitions assigned to ^{96,97}Nb isotopes, respectively, in the present work are indicated. ⁹⁶Nb is a complementary fragment to itself, hence the presence of the 1526.9-keV transition in the lower spectrum. Unlabeled peaks are most likely contaminants.

results on the first excited states in 96 Zr [9], spin and parity assignments for many levels in Fig. 1 are tentatively suggested (see discussion below).

B. Levels and transitions in 96Nb

The existing information [6] on the structure of 96 Nb was obtained only from particle transfer reactions. The level scheme of 96 Nb deduced in the present work is shown in Fig. 3 and the intensities of the transitions obtained in Experiment I are quoted. This is the first observation of high-spin states in this nucleus. Thirty-one new transitions and 19 new states are included in the level scheme establishing excitations up to \sim 5.2-MeV excitation energy. Thus, the level scheme for this nucleus is substantially enriched with more than doubling the number of transitions known in this nucleus.

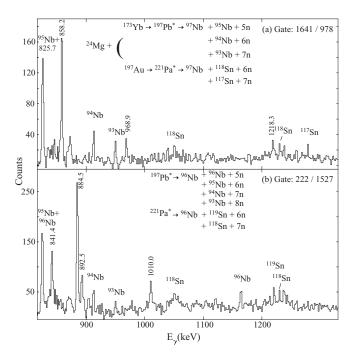


FIG. 6. Background subtracted spectra from the ¹⁹⁷Pb(CN) experiment gated on transitions assigned to (a) ⁹⁷Nb (1641.0- and 978.0-keV) and (b) ⁹⁶Nb (221.7- and 1526.9-keV) in the present work. The energies of the transitions are in keV. Transitions associated with the complementary ⁹³Nb [15], ⁹⁴Nb [16], and ⁹⁵Nb [17] isotopes, with respect to reactions in the target, and the complementary ¹¹⁷Sn [20], ¹¹⁸Sn [21], and ¹¹⁹Sn [22], with respect to reactions in the backing, are indicated. ⁹⁶Nb is also a complementary fragment to itself. Unlabeled peaks in both spectra are most likely contaminants.

Several transitions from Fig. 3 can be seen in the gated spectra in Fig. 4 obtained in Experiment I. Transitions from the complementary fragments 94 Nb [16] and 95 Nb [17] relative to the 197 Pb compound nucleus are also indicated. Above the energies shown, there were no statistically significant peaks in the spectra in Fig. 4. 96 Nb is a complementary fragment to itself in the 197 Pb (CN) experiment (i.e., 197 Pb* \rightarrow 96 Nb + 96 Nb + 5n) and the transitions labeled as " 96 Nb" in Fig.4 are present in the spectra for this reason. The same phenomenon was observed for the 95 Nb fragments in the 197 Pb (CN) experiment (i.e., 197 Pb* \rightarrow 95 Nb + 95 Nb + 7n).

As in ⁹⁷Nb, spin and parity assignments of all levels of ⁹⁶Nb reported in this work are difficult to deduce experimentally. The only exception is the first excited state in Fig. 3, which is most likely the previously known (7⁺) state at 233(5)-keV excitation energy [6], hence, the proposed spin-parity assignment in Fig. 3.

C. Assignment of transitions

The assignment of the transitions in Figs. 1 and 3 to ⁹⁷Nb and ⁹⁶Nb, respectively, was based on the coincidences established between these transitions and transitions from complementary fragments in both experiments. Both isotopes are populated stronger as fragments in the ¹⁹⁷Pb(CN) experi-

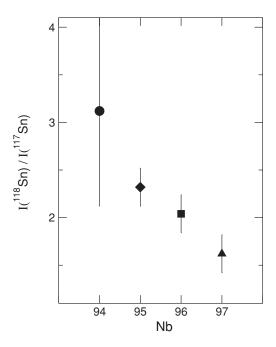


FIG. 7. Ratios of intensities of transitions in Nb isotopes observed in spectra gated on $^{117} \rm Sn~[20]$ and $^{118} \rm Sn~[21]$ in the $^{197} \rm Pb(CN)$ experiment. The known transitions in $^{94} \rm Nb~[16]$ (912.6 keV, circle), and $^{95} \rm Nb~[17]$ (824.7 keV, diamond), were used, as well as the 194.7-keV (square) and 1641.0-keV (triangle) transitions assigned to $^{96,97} \rm Nb$, respectively, in the present work. The intensity values are given in Table I.

ment where the Nb isotopes are predicted by a statistical model to be at the peak of the fission fragment Z distribution [18]. Moreover, from comparison of the intensity of the 1641.0-keV transition in the total projection spectrum of our data to the 853.64 keV, $2^+ \rightarrow 0^+$ transition of ¹⁹²Pb [19], which is the strongest transition in our data, we can estimate that the intensity of the 97 Nb fragment is \sim 5% of the intensity of 192 Pb, which is the strongest evaporation channel in Experiment I. As a result, the ^{96,97}Nb-gated spectra obtained in Experiment I have better statistics than those from the ¹⁹⁹Tl(CN) experiment and, hence, all spectra shown in this work were taken from Experiment I. An example of identification of the 1641.0-keV transition of 97Nb and the 1526.9-keV transition of 96Nb in spectra gated on transitions from complementary fragments is shown in Fig. 5. In the gate of ⁹⁴Nb in Fig. 5 the 1526.9-keV transition is weak whereas it is stronger in the 95Nb and ⁹⁶Nb gates. The opposite is true in Fig. 5 for the 1641.0-keV

TABLE I. Transition intensities, corrected for relative efficiency, and their ratios in Sn-gated spectra from Experiment I for selected transitions of ^{94–97}Nb isotopes.

Isotope	γ ray (keV)	Intensity		Intensity ratio
		¹¹⁷ Sn-gate	¹¹⁸ Sn-gate	$(^{118}\text{Sn}/^{117}\text{Sn})$
⁹⁷ Nb	1641.0	464(50)	752(50)	1.62(20)
⁹⁶ Nb	194.7	886(80)	1806(90)	2.04(21)
⁹⁵ Nb	824.7	1054(80)	2445(150)	2.32(22)
⁹⁴ Nb	912.6	169(50)	527(80)	3.1(10)

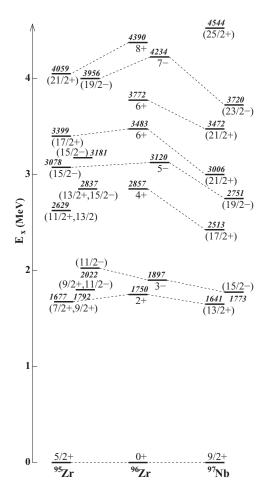


FIG. 8. Comparison of the high-spin states assigned to ⁹⁷Nb in the present work with known high-spin states in ^{95,96}Zr [8,9].

transition which is strong in the 94 Nb and 95 Nb gates and disappears in the 96 Nb gate, suggesting that the 1641.0-keV transition belongs to an Nb isotope heavier than that of the 1526.9-keV transition. 94,95,96 Nb are the 4n, 5n, and 6n channels with respect to 97 Nb and the 5n, 6n, and 7n channels with respect to 96 Nb. For both 96 Nb and 97 Nb the coincidence in Fig. 5 is stronger in the 5n and 6n channels whereas it is weaker in the 4n channel (weak 1526.9-keV transition in the 94 Nb gate) and in the 7n channel (1641.0-keV transition not present in the 96 Nb gate).

In both experiments the targets included a gold backing and reactions of the beam with the backing produced the ²²¹Pa and ²²⁰Th compound nuclei in Experiments I and II, respectively. Hence, the assignment of the transitions in Figs. 1 and 3 to ⁹⁷Nb and ⁹⁶Nb, respectively, was further supported by establishing coincidences between these transitions and those from complementary fragments with respect to the ²²¹Pa and ²²⁰Th compound nuclei. An example of such coincidences from the ¹⁹⁷Pb(CN) experiment is shown in Fig. 6, where gated spectra on transitions assigned to ⁹⁷Nb and ⁹⁶Nb are shown. Transitions from the Nb complementary fragments [15–17] with respect to the ¹⁹⁷Pb (CN) and the Sn complementary fragments [20–22] with respect to ²²¹Pa(CN) are clearly indicated.

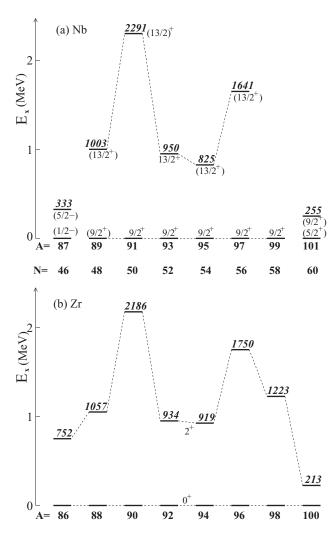


FIG. 9. Systematics for $48 \le N \le 58$ of the first 2^+ excited states in the even-mass Zr isotopes and of the first $13/2^+$ states in the odd-mass Nb isotopes. The ground state $(1/2^-)$ and first $5/2^-$ state of 87 Nb, and the ground state $(5/2^+)$ and first $9/2^+$ state of 101 Nb are also included. Data from Refs. [9,15,17,24] and the present work

An additional check of the assignments of the transitions can be deduced from the ratios of γ -ray intensities in complementary-fragment gated spectra. As an example in Fig. 7 the ratios of γ -ray intensities, observed in 117,118 Sn-gated spectra, for previously known transitions in the 94,95 Nb isotopes and the 194.7- and 1641.0-keV transitions assigned to 96,97 Nb, respectively, are shown. The values of the intensities after relative efficiency correction used to obtain these ratios are included in Table I. The ratios for all transitions in Fig. 7 gradually diminish with increasing Nb mass, further supporting the isotopic assignments in the present work.

IV. DISCUSSION

There is very limited high-spin-state information for nuclei in the immediate vicinity of the subshell closure nucleus of $^{96}Zr_{56}$, defined by the following eight isotopes: $^{94,95,96}Y$,

^{95,97}Zr, and ^{96,97,98}Nb. High-spin states are known only in ⁹⁵Zr [8,9] and in ⁹⁵Y [10]. By establishing high-spin states in two more of these isotopes in the present work, the high-spin-state information around ⁹⁶Zr is significantly enhanced.

A comparison of the high-spin states established here in ⁹⁷Nb with those known in ^{95,96}Zr [8,9] is shown in Fig. 8. The first and second excited states, at 1641 and 1173 keV, respectively, are close in energy to the 2⁺ and 3⁻ states in the 96 Zr core. This suggests $(13/2^+)$ and $(15/2^-)$ spins and parities for these states in 97Nb and weak coupling of the g_{9/2} proton to the quadrupole and octupole excitations in the core. In addition, the energies and γ -ray decay patterns of the higher-lying states in ⁹⁷Nb suggest that a one-to-one correspondence can be made between the ⁹⁷Nb and ⁹⁶Zr excitations, at least up to 3.7-MeV excitation energy. Specifically, the $(29/2^+) \rightarrow (25/2^+) \rightarrow (21/2^+) \rightarrow (17/2^+) \rightarrow (13/2^+)$ sequence in Fig. 1 is similar to the $(10^+) \rightarrow 8^+ \rightarrow 6^+ \rightarrow$ $4^+ \rightarrow 2^+$ sequence in 96 Zr (see level scheme in Fig. 8 of Ref. [9]) and the $(23/2^-) \rightarrow (19/2^-) \rightarrow (15/2^-)$ sequence in Fig. 1 is similar to the $7^- \rightarrow 5^- \rightarrow 3^-$ sequence in 96 Zr. This allows tentative spin-parity assignments for all ⁹⁷Nb states up to 3.7 MeV, as well as for the 4544- and 5725-keV states in Fig. 1. However, as it can be seen in Fig. 8, the trend of attractive coupling between the odd proton and the excited states of the core is broken for the $(25/2^+)$ state. The same is true for the $(29/2^+)$ state, hence, a similar coupling is not obvious for the higher-lying states just by simply comparing the states in the corresponding level schemes. In ⁹⁵Zr additional levels have been observed, as shown in Fig. 8, and the interpretation is more complicated, thus, suggesting a less stronger coupling of the $d_{5/2}$ odd neutron hole in 95 Zr to the 96 Zr core than the $g_{9/2}$ proton coupling to the same core in

The systematics of the first 2^+ excited states in the even-mass Zr isotopes is compared with the systematics of the first $13/2^+$ states in the odd-mass Nb isotopes with number of neutrons between N=48 and N=58 in Fig. 9. The underlying structure changes below N=48 and above N=58, where 100 Zr and 101 Nb are deformed and $9/2^+$ is no longer the ground state in the odd-mass Nb isotopes. The subshell closures at N=50 in 90 Zr and at N=56 in 96 Zr result in peaking of the excitation energy of the 2^+ states in these two nuclei in Fig. 9(b). The same behavior is observed in Fig. 9(a) for the odd-mass Nb isotopes with a $9/2^+$ ground state and up to 97 Nb. No candidate for a $13/2^+$ state was observed in 99 Nb [23], but based on the systematics for the Zr isotopes one could expect such a state at \sim 1.2-MeV excitation energy.

The addition of a neutron hole in ⁹⁶Nb to the odd proton of ⁹⁷Nb results in a much more fragmented level scheme in Fig. 3 compared to the one in Fig. 1. This is expected because there is a larger number of configurations available for excitations from the extra coupling of the neutron hole in ⁹⁶Nb. The large number of available excitations in this nucleus together with the limited spectroscopic information in neighboring odd-odd nuclei inhibits a fruitful comparison with level schemes in neighboring Nb and Zr isotopes.

High-spin states are known in all the other N=56 isotones in this mass region ($A \le 100$). Specifically, 92 Kr and 94 Sr

were studied as fission fragments in the spontaneous fission of ²⁴⁸Cm [25,26] (no high-spin-state experimental information is known for the neutron-rich N = 56 isotones lighter than 92 Kr). ⁹³Rb was studied as a fission fragment in the spontaneous fission of ²⁵²Cf [27]. ⁹⁵Y was studied as a fission fragment in the spontaneous fission of ²⁴⁸Cm and ²⁵²Cf, as well as in the neutron-induced fission of ²³⁵U [10]. ⁹⁶Zr [28] and ⁹⁸Mo [29,30], which are stable, have been studied in a variety of methods including Coulomb excitation and the fission fragment method following heavy-ion-induced fusionevaporation reactions. Finally, the neutron-deficient ⁹⁹Tc [31] and ¹⁰⁰Ru [32] have been studied in a variety of methods including fusion-evaporation reactions. The $9/2^+$ states form the ground state in ⁹⁷Nb and ⁹⁹Tc whereas they are isomers in ⁹³Rb and ⁹⁵Y. The level schemes of high-spin states above the 9/2⁺ states in ⁹³Rb, ⁹⁵Y, ⁹⁷Nb, and ⁹⁹Tc can be compared to the level schemes of the corresponding cores, 92Kr, 94Sr, ⁹⁶Zr, and ⁹⁸Mo, respectively. From such a comparison it could be suggested that the level schemes in the ⁹⁷Nb-⁹⁶Zr case exhibit the most extensive similarities among these cases. In the case of ⁹³Rb-⁹²Kr, a similar weak-coupling picture of the $g_{9/2}$ proton to the ground band of 92 Kr is suggested [27], but the experimental information in ⁹³Rb is limited and similarities can be established for only the first three excited states above the $9/2^+$ isomer. The observation of high-spin states in ⁹⁷Nb in the present work completes the picture of the systematics of the N = 56 isotones in this mass region.

The results of the shell-model calculations in Ref. [4] predict the first $13/2^+$ state in 97 Nb at ~ 1.5 -MeV excitation energy. The tentative spin-parity assignment of $13/2^+$ to the 1641-keV state observed in 97 Nb in the present work is in very good agreement with this prediction, although in the same calculation, the first 7^+ state in 96 Nb is predicted at ~ 0.5 -MeV excitation energy, whereas experimentally it is observed at a much lower excitation energy. Clearly, new shell-model calculations for high-spin states in 96,97 Nb are needed for a wider comparison with the experimental results presented in this work.

V. SUMMARY

In summary, high-spin states were observed for the first time in 96,97 Nb following the fission of hot compound nuclei formed in two different fusion-evaporation reactions. The assignment of the transitions is based on coincidences with previously known transitions in the complementary fragments. Excited states in 97 Nb up to 3.7 MeV can be interpreted as the coupling of the odd proton occupying the $g_{9/2}$ orbital to positive and negative parity yrast states in the 96 Zr core. A comparison with the first excited states in 95 Zr suggests a weaker coupling of the $d_{5/2}$ odd neutron hole in 95 Zr to the 96 Zr core. A much more fragmented level scheme is observed in 96 Nb from the coupling of both the odd proton particle and the odd neutron hole to the states in the 96 Zr core. The spectroscopy of highspin states in the immediate vicinity of the subshell closure nucleus 96 Zr is now more complete and the gap at A=97 in the systematics of high-spin states in N=56 isotones is now

bridged. More experimental information, especially firm spin and parity assignments of the high-spin states reported here, is needed to confirm the interpretations suggested in the present work. The extensive level schemes for ^{96,97}Nb now available show the need for new shell-model calculations for nuclei near ⁹⁶Zr.

ACKNOWLEDGMENTS

This work was supported in part by the US Department of Energy under Contract Nos. DE-AC52-06NA25396 (LANL), DE-AC52-07NA27344 (LLNL), and AC03-76SF00098 (LBNL), and by the National Science Foundation (Rutgers).

- [1] N. Nica, Nucl. Data Sheets 111, 525 (2010).
- [2] K. Krishan and S. Sen, Phys. Rev. C 18, 1026 (1978).
- [3] P. K. Bindal, D. H. Youngblood, R. L. Kozub, and P. H. Hoffmann-Pinther, Phys. Rev. C 12, 390 (1975).
- [4] D. H. Gloeckner, Nucl. Phys. A 253, 301 (1975).
- [5] K. Takahashi, G. J. Mathews, and S. D. Bloom, Phys. Rev. C 33, 296 (1986).
- [6] D. Abriola and A. A. Sonzogni, Nucl. Data Sheets 109, 2501 (2008).
- [7] K. Zajac, Int. J. Mod. Phys. E 13, 103 (2004).
- [8] N. Fotiades et al., Phys. Rev. C 65, 044303 (2002).
- [9] D. Pantelica et al., Phys. Rev. C 72, 024304 (2005).
- [10] W. Urban et al., Phys. Rev. C 79, 044304 (2009).
- [11] N. Fotiadis, in Proceedings of the Fourth International Conference on Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, USA, November 11–17, 2007, edited by J. H. Hamilton, A. V. Ramaya, and H. K. Carter (World Scientific Publishing, Singapore, 2008), p. 542.
- [12] N. Fotiades et al., Phys. Rev. C 71, 064312 (2005).
- [13] N. Fotiades et al., Phys. Rev. C 67, 034602 (2003).
- [14] R. Krücken et al., Eur. Phys. J. A 5, 367 (1999).
- [15] C. M. Baglin, Nucl. Data Sheets 80, 1 (1997).

- [16] D. Abriola and A. A. Sonzogni, Nucl. Data Sheets 107, 2423 (2006).
- [17] D. Bucurescu et al., Phys. Rev. C 71, 034315 (2005).
- [18] N. Fotiades et al., Phys. Scr., T 88, 127 (2000).
- [19] C. M. Baglin, Nucl. Data Sheets 84, 717 (1998).
- [20] J. Blachot, Nucl. Data Sheets 95, 679 (2002).
- [21] K. Kitao, Nucl. Data Sheets 75, 99 (1995).
- [22] D. M. Symochko, E. Browne, and J. K. Tuli, Nucl. Data Sheets 110, 2945 (2009).
- [23] L. K. Peker, Nucl. Data Sheets 73, 1 (1994).
- [24] R. B. Firestone, V. S. Shirley, C. M. Baglin, S. Y. Frank Chu, and J. Zipkin, *Table of Isotopes* (Wiley, New York, 1996), and references therein.
- [25] T. Rząca-Urban et al., Eur. Phys. J. A 9, 165 (2000).
- [26] T. Rząca-Urban, K. Sieja, W. Urban, F. Nowacki, J. L. Durell, A. G. Smith, and I. Ahmad, Phys. Rev. C 79, 024319 (2009).
- [27] J. K. Hwang et al., Phys. Rev. C 80, 037304 (2009).
- [28] A. A. Sonzogni, Nucl. Data Sheets 109, 2501 (2008).
- [29] B. Singh and Z. Hu, Nucl. Data Sheets 98, 335 (2003).
- [30] S. Lalkovski et al., Phys. Rev. C 75, 014314 (2007).
- [31] J. K. Tuli, G. Reed, and B. Singh, Nucl. Data Sheets 93, 1 (2001).
- [32] B. Singh, Nucl. Data Sheets 109, 297 (2008).