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Mirror nuclei constraint in nuclear mass formula
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The macroscopic-microscopic mass formula is further improved by considering mirror nuclei constraint. The
rms deviation with respect to 2149 measured nuclear masses is reduced to 0.441 MeV. The shell corrections,
the deformations of nuclei, the neutron and proton drip lines, and the shell gaps are also investigated to test the
model. The rms deviation of α-decay energies of 46 superheavy nuclei is reduced to 0.263 MeV. The predicted
central position of the superheavy island could lie around N = 176 ∼ 178 and Z = 116 ∼ 120 according to the
shell corrections of nuclei.
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I. INTRODUCTION

The concept of symmetry in physics is a very powerful tool
for understanding the behavior of nature. The isospin symme-
try discovered by Heisenberg plays an important role in nuclear
physics. In the absence of Coulomb interactions between the
protons, a perfectly charge-symmetric and charge-independent
nuclear force would result in the binding energies of mirror
nuclei (i.e., nuclei with the same atomic number A but with the
proton number Z and neutron number N interchanged) being
identical [1,2]. Although the Coulomb interaction can result in
isospin-symmetry breaking (ISB), the measured energy differ-
ences in the excited analog states between mirror nuclei (MED)
amount to tens of keV and do not generally exceed 100 keV,
which indicates that the “nuclear part” of the binding energies
in pairs of mirror nuclei should be close to each other, i.e.,

EB − EC ≈ E′
B − E′

C, (1)

where EB and EC denote the total energy and the Coulomb
energy of a nucleus, respectively, and E′

B and E′
C denote

the corresponding values of the mirror nucleus. Combining
the macroscopic-microscopic mass formula and Eq. (1), one
can obtain the constraint between the shell corrections of the
mirror nuclei,

|�E − �E′| ≈ 0, (2)

that is to say, a small value for the difference of the shell correc-
tions of a nucleus and of its mirror nucleus. It is interesting to
study the constraint between mirror nuclei and the ISB effect
for improving the nuclear mass formula, especially for the
calculations of neutron-rich nuclei and superheavy nuclei.

In addition, the influence of the Coulomb interaction on
the single-particle levels attracted a lot attention in recent
years. It has been shown that single-particle effects, induced
by the electromagnetic spin-orbit interaction and the Coulomb
orbital term, produce large effects in the MED for nuclei
in the upper sd and fp shells [3]. In Ref. [4], the authors
found that the Coulomb potential strength does not change
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the position of magic gaps 50, 82, and 126 but strongly
influences the shell structure of superheavy nuclei. These
investigations show that it is necessary to study the influence
of the Coulomb term on isospin-symmetry breaking and on
the binding energies of nuclei. The aim of the present work
is to improve the semiempirical mass formula through studying
the mirror nuclei constraint due to the isospin symmetry and
the influence of the Coulomb term on the single-particle
levels and consequently on the shell corrections of nuclei.
The article is organized as follows: In Sec. II, we introduce the
semiempirical nuclear mass formula and some modifications
in this work. In Sec. III, some results with the proposed
model are presented. Finally, conclusions and discussions are
contained in Sec. IV.

II. MODIFICATIONS OF THE MASS FORMULA

In Ref. [5], we proposed a semiempirical nuclear mass
formula based on the macroscopic-microscopic method [6].
The total energy of a nucleus can be calculated as a sum of the
liquid-drop energy and the Strutinsky shell correction �E,

E(A,Z, β) = ELD(A,Z)
∏
k�2

(
1 + bkβ

2
k

) + �E(A,Z, β).

(3)

The liquid-drop energy of a spherical nucleus ELD(A,Z) is
described by a modified Bethe-Weizsäcker mass formula,

ELD(A,Z) = avA+ asA
2/3 + EC + asymI 2A+ apairA

−1/3δnp

(4)

with isospin asymmetry I = (N − Z)/A, and the symmetry
energy coefficient,

asym = csym

[
1 − κ

A1/3
+ 2 − |I |

2 + |I |A
]

. (5)

The isospin dependence of the pairing term is also considered
(see the expression of δnp in [5] for details). The terms
with bk describe the contribution of nuclear deformation to
the macroscopic energy, and the mass dependence of bk is
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written as,

bk =
(

k

2

)
g1A

1/3 +
(

k

2

)2

g2A
−1/3. (6)

The shell correction is obtained by the traditional Strutinsky
procedure [7] by setting the order p = 6 of the Gauss-Hermite
polynomials and the smoothing parameter γ = 1.2h̄ω0 with
h̄ω0 = 41A−1/3 MeV. For the deformation of nuclei, we only
consider axially deformed cases.

In this work, we make the following modifications to the
mass formula:

(i) The Coulomb energy form is slightly changed,
Z(Z − 1) is replaced by Z2,

EC = ac

Z2

A1/3
[1 − Z−2/3], (7)

following the form in the finite-range droplet model
(FRDM) [6]. This modification can slightly improve
the rms deviation with respect to 2149 measured nuclear
masses [8] of nuclei [N and Z � 8] by about 2 ∼ 3%.

(ii) The microscopic shell correction of a nucleus is
modified as,

�E = c1Esh + |I |E′
sh. (8)

Where Esh and E′
sh denote the shell energy of a

nucleus and of its mirror nucleus, respectively. The
additionally introduced |I |E′

sh term is to empirically
take into account the mirror nuclei constraint and the
isospin-symmetry-breaking effect. We find that this
term can considerably reduce the rms deviation of
masses by about 10%. The isospin dependence in
Eq. (8) is to consider the increase of the difference
between neutron-neutron and proton-proton pairs in

FIG. 1. (Color online) (a) Shell-correction difference �E′ − �E

in pairs of mirror nuclei. The squares and the open circles denote the
results without and with the E′

sh term being taken into account, re-
spectively. The balls denote the experimental values of (EB − EC) −
(E′

B − E′
C) between mirror nuclei with the Coulomb energy form in

Ref. [5]. (b) Deviations of the calculated nuclear masses from the
experimental data [8]. The squares and the crosses denote the results
of WS and WS*, respectively. The solid curve denote the results
of an empirical formula, �T = −0.7[cos(2π N

16 ) + cos(2π N

20 )]A−1/3,
which will be discussed later.

TABLE I. Model parameters of the mass formula.

Parameter WS WS*

av (MeV) −15.5841 −15.6223
as (MeV) 18.2359 18.0571
ac (MeV) 0.7173 0.7194
csym(MeV) 29.2876 29.1563
κ 1.4492 1.3484
apair(MeV) −5.5108 −5.4423
g1 0.00862 0.00895
g2 −0.4730 −0.4632
c1 0.7274 0.6297
V0 (MeV) −47.4784 −46.8784
r0 (fm) 1.3840 1.3840
a (fm) 0.7842 0.7842
λ0 26.3163 26.3163

neutron-rich or proton-rich nuclei. The |I |E′
sh term

can effectively reduce the shell-correction deviation
|�E − �E′| in pairs of mirror nuclei, which is required
from the constraint in Eq. (2) and is helpful to restore
the isospin symmetry in the mirror nuclei. If without
the |I |E′

sh term in Eq. (8), we obtain

|�E − �E′| = c1|Esh − E′
sh|. (9)

Considering the |I |E′
sh term in �E, we obtain

|�E − �E′| = (c1 − |I |)|Esh − E′
sh|

� c1|Esh − E′
sh|. (10)

To illustrate this point, in Fig. 1(a) we show the val-
ues of �E′ − �E between mirror nuclei as a function of
neutron number with the WS model [5]. The balls denote
the experimental values of the nuclear energy difference
(EB − EC) − (E′

B − E′
C) between mirror nuclei by adopting

the Coulomb energy form in the WS model. One can see
that the experimental binding energies of pairs of mirror
nuclei are indeed close to each other as mentioned previously
when removing the Coulomb energies and the deviations are
generally smaller than 1 MeV. The squares and the circles
denote the results of shell-correction difference without and
with the |I |E′

sh term being taken into account, respectively.
Here, the shell energy of a nucleus is calculated at the
deformation of its mirror nucleus for the sake of simplicity,
since the deformations of pairs of mirror nuclei are close to

TABLE II. rms σ deviations between data AME2003 [8] and
predictions of several models (in MeV). The line σ (M) refers to all the
2149 measured masses, the line σ (Sn) to the 1988 measured neutron
separation energies Sn. The calculated masses with FRDM are taken
from Ref. [6]. The masses with HFB-14 and HFB-17 are taken from
Refs. [9] and [10], respectively. WS* + �T means the correction �T

for empirically considering the tetrahedral deformation is added to
the binding energy of a nucleus with WS*.

FRDM HFB-14 HFB-17 WS WS* WS* + �T

σ (M) 0.656 0.729 0.581 0.516 0.441 0.417
σ (Sn) 0.399 0.598 0.506 0.346 0.332 0.330
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FIG. 2. (Color online) (a) Contour
plot of shell corrections of nuclei with
WS*. The dot-dashed line passes through
the areas with the known heavy magic
nuclei. (b) Shell corrections of nuclei as a
function of neutron number. The crosses
and the squares denote the results of WS
and WS*, respectively.

each other for most nuclei according to the calculated results
with WS. The WS calculations show that the shell-correction
differences caused by the Coulomb potentials are larger than
3 MeV for some mirror nuclei, which obviously overpredict
the experimental nuclear energy differences [see the balls
in Fig. 1(a)]. The electromagnetic spin-orbit interaction, the
Coulomb orbital term or the Coulomb potential strength are
therefore introduced by some authors [3,4] for improving
the traditional Coulomb potential as mentioned previously.
In this work, the influence of the Coulomb term is effectively
considered by introducing the shell energy of the mirror nuclei.
The shell-correction difference between mirror nuclei is
effectively reduced by about 1 MeV after the |I |E′

sh term being
considered in �E. The β6 deformation of nuclei is taken into
account, which slightly improves the results of heavy nuclei.

III. RESULTS

With these modifications and the obtained optimal parame-
ters of mass formula which are listed in Table I and labeled as
WS*, the rms deviations of the 2149 nuclear masses is further
reduced by 15%, to 0.441 MeV, and the rms deviations of
the neutron separation energies of 1988 nuclei is reduced to
0.332 MeV (see Table II). Figure 1(b) shows the deviations
of the calculated nuclear masses from the experimental data.
Considering the shell constraint between mirror nuclei (WS*),
the results are effectively improved.

In Fig. 2 we show the calculated shell corrections �E

of nuclei with this model. Considering the shell constraint
between mirror nuclei, the nuclei with the largest shell
corrections in the superheavy region slightly moves to N =
176 and Z = 120. The shell energies with WS* for nuclei

around N = 16 and N = 28 become larger in absolute values,
while those for nuclei around (N = 184, Z = 82) and 100Sn
become smaller compared with the WS calculations. In Fig. 3,
we show the calculated deformations of nuclei with WS*.
Obviously, the calculated structure of the known magic nuclei
is spherical in shape. For light nuclei, the β6 deformations of
nuclei are not very obvious, compared with the intermediate
and heavy nuclei. In Fig. 4, we show the deviations of the
calculated nuclear masses in this work from the results of other
models as a function of isospin asymmetry. One can see that
for highly neutron-rich nuclei (I > 0.3) the deviations from
these different models are large, and the results from FRDM
and WS* are relatively close to each other, while the results
from WS are relatively close to those of HFB-17 [10].

In Fig. 5, we show the drip lines obtained with different
mass formulas. To remove the fluctuations due to the shell and
pairing effects, we do a polynomial fitting to the calculated
results with the FRDM, the HFB-17, and the WS* models,
respectively. The leftmost and rightmost curves denote the
smooth drip lines of proton and neutron, respectively. The
crosses denote the measured nuclei. For the proton drip line
of odd-Z nuclei, the three models give similar results. For
the neutron drip line, the results slightly deviate from each
other at heavy mass region. Based on the liquid-drop model,
the neutron separation energy of an intermediate and heavy
nucleus (A � 1) can be approximately written as

Sn � −av − 2asymI. (11)

Where, av (negative value) and asym (positive value) are the
coefficients of the volume energy and the symmetry energy
of a nucleus, respectively. For the neutron drip line (Sn = 0)

FIG. 3. (Color online) (a) Contour
plot of quadrupole deformation |β2| of
nuclei with WS*. (b) β4 and (c) β6 of
nuclei as a function of neutron number,
respectively.
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FIG. 4. (Color online) Deviations of calculated nuclear masses in
this work from the results of other models. The calculated masses with
FRDM and HFB-17 are taken from Refs. [6] and [10], respectively.

of intermediate and heavy mass region, we obtain the isospin
asymmetry at the drip line

Ind � −1

2

av

asym
. (12)

One can see that the neutron drip line directly relates to the
ratio of av to asym. The difference of the neutron drip line
from different models is probably due to the difference of the
coefficients av and asym adopted in the models. For nuclei with
A → ∞ or asymmetric nuclear matter (av ≈ −16 MeV and
asym ≈ 32 MeV), we obtain the corresponding neutron drip
line which is also shown in Fig. 5 (solid-squared line). From the
figure, one can see that most of measured nuclei are located in
the left side of the solid-squared line. In addition, we show the
smooth β-stability line from FRDM (open-squared curve) and
WS* (solid-circled curve) calculations, respectively. At Z =
120, the corresponding neutron number of the nuclei along the
β-stability line is about N = 200.

To further test the model, we study the shell gaps. As a
measure of the discontinuity in the two neutron separation

FIG. 5. (Color online) Smooth drip lines from different mass
formulas. The crosses denote the measured nuclei. The solid-squared
line denote the neutron drip line of nuclei A → ∞ with I = − 1

2
av

asym

and taking av = −16 MeV and asym = 32 MeV. The open-squared
and the solid-circled curve denote the smooth β-stability line from
FRDM and WS* calculations, respectively.

FIG. 6. (Color online) Shell gap calculated with different models.
The dashed, dot-dashed, and solid curve denote the results of
HFB-17, FRDM, and WS*, respectively. The squared curve denote
the experimental data.

energy S2n at magic neutron numbers N0, the shell gap [11],

�n(N0, Z) = S2n(N0, Z) − S2n(N0 + 2, Z), (13)

is a sensitive quantity to test the model. In Fig. 6, we show
the calculated shell gaps at the magic neutron numbers N0 =
28, 50, 82, 126 with different models. The dashed, dot-dashed,
and solid curve denote the results of HFB-17, FRDM, and
WS*, respectively. The squared curve denote the experimental
data. The most shell gaps can be reasonably well described
by the WS* model, except the shell gap at subshell closure
Z = 64 which is overpredicted by WS* and FRDM and
is underpredicted by the HFB-17 model. In Fig. 6(b), the
peak (large shell gap) at magic number Z = 28 disappears
according to the HFB-17 calculations, and the peak at Z = 82
cannot be reasonably well described from the FRDM and

FIG. 7. (Color online) Fission barriers of some superheavy nuclei.
The solid-circled curve denote the calculated fission barriers of
superheavy nuclei in Ref. [13]. The open-circled curve and the crosses
denote the values of −�E with WS and WS*, respectively. The
dashed line denotes the position N = 184.
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TABLE III. α-decay energies Qα and the shell corrections in six α-decay chains with WS* (in MeV). The experimental data are taken from
Refs. [14,15].

A Z Qα(Expt.) Qα(WS*) �E(WS*) A Z Qα(Expt.) Qα(WS*) �E(WS*)

294 117 10.96(10) 11.32 −5.77 293 117 11.18(8) 11.62 −5.70
290 115 10.09(40) 10.38 −5.17 289 115 10.45(9) 10.34 −5.28
286 113 9.77(10) 9.82 −4.33 285 113 9.88(9) 10.13 −4.46
282 111 9.13(10) 9.62 −4.10 281 111 – 10.04 −4.17
278 109 9.69(19) 9.66 −4.88 277 109 – 9.75 −5.07
274 107 8.93(10) 8.71 −4.80 273 107 – 8.98 −5.05

296 120 – 13.25 −6.56 298 120 – 12.81 −6.13
292 118 – 12.06 −6.16 294 118 11.81(6) 12.15 −6.31
288 116 – 11.31 −5.32 290 116 11.00(8) 11.12 −5.61
284 114 – 10.93 −4.50 286 114 10.33(6) 10.25 −5.09
280 112 – 10.90 −4.51 282 112 – 10.27 −4.68

304 120 – 12.49 −5.08 320 120 – 9.85 −2.31
300 118 – 11.70 −5.43 316 118 – 9.27 −2.08
296 116 – 10.98 −5.43 312 116 – 8.73 −0.14
292 114 – 9.12 −5.40 298 114 – 8.07 −5.15
288 112 – 9.36 −4.46 294 112 – 8.38 −3.77

HFB-17 calculations in Fig. 6(d). The experimental shell gaps
at magic numbers Z = 20, 28, 40, 50, 82 can be remarkably
well described with the proposed model.

In addition, we study the relation between the fission barrier
of superheavy nucleus and the corresponding shell correction
of the nucleus. Neglecting the shell energy at the saddle point,
the fission barrier of a nucleus can be approximately written
as [12],

Bf ≈ BLD − �E. (14)

Where BLD and �E are the macroscopic fission barrier
and the shell correction of a nucleus at its ground state.
For a superheavy nucleus, the macroscopic fission barrier
generally disappears and consequently the fission barrier
can be roughly evaluated through the corresponding shell
correction of the nucleus. In Fig. 7, we show the fission
barriers of a number of superheavy nuclei (solid-circled curve)
[13] which are calculated with the macroscopic-microscopic
approach, considering the deformation of system up to β8

and the triaxial deformation. The open-circled curve and
the crosses denote the values of −�E with WS and WS*,
respectively. One can see that the calculated fission barriers are
generally close to the values of −�E with WS. Both models
in which the mirror nuclei constraint is not taken into account
predict the two neutron magic numbers N = 162 and N = 178
at the superheavy region. When the constraint between mirror
nuclei is considered (WS*), the results for nuclei with Z = 116
and 118 do not change too much around N = 178, while
the results for nuclei with Z = 114 and 120 change about
1 MeV. These investigates indicate (i) the calculated shell
corrections (in absolute value) with the proposed mass formula
are comparable to the fission barriers of super-heavy nuclei
and (ii) the mirror nuclei constraint could influence the shell
structure of nuclei with Z = 114 and 120. In Fig. 7, the dashed
lines denotes the position N = 184. For nuclei with N > 184,
the fission barriers fall rapidly with the increase of neutron
number. In addition, the shell corrections (in absolute value)

of nuclei with Z > 120 are obviously smaller than that of
296120. According to the calculated shell corrections of nuclei,
the central position of the super-heavy island could lie around
N = 176 ∼ 178 and Z = 116 ∼ 120.

Furthermore, we study the α-decay energies of 46 super-
heavy nuclei (the experimental data are taken from Ref. [14],
Table I of Ref. [15], and Table II of Ref. [16]). The rms
deviation of the α-decay energies of the 46 superheavy nuclei
falls from 0.566 MeV with FRDM to 0.263 MeV with the
WS* model (the corresponding result with WS is 0.284 MeV).
In Table III, we list the α-decay energies Qα and the shell
corrections �E in six α-decay chains of superheavy nuclei
with Z = 117 [14] and Z = 120. The available experimental
data can be reproduced reasonably well. These calculations
indicate that the proposed mass formula is relatively reliable
for description of the masses of superheavy nuclei.

IV. CONCLUSION AND DISCUSSION

In summary, the semiempirical mass formula based on the
macroscopic-microscopic method has been further improved
by considering the constraint between mirror nuclei. The
rms deviation with respect to 2149 measured nuclear masses
is reduced to 0.441 MeV and the rms deviation of the
neutron separation energies of 1988 nuclei falls to 0.332 MeV.
The shell corrections, the deformations of nuclei, and the
neutron and proton drip lines have been investigated also. The
predicted central position of the superheavy island according
to the calculated shell corrections of nuclei could lie around
N = 176 ∼ 178 and Z = 116 ∼ 120, considering the mirror
nuclei constraint. The shell corrections of superheavy nuclei
(in absolute value) are close to the corresponding fission
barriers of the nuclei from other macroscopic-microscopic
model. The shell gaps at proton magic numbers Z = 20,
28, 40, 50, 82 can be remarkably well described with the
proposed model. The rms deviation of the α-decay energies
of 46 superheavy nuclei is reduced from 0.566 MeV with

044304-5



NING WANG, ZUOYING LIANG, MIN LIU, AND XIZHEN WU PHYSICAL REVIEW C 82, 044304 (2010)

FRDM to 0.263 MeV with the proposed model in this
work.

In addition, we note that the deviations from
the measured masses for some nuclei with N ≈
18, 26, 40, 56, 64, 70, 80, 88, etc., are relatively large, with
both WS and WS*, which may be caused by the triaxial
deformation of nuclei or the tetrahedral symmetry in nuclei
[17,18]. It is found that the strongest tetrahedral-symmetry
effects appear at tetrahedral-magic numbers 16, 20, 32, 40,
56, etc., and the tetrahedral deformation can bring over a
few MeV of energy gain in the nucleus [18]. We empirically
describe the influence of the tetrahedral deformation on the
binding energies of nuclei by using two cosine functions
together with the two tetrahedral-magic numbers 16 and 20,

�T = −0.7[cos(2π N
16 ) + cos(2π N

20 )]A−1/3 MeV. The solid
curve in Fig. 1(b) denotes the results of �T . With the empirical
function �T , the rms deviation of 2149 nuclear masses can
be further reduced by 5%, to 0.417 MeV. Microscopic study
on the triaxial deformation of nuclei is in progress.
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