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Cluster structures of excited states in 14C
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Structures of excited states in 14C are investigated with a method of β-γ constraint antisymmetrized molecular
dynamics in combination with the generator coordinate method. Various excited states with the developed
3α-cluster core structures are suggested in positive- and negative-parity states. In the positive-parity states, triaxial
deformed and linear-chain structures are found to construct excited bands. Interestingly, 10Be + α correlation is
found in the cluster states above the 10Be + α threshold energy.
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I. INTRODUCTION

Owing to the experimental progress of unstable nuclei,
various exotic structures have been discovered in neutron-rich
nuclei where excess neutrons play important roles. In light
neutron-rich nuclei, cluster structure with excess neutrons is
one of the hot subjects in experimental and theoretical studies,
where searching for new cluster states in excited states has
been performed.

In this point of view, neutron-rich C isotopes such as 14C
are an interesting subject because they have excess neutrons
compared with 12C, which is already well known to show
various structures owing to the coexistence of shell-model
and cluster features. The ground state of 12C has mainly a
shell-model feature of the p3/2-subshell closed configuration,
whereas, in the excited states above the 3α threshold energy,
various configurations of 3α-cluster structures were suggested
in many theoretical works [1–11]. For example, the 3−

1 state
has been discussed in association with an equilateral-triangular
structure of three α clusters. The α condensation of weakly
interacting three α clusters suggested in the 0+

2 and 2+
2 states

is another cluster aspect attracting great interest recently
[6–8]. Moreover, a linear chainlike structure with an obtuse-
angle-triangular 3α configuration was suggested in the 0+

3
state [9,10]. Therefore, it is expected that 14C with two
excess neutrons may also exhibit rich phenomena in the
excited states. In particular, from an analogy of 12C, various
cluster structures may appear in 14C as well as shell-model
structures.

For the excited states of 14C, there are many experimental
studies that indicate the appearance of cluster states such as
10Be + α cluster states [12–16]. Also on the theoretical side,
cluster structures of 14C were suggested [17]. In the study of
14C with 3α + 2n cluster models, Itagaki et al. predicted that an
equilateral-triangular structure of the well-developed three α

clusters surrounded by excess neutrons is formed, constructing
Kπ = 0+ and Kπ = 3− rotational bands in the excited states.
They argued that these two bands originate in a rather rigid
3α structure stabilized by the excess neutrons in the molecular
orbitals. This mechanism can be interpreted as a realization
of the α crystallization in dilute nuclear medium. Another
interesting problem is whether a linear-chain 3α structure
with two excess neutrons exists in the excited states of 14C.
Although there were discussions on the possibility of the
linear-chain structure in neutron-rich C isotopes [12,18,19],

there is no clear conclusion for stability of the linear-chain
structure in 14C. Thus, the excited states of 14C are attracting
much interest recently, and therefore, systematic study of the
ground and excited states is required.

Our aim is to investigate the ground and excited states of
14C while focusing on cluster features. To clarify the role
of excess neutrons in neutron-rich nuclei, it is helpful to
consider analogies and differences of cluster features between
14C and 12C. It is also a challenging problem to search for
new types of structures in 14C. In such a systematic study,
it is rather important to apply a framework that is free from
model assumptions of clusters because the formation of three
α clusters is not obvious in 14C. Therefore, we adopted
a method of antisymmetrized molecular dynamics (AMD),
which is a framework without any assumption of the existence
of clusters. In the present study, we apply a combination of
the β-γ constraint AMD and the generator coordinate method
(GCM), which we call the β-γ constraint AMD + GCM. This
method has already been proved to be a powerful approach to
describing various structures such as cluster and shell-model-
like structures [20]. In particular, it is useful for the systematic
study of cluster states in excited states owing to the superpo-
sition of basis AMD wave functions on the two-dimensional
β-γ plane. Therefore, it is suitable for the study of 14C.

This article is organized as follows. In Sec. II, we explain
the framework of the β-γ constraint AMD + GCM. The
calculated results are shown in Sec. III. In Sec. IV, we discuss
the effect of excess neutrons and compare the present results
with earlier works. Finally, in Sec. V, a summary and an
outlook are given.

II. FRAMEWORK OF THE β-γ CONSTRAINT
AMD + GCM

The frameworks of AMD are described in detail, for
example, in Refs. [21–24]. In this article, we adopt a version of
AMD, the β-γ constraint AMD [20], in which we perform the
variation with the constraint on the quadrupole deformation
parameters, β and γ .

A. Wave function of AMD

In the method of AMD, a basis wave function of an
A-nucleon system |�〉 is described by a Slater determinant of
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single-particle wave functions |ϕi〉 as

|�〉 = 1√
A!

det{|ϕ1〉, . . . , |ϕA〉}. (1)

The ith single-particle wave function |ϕi〉 consists of
the spatial part |φi〉, the spin part |χi〉, and the isospin
part |τi〉 as

|ϕi〉 = |φi〉|χi〉|τi〉. (2)

The spatial part |φi〉 is given by a Gaussian wave packet
whose center is located at Zi/

√
ν as

〈r|φi〉 =
(

2ν

π

) 3
4

exp

[
− ν

(
r − Zi√

ν

)2

+ 1

2
Z2

i

]
, (3)

where ν is the width parameter and is taken to be a common
value for all the single-particle Gaussian wave functions in the
present work. The spin orientation is given by the parameter
ξ i , while the isospin part |τi〉 is fixed to be up (proton) or
down (neutron),

|χi〉 = ξi↑|↑〉 + ξi↓|↓〉, (4)

|τi〉 = |p〉 or |n〉. (5)

In a basis wave function |�〉, {X} ≡ {Z, ξ} =
{Z1, ξ 1, Z2, ξ 2, . . . , ZA, ξA} are complex variational
parameters and they are determined by the energy
optimization.

B. Parity and angular momentum projections

We project the AMD wave function onto parity and angular
momentum eigenstates by using the parity projection operator
P̂ ± and the angular-momentum projection operator P̂ J

MK . The
parity projection operator P̂ ± is defined as

P̂ ± ≡ 1 ± P̂

2
, (6)

where P̂ is the parity operator. The angular-momentum
projection operator P̂ J

MK is defined as

P̂ J
MK ≡ 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�), (7)

where � = (α, β, γ ) are the Euler angles, DJ
MK (�) is the

Wigner’s D function, and R̂(�) = e−iαĴz e−iβĴy e−iγ Ĵz is the
rotation operator.

We perform the variation for the parity projected wave
function |�±〉 defined as

|�±〉 ≡ P ±|�〉. (8)

After the variation, we project the obtained wave function
onto the total-angular-momentum eigenstates. It means that
the parity projection is performed before the variation, and
the total-angular-momentum projection is carried after the
variation.

C. Constraint variation on quadrupole deformation

To describe various cluster and shell-model structures that
may appear in the ground and excited states of 14C, we perform

the energy variation with the constraints on the quadrupole
deformation parameters, β and γ .

The deformation parameters, β and γ , are defined as

β cos γ ≡
√

5π

3

2〈ẑ2〉 − 〈x̂2〉 − 〈ŷ2〉
R2

, (9)

β sin γ ≡
√

5π

3

〈x̂2〉 − 〈ŷ2〉
R2

, (10)

R2 ≡ 5

3
(〈x̂2〉 + 〈ŷ2〉 + 〈ẑ2〉). (11)

Here, 〈Ô〉 represents the expectation value of the op-
erator Ô for an intrinsic wave function |�〉. x̂, ŷ,
and ẑ are the inertia principal axes that are cho-
sen as 〈ŷ2〉 � 〈x̂2〉 � 〈ẑ2〉 and 〈x̂ŷ〉 = 〈ŷẑ〉 = 〈ẑx̂〉 = 0.
To satisfy the latter condition, we also impose the constraints
〈x̂ŷ〉/R2 = 〈ŷẑ〉/R2 = 〈ẑx̂〉/R2 = 0. To obtain the energy
minimum state under the constraint condition, we add the
constraint potential Vconst to the total energy of the system in
the energy variation. The constraint potential Vconst is given as

Vconst ≡ η1[(β cos γ − β0 cos γ0)2 + (β sin γ − β0 sin γ0)2]

+ η2

[ ( 〈x̂ŷ〉
R2

)2

+
( 〈ŷẑ〉

R2

)2

+
( 〈ẑx̂〉

R2

)2 ]
. (12)

Here, η1 and η2 take sufficiently large values. That is, we
minimize the constrained energy E±

const defined as

E±
const ≡ 〈�±|Ĥ |�±〉

〈�±|�±〉 + Vconst, (13)

where Ĥ is the Hamiltonian, to determine {X}. After the
variation with the constraints, we obtain the optimized wave
functions |�±(β0, γ0)〉 for each set of parameters, (β, γ ) =
(β0, γ0).

D. Generator coordinate method

In the calculations of energy levels, we superpose the parity
and total-angular-momentum projected AMD wave functions
P̂ J

MK |�±(β, γ )〉. Thus, the final wave function for the J±
n

state is given by a linear combination of the basis wave
functions as

∣∣�J±
n

〉 =
∑
K

∑
i

fn(βi, γi,K)P̂ J
MK |�±(βi, γi)〉. (14)

The coefficients fn(βi, γi,K) are determined using the Hill-
Wheeler equation,

δ
(〈
�J±

n

∣∣Ĥ ∣∣�J±
n

〉 − En

〈
�J±

n

∣∣�J±
n

〉) = 0. (15)

This means the superposition of multiconfigurations described
by parity and total-angular-momentum projected AMD wave
functions. In the limit of sufficient basis wave functions
on the β-γ plane, it corresponds to the GCM with the
two-dimensional generator coordinates of the quadrupole
deformation parameters, β and γ .
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E. Hamiltonian and parameters

The Hamiltonian Ĥ consists of the kinetic term and
effective two-body interactions as

Ĥ =
∑

i

t̂i − T̂G +
∑
i<j

V̂ central
ij +

∑
i<j

V̂
spin-orbit
ij

+
∑
i<j

V̂ Coulomb
ij , (16)

where V̂ central
ij , V̂

spin-orbit
ij , and V̂ Coulomb

ij are the central force,
spin-orbit force, and Coulomb force, respectively. As the
central force, we use the Volkov No. 2 interaction [25],

V̂ central
ij =

2∑
k=1

vk exp

[
−

(
r̂ij

ak

)2 ]

× (W + BP̂σ − HP̂τ − MP̂σ P̂τ ), (17)

where v1 = −60.65 MeV, v2 = 61.14 MeV, a1 = 1.80 fm,
and a2 = 1.01 fm. For the spin-orbit part, we used the spin-
orbit term of the G3RS interaction [26], which is a two-range
Gaussian with a projection operator P̂ (3O) onto the triplet odd
state,

V̂
spin-orbit
ij =

2∑
k=1

uk exp

[
−

(
r̂ij

bk

)2 ]
P̂ (3O)L̂ · Ŝ, (18)

P̂ (3O) = 1 + P̂σ

2

1 + P̂τ

2
, (19)

where b1 = 0.600 fm and b2 = 0.477 fm. Here, P̂σ

and P̂τ are the spin and isospin exchange operators,
respectively.

We take the same interaction parameters as those in
Ref. [20], that is, the Majorana exchange parameter M = 0.6
(W = 0.4), the Bartlett exchange parameter B = 0.125, and
the Heisenberg exchange parameter H = 0.125 in the central
force and u1 = −1600 MeV and u2 = 1600 MeV in the spin-
orbit force. All these parameters are the same as those adopted
in the studies for 9Be [27], 10Be [28], and C isotopes, such
as 12C, 14C, and 16C [17,18], except for a small modification
in the strength of the spin-orbit force. They are adjusted to
reproduce the α + α phase shift (M , W = 1 − M , a1, a2),
binding energy of the deuteron (B = H ), and α + n phase shift
(u1 = −u2, b1, b2). We adopt the slightly weaker strengths of
the spin-orbit force than −u1 = u2 = 2000 MeV adopted in
Refs. [17,18,27,28] to fit the 0+

1 energy of 12C [20].
For the width parameter of single-particle Gaussian wave

packets in Eq. (3), we used the value ν = 0.235 fm−2, which is
determined from a variational calculation for the ground state
of 9Be in Ref. [27]. This value is also the same as those in the
studies for Be isotopes [28] and C isotopes [17,18,20].

III. RESULTS

We applied the β-γ constraint AMD + GCM to 14C. In this
section, we show the calculated results.

FIG. 1. Energy surfaces of 14C on the β-γ plane. The top
panel shows the energy for the positive-parity states before the
total-angular-momentum projection and the bottom panel shows that
for the 0+ states after the total-angular-momentum projection.

A. Energy surfaces

We performed variational calculations with the β-γ con-
straint at 196 mesh points of the triangle lattice on the
β-γ plane. Energy surfaces as functions of β and γ are
obtained. The calculated energy surfaces on the β-γ plane
for positive-parity states and negative-parity states are shown
in Figs. 1 and 2, respectively.

In Fig. 1, the top panel shows the energy of the positive-
parity states before the total-angular-momentum projection,
and the bottom panel shows the results for the 0+ states
calculated by the total-angular-momentum projection after the
variation. We call the former the positive-parity energy surface
and the latter the 0+ energy surface. The minimum point of
the positive-parity energy surface is at (β cos γ, β sin γ ) =
(0.00, 0.00), which indicates a spherical shape. After the
total-angular-momentum projection, the minimum point of the
0+ energy surface becomes (β cos γ, β sin γ ) = (0.23, 0.04).
It means that the deformation of the energy minimum state
changes from the spherical shape before the total-angular-
momentum projection to the triaxial shape after the pro-
jection, because higher correlations beyond mean field are
incorporated by the total-angular-momentum projection. In
a largely deformed region, there exists a flat region around
(β cos γ, β sin γ ) = (0.80−0.90, 0.00) in the positive-parity
energy surface. After the total-angular-momentum projection,
a local minimum at (β cos γ, β sin γ ) = (0.90, 0.04) emerges
from this flat region. As we show later, a rotational band with
the large prolate deformation is constructed by wave functions
in this region after the GCM calculation.

The negative-parity energy surface and the 3− energy
surface are displayed in the top and bottom panels of Fig. 2,
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FIG. 2. Energy surfaces of 14C on the β-γ plane. The top
panel shows the energy for the negative-parity states before the
total-angular-momentum projection and the bottom panel shows that
for the 3− states after the total-angular-momentum projection.

respectively. The minimum point of the negative-parity energy
surface is at (β cos γ, β sin γ ) = (0.08, 0.04), and that of
the 3− energy surface is at (β cos γ, β sin γ ) = (0.20, 0.09).
Again, the deformation of the energy minimum state changes
from an almost spherical shape to a triaxial one before and
after the total-angular momentum projection. In the largely
deformed prolate region, the behavior of the energy surface
for the negative-parity states is different from that of the
positive-parity states. Along the γ = 0◦ line, the energy rapidly
increases and there is no flat region in the negative-parity
surface. Even after the total-angular-momentum projection,
no flat region is found around the largely deformed prolate
region, as seen in the 3− energy surface.

B. Structures on the β-γ plane

In this section, we describe intrinsic structures obtained by
the β-γ constraint AMD.

We analyze the spatial configurations of the Gaussian cen-
ters {Z1, Z2, . . . , ZA} and the distributions of proton density
ρp and neutron density ρn of each intrinsic wave function
|�(β, γ )〉. We also investigate the neutron-proton density
difference ρn − ρp to observe excess neutron behaviors. To
demonstrate density distributions, we show the density ρ̃

integrated along the y axis as

ρ̃(x, z) ≡
∫

dyρ(r), (20)

ρ(r) ≡ 〈�(β, γ )|
∑

i

δ(r − r̂ i)|�(β, γ )〉. (21)

First, we discuss the intrinsic structures of positive-parity
states of 14C. The density distributions of the intrinsic wave

ρ̃p ρ̃n ρ̃n − ρ̃p [1/fm2]

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. (Color online) Density distributions of the intrinsic
wave functions for the positive-parity states of 14C. The proton
density ρ̃p , neutron density ρ̃n, and difference between the neutron
and proton densities ρ̃n − ρ̃p are illustrated in the left, middle,
and right columns, respectively. The density distributions of the
intrinsic wave functions at (a) (β cos γ, β sin γ ) = (0.00, 0.00),
(b) (β cos γ, β sin γ ) = (0.23, 0.04), (c) (β cos γ, β sin γ ) =
(0.45, 0.17), (d) (β cos γ, β sin γ ) = (0.25, 0.35), (e)
(β cos γ, β sin γ ) = (0.78, 0.22), and (f) (β cos γ, β sin γ ) =
(0.93, 0.04) on the β-γ plane are shown. The size of the box is
10 × 10 fm2.

functions for positive-parity states are illustrated in Fig. 3.
The energy minimum state at (β cos γ, β sin γ ) = (0.00, 0.00)
in the positive-parity energy surface shows almost spherical
density distributions as seen in Fig. 3(a). In this wave function,
the centers of the single-particle Gaussian wave packets gather
near the origin. That is, this state has no spatially developed
cluster structure and it is almost equivalent to the shell-model
state with the p3/2-subshell closed-proton configuration and
the p-shell closed-neutron configuration. The density distribu-
tion for the minimum point (β cos γ, β sin γ ) = (0.23, 0.04)
in the 0+ energy surface is shown in Fig. 3(b). This wave
function is found to be the dominant component of the ground
state obtained by the GCM calculation, as is shown later.
In this state, an α-cluster core somewhat develops compared
with the state [Fig. 3(a)] for the energy minimum before the
total-angular-momentum projection. However, single-particle
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Gaussian wave packets still gather around the origin; therefore,
this state is regarded as the intermediate between the shell-
model structure and the cluster structure. This feature is also
reflected in the expectation value of squared intrinsic spin of
protons 〈Ŝ2

p〉 = 0.77, which is smaller than the ideal value 4/3
for the p3/2-subshell closed configuration and larger than the
value 0 for a 3α-cluster configuration.

Figure 3(c) indicates the density distribution for a triaxial
deformed state. In this state, to be clear from the proton density
and also from the expectation values of the squared intrinsic
proton spin 〈Ŝ2

p〉 = 0.15, three α-cluster cores develop. Excess
neutrons occupy the sd-like orbitals distributing along the
bisector of the vertical angle of the isosceles-triangle which
consists of three α clusters. These neutron orbitals make this
state triaxial. After the GCM calculation, a Kπ = 0+ band
and its Kπ = 2+ side band dominated by this triaxial state are
obtained.

In the large deformation region, three α-cluster cores
develop well in 14C. Various configurations of three α clusters
appear, depending on the deformation parameters, β and
γ , as seen in Figs. 3(d), 3(e), and 3(f) for typical density
distributions of oblate, triaxial, and prolate deformed states,
respectively. It is found that the equilateral-triangular structure,
obtuse-angle-triangular structure, and linear-chain structure
of three α clusters arise in the oblate state [Fig. 3(d)], the
triaxial state [Fig. 3(e)], and the prolate state [Fig. 3(f)],
respectively. In these states, the expectation values of squared
intrinsic proton spin 〈Ŝ2

p〉 are smaller than 0.10, which is
almost consistent with the value for three (0s)4 α cores. It
is interesting that the excess neutrons distribute around two
of the three α clusters in the triaxial state [Fig. 3(e)] and
prolate state [Fig. 3(f)], which indicates 10Be + α correlations.
In the viewpoint of two-center 10Be + α-cluster structure, the
degree of the freedom for rotation of the deformed 10Be
cluster is described on the β-γ plane. We mention here that
the linear-chain structure [Fig. 3(f)] is the base of the flat
energy region at the large prolate deformation. After the
GCM calculation, the linear-chain state [Fig. 3(f)] constructs
a rotational band.

Next, we discuss the intrinsic structure of negative-parity
states. The density distributions for negative-parity states are
illustrated in Fig. 4. The density distribution of the intrinsic
wave function at the minimum point (β cos γ, β sin γ ) =
(0.08, 0.04) in the negative-parity energy surface is shown
Fig. 4(a). In this wave function, the centers of the single-
particle Gaussian wave packets gather near the origin and
there is no spatially developed cluster structure. In this state,
the expectation value of squared intrinsic spin of protons
is 1.24, which is close to the ideal value 4/3 for the p3/2-
subshell closed configuration, while that of neutrons is 0.85,
which deviates from the p-shell closed-configuration value 0.
Therefore, this state is interpreted as the shell-model structure
having 1p-1h excitations on the neutron p shell with the
almost p3/2-subshell closed-proton configuration. Compared
with an almost spherical shape of the state [Fig. 4(a)], an
α-cluster core begins to develop slightly at the minimum
point (β cos γ, β sin γ ) = (0.20, 0.09) in the 3− energy surface
[Fig. 4(b)]. However, single-particle Gaussian wave packets
still gather around the origin, and this state is regarded as the

ρ̃p ρ̃n ρ̃n − ρ̃p [1/fm2]

(a)

(b)

(c)

(d)

(e)

FIG. 4. (Color online) Density distributions of the intrinsic
wave functions for the negative-parity states of 14C. The proton
density ρ̃p , neutron density ρ̃n, and difference between the neutron
and proton densities ρ̃n − ρ̃p are illustrated in the left, middle,
and right columns, respectively. The density distributions of the
intrinsic wave functions at (a) (β cos γ, β sin γ ) = (0.08, 0.04),
(b) (β cos γ, β sin γ ) = (0.20, 0.09), (c) (β cos γ, β sin γ ) =
(0.25, 0.35), (d) (β cos γ, β sin γ ) = (0.60, 0.17), and (e)
(β cos γ, β sin γ ) = (0.93, 0.04) on the β-γ plane are shown.
The size of the box is 10 × 10 fm2.

intermediate between the shell-model structure and the cluster
structure.

Figures 4(c), 4(d), and 4(e) show intrinsic density distribu-
tions for typical deformed states—oblate, triaxial, and prolate,
respectively. It is found that the isosceles-triangular structure
and obtuse-angle-triangular structure of three α-cluster cores
arise in the oblate state [Fig. 4(c)] and triaxial state [Fig. 4(d)],
respectively, as shown in the proton densities. These structures
are similar to those obtained for the positive-parity states.

However, the structure of the prolate deformed states is
somewhat different from the positive-parity states. In the
prolate state [Fig. 4(e)], the proton density ρ̃p has three peaks,
which indicate three α-cluster cores. However, the expectation
values of squared intrinsic proton spin 〈Ŝ2

p〉 = 0.33 indicates
that the prolate state [Fig. 4(e)] contains components of the
(0s)4 α breaking. Moreover, three α clusters shows a bending
structure instead of the straight-line 3α configuration seen
in the linear-chain structure [Fig. 3(f)] of the positive-parity
prolate state. That is, the 10Be cluster rotates considerably
though the prolate state [Fig. 4(e)] has almost the axial
symmetric shape caused by the constraint parameters close
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TABLE I. Electromagnetic transition strengths
B(E2) which are stronger than 1.0 e2 fm4 for the
positive-parity states in 14C. The unit is e2 fm4.

Transition Strength

Theory Experiment

2+
1 → 0+

1 4.4 3.6 ± 0.6

2+
1 → 0+

3 1.4

2+
2 → 0+

2 6.0

2+
3 → 0+

2 1.0

2+
4 → 0+

4 4.1

2+
5 → 0+

3 1.3

2+
6 → 0+

2 1.3

2+
6 → 0+

4 3.8

2+
6 → 0+

5 67.2

2+
6 → 0+

6 5.3

2+
7 → 0+

4 1.6

2+
7 → 0+

5 1.8

2+
7 → 0+

6 2.8

2+
8 → 0+

6 14.3

2+
3 → 2+

2 7.3

2+
5 → 2+

1 3.3

2+
6 → 2+

2 1.7

2+
6 → 2+

4 2.6

2+
6 → 2+

5 1.3

2+
7 → 2+

6 6.3

2+
8 → 2+

3 1.1

2+
8 → 2+

7 2.4

3+
1 → 2+

2 2.5

3+
1 → 2+

3 10.9

3+
1 → 2+

4 1.7

3+
2 → 2+

7 3.2

3+
2 → 2+

8 2.0

4+
1 → 2+

2 4.7

4+
2 → 2+

2 2.8

4+
2 → 2+

3 2.1

4+
3 → 2+

3 1.0

4+
3 → 2+

4 5.1

4+
3 → 2+

6 2.4

4+
4 → 2+

6 12.9

4+
4 → 2+

8 1.4

4+
5 → 2+

2 2.5

4+
5 → 2+

4 1.4

4+
5 → 2+

6 4.4

4+
5 → 2+

8 5.8

4+
6 → 2+

4 1.0

4+
6 → 2+

6 88.3

4+
6 → 2+

7 8.7

4+
1 → 3+

1 1.2

4+
2 → 3+

1 4.6

4+
3 → 3+

1 3.5

TABLE I. (Continued.)

Transition Strength

Theory Experiment

4+
4 → 3+

2 2.8

4+
2 → 4+

1 4.5

4+
3 → 4+

2 1.7

4+
4 → 4+

3 1.5

4+
6 → 4+

3 3.0

4+
6 → 4+

4 6.0

4+
6 → 4+

5 2.1

5+
1 → 3+

1 2.4

5+
1 → 4+

1 4.9

5+
1 → 4+

2 4.5

to the γ = 0◦ axis on the β-γ plane. This indicates that the
linear-chain structure is less favored in the negative-parity
states than in the positive-parity states. It is consistent with
the features of the β-γ energy surfaces, where there is no
plateau in the negative-parity states as mentioned before.

Thus, on the β-γ plane for the 14C system, we obtained
various structures such as the shell-model structure in the
small β region and the cluster structure in the large β

region. In particular, various spatial configurations of three α

clusters such as the linear-chain and the equilateral-triangular
structures are obtained as a function of the triaxiality γ . These
basis wave functions are proper for the study of 14C where
cluster and shell-model aspects are expected to coexist.

C. Energy levels

To calculate the energy spectra of 14C, we superposed
the wave functions obtained by the β-γ constraint AMD at
196 mesh points on the β-γ plane by using the GCM.

First, we describe the results for the positive-parity states.
We show the calculated positive-parity energy levels in Fig. 5
as well as the experimental levels. In the three columns from
the left, we display the experimental energy levels for all
the positive-parity assigned states [29]. In the fourth column,
we show the states observed recently in 10Be + α breakup
reactions [13–16]. The lower three of them are the states with
the strong population of the 10Be(0+

1 ) + α and the upper three
are those of the 10Be(2+

1 ) + α. In the theoretical results, we
classified the calculated states in five groups by analyzing the
components of the basis wave functions and E2 transition
strengths. The calculated E2 transition strengths and root-
mean-square radii are listed in Tables I and II, respectively,
along with experimental data [29,30].

The calculated 0+
1 and 2+

1 states constitute the ground
band. The calculations reproduce well the experimental data
for the properties of the ground band such as B(E2, 2+

1 →
0+

1 ) and the root-mean-square radius of the 0+
1 state. The

results show that the basis wave function at the minimum
point (β cos γ, β sin γ ) = (0.23, 0.04) in the 0+ energy surface
dominates these ground-band states. For instance, the overlap
with the 0+

1 state is 97%. As discussed before, this dominant
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FIG. 5. Energy levels of the positive-parity states in 14C. The four
columns on the left are the experimental data and the six columns
on the right are the calculated results. The dotted lines on the left
and right show the experimental and theoretical 10Be + α threshold
energies, respectively.

basis wave function has no spatial development of three α

clusters but the intermediate structure [Fig. 3(b)].
The calculated 0+

2 , 2+
2 , and 4+

1 states in the Kπ = 0+
2 band

have large overlap with the AMD base at (β cos γ, β sin γ ) =
(0.45, 0.17) as 78% overlap in the 0+

2 state. The 2+
3 , 3+

1 , 4+
2 , and

5+
1 states also contain dominant components of the same basis

wave function. As mentioned before, this basis wave function
has the triaxial intrinsic structure with three α clusters and
excess neutrons occupying the sd-like longitudinal orbitals
[Fig. 3(c)]. Therefore, it is natural to interpret these states
as the Kπ = 0+ band and the Kπ = 2+ side band which are
constructed from the triaxially deformed intrinsic state. It is
an interesting suggestion that the side band is built on the
0+

2 band of 14C owing to the triaxial shape caused by the
excess neutron distributions around the 3α core. The calculated
E2 strengths for the intraband transitions are comparable to
that in the ground band. Because there is some mixing of
K components in these bands, E2 transitions from 4+

2 and 5+
1

states are scattered. Although the excitation energy of the band-
head 0+

2 state is much higher than the experimental energy
of the 0+

2 state, the calculated 0+
2 , 2+

2 , and 4+
1 states may

correspond to the experimental 0+
2 , 2+

2 , and 4+
1 states when we

measure the energies from the 10Be + α threshold. To conclude

TABLE II. Root-mean-square radii for mass dis-
tributions of the positive-parity states in 14C. The unit
is fm.

State Radius

Theory Experiment

0+
1 2.22 2.30 ± 0.07

0+
2 2.45

0+
3 2.31

0+
4 2.46

0+
5 2.82

0+
6 2.69

the correspondence with the experimental levels, we need more
detailed experimental data such as transition strengths.

For the calculated 0+
5 , 2+

6 , and 4+
6 states, we found that

the main component comes from the AMD wave function
at (β cos γ, β sin γ ) = (0.93, 0.04) as 64% overlap in the
0+

5 state. As discussed before, this dominant wave function
has the linear-chain structure of three α clusters with the
10Be + α correlation [Fig. 3(f)]. In the viewpoint of two-
center 10Be + α-cluster structure, the rotational mode of the
deformed 10Be cluster is at least partially incorporated in
the GCM on the β-γ plane. For example, the basis wave
function at (β cos γ, β sin γ ) = (0.78, 0.22) in the finite γ

region shows a tilting 10Be cluster configuration [Fig. 3(e)].
In the results of the GCM calculations, the 0+

5 has only 9%
overlap with this tilting 10Be configuration, which is much
smaller than the overlap with the linear-chain structure at
(β cos γ, β sin γ ) = (0.93, 0.04). In other words, the GCM
amplitudes concentrate on the straight-line 10Be configuration
rather than the tilting one. As a result of the large deformation
of the linear-chain structure of three α clusters, the E2
transitions in this band are strong as B(E2, 2+

6 → 0+
5 ) =

67.2 e2 fm4 and B(E2, 4+
6 → 2+

6 ) = 88.3 e2 fm4. Because the
ratio B(E2, 4+

6 → 2+
6 )/B(E2, 2+

6 → 0+
5 ) = 1.31 is consistent

with that for the rigid rotor model 10/7, this band is considered
to be the rotational band of the linear-chain structure with
the 10Be + α correlation. These linear-chain states may be the
candidates for the states observed recently in 10Be + α breakup
reactions. When the energies relative to the 10Be + α threshold
are considered, these experimental states are observed in the
energy region similar to the theoretical linear-chain band.
The significant branching ratios of 10Be + α decays of these
states may support the 10Be + α cluster structure. We should
comment here that such a rigid rotational band of the 3α linear-
chain structure does not appear in 12C. In the stabilization of
the linear-chain structure in 14C, excess neutrons are expected
to play an important role. Detailed discussion of its mechanism
is given in the next section.

Other states have no specific structure and are difficult to be
classified as band members. The observed 1+ states are missing
in the present calculations because spin-aligned configurations
are unfavored; therefore, such the states cannot be described
in the β-γ constraint variation where only the lowest-energy
solution is obtained at each deformation. To describe the low-
lying 1+ state, it is necessary to introduce other constraints,
for example, on the expectation value of intrinsic spin.

Next we describe the results for the negative-parity states.
We show the calculated energy levels of the negative-parity
states in Fig. 6 as well as the experimental levels. In the four
columns from the left, we display the experimental energy
levels of the negative-parity assigned states [29]. In the fifth
column, we show the energy levels recently observed in
10Be + α breakup reactions [13–16]. The theoretical levels are
illustrated in each spin. The calculated E2 transition strengths
are listed in Table III along with experimental data [29].

The calculated low-lying states have large overlaps with the
basis wave functions in the small deformation region. For in-
stance, the 3−

1 state has 87% overlap with (β cos γ, β sin γ ) =
(0.20, 0.09) [Fig. 4(b)], which is the minimum point in
the 3− energy surface. As mentioned before, this state is
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TABLE III. Electromagnetic transition strengths
B(E2) which are stronger than 1.0 e2 fm4 for the
negative-parity states in 14C. The unit is e2 fm4.

Transition Strength

Theory Experiment

1−
2 → 1−

1 5.9

1−
3 → 1−

2 2.1

1−
4 → 1−

3 1.4

1−
5 → 1−

2 3.5

1−
5 → 1−

3 1.3

1−
5 → 1−

4 15.5

1−
6 → 1−

3 3.0

1−
6 → 1−

4 11.5

1−
6 → 1−

5 19.2

2−
2 → 1−

2 1.3

2−
3 → 1−

1 2.2

2−
3 → 1−

2 1.6

2−
3 → 1−

4 3.5

2−
4 → 1−

3 1.0

2−
5 → 1−

3 1.1

2−
5 → 1−

4 8.3

2−
5 → 1−

5 3.2

2−
6 → 1−

4 20.5

2−
6 → 1−

5 2.7

2−
7 → 1−

3 1.9

2−
7 → 1−

5 1.7

2−
7 → 1−

6 1.3

2−
3 → 2−

2 1.4

2−
4 → 2−

1 1.1

2−
5 → 2−

2 1.1

2−
6 → 2−

5 1.9

2−
7 → 2−

3 1.6

2−
7 → 2−

6 4.6

3−
1 → 1−

1 1.3 3.0 ± 1.2

3−
2 → 1−

1 1.9

3−
4 → 1−

1 1.2

3−
4 → 1−

4 2.1

3−
5 → 1−

4 1.2

3−
6 → 1−

4 10.1

3−
7 → 1−

4 2.4

3−
7 → 1−

6 1.3

3−
8 → 1−

2 3.2

3−
8 → 1−

3 3.3

3−
8 → 1−

4 1.1

3−
8 → 1−

5 10.0

3−
8 → 1−

6 5.1

3−
1 → 2−

1 1.4

3−
2 → 2−

2 1.5

3−
2 → 2−

3 1.4

3−
3 → 2−

1 4.1

TABLE III. (Continued.)

Transition Strength

Theory Experiment

3−
6 → 2−

3 2.3
3−

6 → 2−
6 5.6

3−
7 → 2−

2 1.7

3−
7 → 2−

5 1.4

3−
7 → 2−

6 1.5

3−
8 → 2−

2 1.0

3−
8 → 2−

3 3.9

3−
8 → 2−

6 5.1

3−
8 → 2−

7 11.2

3−
2 → 3−

1 3.3

3−
3 → 3−

2 1.1

3−
4 → 3−

1 1.1

3−
5 → 3−

2 1.2

3−
5 → 3−

4 1.2

3−
6 → 3−

4 1.4

3−
6 → 3−

5 2.5

3−
7 → 3−

6 5.9

4−
2 → 2−

1 1.6

4−
3 → 2−

3 4.7

4−
3 → 2−

5 4.2

4−
3 → 2−

6 6.9

4−
4 → 2−

2 1.2

4−
5 → 2−

6 13.7

4−
1 → 3−

1 4.8

4−
1 → 3−

2 2.0

4−
2 → 3−

3 3.2

4−
3 → 3−

4 8.4

4−
3 → 3−

6 3.9

4−
3 → 3−

7 1.1

4−
3 → 3−

8 1.5

4−
4 → 3−

5 1.3

4−
4 → 3−

7 2.8

4−
5 → 3−

5 1.2

4−
5 → 3−

6 12.4

4−
5 → 3−

7 2.6

4−
5 → 3−

8 4.0

4−
5 → 4−

3 1.6

4−
5 → 4−

4 1.5

5−
1 → 3−

1 3.9

5−
1 → 3−

2 1.1

5−
2 → 3−

4 2.2

5−
2 → 3−

6 14.3

5−
2 → 3−

7 5.0

5−
1 → 4−

1 2.8

5−
2 → 4−

3 1.8

5−
2 → 4−

5 1.3
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FIG. 6. Energy levels of the negative-parity states in 14C. The five
columns on the left are the experimental data and the five columns
on the right are the calculated results. The dotted lines on the left
and right show the experimental and theoretical 10Be + α threshold
energies, respectively.

interpreted as the intermediate between the cluster structure
and the shell-model structure with the almost p3/2-subshell
closed-proton configuration and the 1p-1h excited neutron
configuration. The calculated strength, B(E2, 3−

1 → 1−
1 ) =

1.3 e2 fm4 is reasonable compared with the experimental
value, B(E2, 3−

1 → 1−
1 ) = 3.0 ± 1.2 e2 fm4, though the level

ordering is somehow in disagreement with the experimental
one. As seen in the E2 transitions in Table III, E2 transitions
among the low-lying states below the 10Be + α threshold
are not strong and they show no remarkable collectivity nor
specific band assignments for these states.

In the highly excited negative-parity states above the
10Be + α threshold energy, we obtain many developed cluster
states having significant overlaps with the basis wave functions
in the large β regions. Some strong E2 transitions are found in
the calculated B(E2) values for high-lying states. However, the
E2 strengths are fragmented into many states; therefore, it is
difficult to classify these states in simple band assignments. In
Fig. 7, we show the calculated level scheme of the high-lying
negative-parity states above the 10Be + α threshold energy
with E2 transition strengths. Among these highly excited
states, some flows of strong E2 transition strengths are found
in the present calculations. Transitions from each state are,
however, dispersed. For example, the 5−

5 state has strong
transitions to the 3−

8 , 3−
10, and 3−

12 states. These states are
constituted by largely deformed states such as those shown in
Figs. 4(c), 4(d), and 4(e). What is different in the linear-chain
band in the positive-parity states is that the GCM amplitudes
of these negative-parity states do not concentrate on a single
basis wave function with a specific geometric configuration
but distribute into many basis wave functions. These features
indicate strong mixing of the largely deformed prolate, oblate,
and triaxial states. This mixing may be an origin of the
complicated level scheme of the negative-parity states. As a
result, the parity partner of the linear-chain band suggested in
the positive-parity states may disappear in the negative-parity
states. In spite of the largely scattered E2 strengths, there
are sets of states classified by flows of significant strong E2
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FIG. 7. (Color online) Calculated energy levels of the negative-
parity states above the 10Be + α threshold energy with E2 transition
strengths in 14C. An integer i to the right of a level denotes the order
of J π

i states. 5.0 e2 fm4 < B(E2) � 10.0 e2 fm4, 10.0 e2 fm4 <

B(E2) � 20.0 e2 fm4, 20.0 e2 fm4 < B(E2) � 50.0 e2 fm4, and
50.0 e2 fm4 < B(E2) transitions are described by broken, black solid,
green bold solid, and red bold solid arrows, respectively. The dotted
line shows theoretical 10Be + α threshold energy.

transitions. For example, a set consisting of 5−
5 , 3−

10, 3−
12, 3−

13,
1−

5 , 1−
6 , and 1−

8 states can be interpreted as members of a
quasiband with 10Be + α cluster structure in the negative-
parity states of 14C. In the next section, we explain a possible
reason why this mixing occurs.

We here comment the possible reason for missing of the
low-lying 0− state in the present calculation. It is expected
to have 1p-1h configuration with one neutron in the 1s1/2

orbital. In the present framework, the width parameter is taken
to be a common value for all the single-particle Gaussian
wave functions. The fixed Gaussian wave packets may not
be suitable to describe the 1s1/2 orbital because the spatial
extent of the 1s1/2 orbital should be large compared with other
orbitals.

IV. DISCUSSION

In this section, we discuss the linear-chain band and the
role of the excess neutrons. We also discuss the cluster
structures of 14C in comparison with the findings of earlier
works.

First, we discuss the reasons why the linear-chain band
appears in the positive-parity states of 14C. For appearance
of the linear-chain band, both the existence of the plateau
around the linear-chain structure in the energy surface and the
orthogonality to the lower states are essential. To explain more
details, we show the squared overlaps |〈0+|P̂ J=0

00 |�+(β, γ )〉|2
of the GCM wave functions for the 0+ states with the
basis AMD wave function at each point (β, γ ) in Fig. 8.
As mentioned before, the flat region exists near the largely
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FIG. 8. Overlaps of the GCM wave functions for the 0+ states of
14C with basis AMD wave functions, P̂ J=0

00 |�+(β, γ )〉, obtained with
the β-γ constraint. The overlap at a certain (β, γ ) point is shown in
the contour map.

deformed prolate region in the energy surfaces, and there
exists a local minimum. Although this is a shallow local
minimum with 1 MeV depth in the 0+ energy surface, the
GCM amplitudes for the linear-chain 0+

5 state localize around

this local minimum, as shown in Fig. 8. Another reason
is the orthogonality to the triaxial bands consisting of the
Kπ = 0+

2 band and its Kπ = 2+ side band. In the case of
0+ states, the GCM amplitudes for the 0+

2 state occupy the
triaxial region. We remind the reader that the bending 3α

configurations are contained in the triaxial region. Therefore,
even though the energy curve around the linear-chain structure
is soft against the bending mode, the GCM amplitudes for
the linear-chain 0+

5 state are confined in the prolate region to
satisfy the orthogonality to the triaxial 0+

2 state, resulting in the
concentration of the amplitude at the linear-chain structure. In
other words, the triaxial 0+

2 state prevents the linear-chain 0+
5

state from bending. The situation is almost the same in the 2+
and 4+ states except that there are nonzero K components. In
the 2+ case, distributions of the squared overlap on the β-γ
plane for the 2+

2 and 2+
6 states are similar to the 0+

2 and 0+
5

states, respectively. Moreover, the distribution of the squared
overlap for the 2+

3 state is similar to those for the 2+
2 state. This

means the 2+
2 and 2+

3 states already exhaust the Kπ = 0+ and
2+ components of the bases that have bending configuration.
Therefore, the 2+ states can be discussed in the same line as the
0+ states. That is, in the stabilization of the linear-chain state,
the orthogonality of the 2+

6 state to the 2+
2 and 2+

3 states plays
the same role as that of the 0+

5 state to the 0+
2 state. The 2+

2 and
2+

3 states prevent the linear-chain 2+
6 state from bending, so

that the GCM amplitudes for the 2+
6 state concentrate around

the linear-chain structure.
Next we consider the role of the excess neutrons in the

linear-chain structure of 14C. The linear-chain 3α structure in
C isotopes has been a long-standing problem, for example, as
discussed in Refs. [18,19,31,32]. In the recent works on 12C
with AMD and FMD calculations [9,10,20], an open-triangle
3α structure was suggested only in the 0+

3 state, but no
straight-line 3α-chain structure nor linear-chain band was
found in the 12C system. It is contrastive to 14C where the
straight linear-chain structure is suggested in the 0+

5 , 2+
6 ,

4+
6 states in the present work. It means that there is no

linear-chain state in 12C except for the 0+
3 state, while the

linear-chain structure constructs the rotational band in 14C.
By comparing the present results of 14C with the 12C results
calculated with the same framework of the β-γ constraint
AMD + GCM in Ref. [20], it is found that the difference
between the 14C and the 12C cases originates in the differ-
ences of the behavior of the energy surfaces and also the
structure of the states lower than the linear-chain structure.
First, we describe the difference in the energy surfaces. In
Fig. 9, we show the energy surfaces for 12C to compare them
with the those for 14C. The detailed discussions for 12C are
written in Ref. [20]. In the energy surfaces of 12C (Fig. 9),
there is a flat region around the largely deformed prolate region
but there is no local minimum even in the 0+ energy surface.
However, in the energy surfaces of 14C (Fig. 1), there is a
shallow local minimum with 1 MeV depth around the largely
deformed prolate region. This difference indicates that excess
neutrons give the effect to favor the linear-chain structure.
Second, we discuss the structure of the lower states than the
linear-chain structure. As explained in the previous paragraph,
existence of the triaxial bands is essential for the linear-chain
band in 14C because they prevent the linear-chain band from
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FIG. 9. Energy surfaces of 12C on the β-γ plane. The top
panel shows the energy for the positive-parity states before
the total-angular-momentum projection and the bottom panel
shows that for the 0+ states after the total-angular-momentum
projection.

bending because of the orthogonality. However, in 12C, the
states which prevent the linear-chain states from bending do
not exist. An exception is the case of 0+ states. Let us first
explain the 0+ cases, which are similar in 12C and 14C. In
12C, GCM amplitudes of the 0+

2 state occupy the considerably
bending 3α structure and distribute widely in various basis
wave functions. Therefore, the 0+

2 state prevents the 0+
3

state from bending extremely because of the orthogonality.
Because the lower state, 0+

2 , already exhausts the bases that
have bending configuration, the higher state, 0+

3 , cannot have
bending configuration; therefore, the linear-chainlike structure
dominates the 0+

3 state even though the linear-chain structure
is not a local minimum in the energy surface in 12C. This
is similar to the relation between the 0+

2 and 0+
5 states in 14C.

However, for the 2+ and 4+ states in 12C, there is no such a state
that exhausts bases with bending configurations. Therefore,
mixing of the largely deformed prolate, oblate, and triaxial
states occurs. To summarize, the excess neutrons play two
roles in the appearance of the rotational band of the linear-chain
structure. First, because of the existence of the excess neutrons,
the energy surfaces for the positive-parity states change to
favor the linear-chain structure. Second, the excess neutrons
are essential for constructing the triaxial bands, which occupy
the bending 3α configurations considerably and prevent the
linear-chain states from bending to satisfy the orthogonality to
each other.

As we explain in the previous section, the linear-chain band
does not appear in the negative-parity states. The reason is
clear from the behavior of the energy surfaces for the negative-

parity states. There is no flat region in the largely deformed
prolate region. This means the 10Be cluster rotates easily in the
negative-parity states. This nature was already explained also
in the discussion of the intrinsic density distributions shown
in Fig. 4(e). Because of this unstable feature against rotational
mode of the 10Be cluster, the prolate deformed states strongly
mix with the triaxially deformed states in the negative-parity
states.

Linear-chain structures of C isotopes have been discussed in
earlier works with 3α + Xn cluster models [12,18,19]. In the
study by Itagaki et al. [18], it was reported that the linear-chain
state may not be stable in 14C. Their argument seems to con-
tradict the present results of the linear-chain band suggested
in the positive-parity states of 14C. In their work, it was shown
that the linear-chain structure of 14C is unstable against the
bending mode because there is no local minimum in the energy
curve. However, to confirm the stability of an excited state, it is
essential to take into account the orthogonality to lower states,
as done in the GCM calculations. In the results of Ref. [18],
the energy curve along the bending mode is very flat and is
not so much different from the present results though it has
no local minimum in their calculations while the shallow local
minimum exists in the flat region of the present results. As
mentioned before, the linear-chain band appears from this flat
region mainly because of the orthogonality to the triaxial bands
that block the bending of the 3α configuration. Therefore, we
should stress again the importance of the GCM calculations
for excited states. Another difference of the model used in
Ref. [18] from the preset framework is that three α clusters are
set at the same intervals and the excess neutrons are assumed to
occupy the orbital moving around the whole 3α core. In such
a model, the system has to have a parity-symmetric structure
and the 10Be correlation cannot be incorporated. In the present
calculations, though the 3α core is not a priori assumed in the
framework, various 3α + 2n structures are obtained in the en-
ergy variation. The geometric configuration of three α clusters
and Gaussian centers for excess neutrons are optimized. As
a result, the linear-chain states show the 10Be correlation as
discussed before. In further detailed analysis of the linear-chain
structure, we confirm that the 10Be correlation gains energy
compared with the symmetric configuration of the linear-chain
3α + 2n structure. These will be reported in a future article.

The idea of 10Be + α structure in 14C has been proposed by
von Oertzen et al. in Ref. [12]. They conjectured that the parity
doublet band could be built from the parity-asymmetric linear-
chain structure because of the 10Be correlation. However,
the present results suggest that the linear-chain structure
gives only the positive-parity rotational band but no negative-
parity band. As described before, because the 10Be core can
easily rotate in the negative-parity 10Be + α states, the strong
mixing of the linear-chain structure with various bending
10Be + α configurations occurs; therefore, the parity partner
of the positive-parity linear-chain band disappears. Another
difference between the present results and their suggestion
is the energy position of the positive-parity linear-chain
band. The linear-chain band is obtained above the 10Be + α

threshold in the present calculations, whereas they proposed
the linear-chain band below the threshold. The reason for the
higher energy than the 10Be + α threshold can be naturally
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understood by kinetic energy loss to align 10Be and α clusters
in the linear-chain configuration.

Recently, Itagaki et al. have studied excited states of
14C with a 3α + 2n-cluster model and have predicted the
equilateral-triangular structure of the developed three α clus-
ters with excess neutrons [17]. They have proposed that the
excess neutrons moving in molecular orbitals around the three
α clusters stabilize the geometric 3α configuration of an equi-
lateral triangle and suggested two rotational bands, Kπ = 0+

2
and Kπ = 3−, resulting from the equilateral triangle intrinsic
structure. For the positive-parity states, we also obtained the
Kπ = 0+

2 band with well-developed three α-cluster cores in an
almost equilateral-triangular configuration, and therefore, in a
sense, the present results seem to be partially consistent with
the work of Itagaki et al.. However, the present results suggest
the triaxiality owing to the excess neutron orbitals and the
resultant Kπ = 2+ side band on the Kπ = 0+

2 band. These are
considerably different from the earlier work. In addition, the
development of three α clusters is weaker than that suggested
in Ref. [17] as the root-mean-square radius for the 0+

2 state
is 2.45 fm in the present calculation while it is about 2.6 fm
in the earlier work. For the negative-parity states, a Kπ = 3−
rotational band starting from the 3−

2 state was suggested in
Ref. [17]. However, any clear Kπ = 3− rotational band cannot
be found in the present calculations. As mentioned, our results
suggest that the α breaking is rather important in the low-lying
states of 14C. The description of the α breaking is one of
the advantages of the present model, while molecular orbitals
for excess neutrons incorporated by Itagaki et al. are not
completely included in our model. It is requested to investigate
14C in more details with a model including both of the α

breaking and molecular orbitals around a clustering core.

V. SUMMARY AND OUTLOOK

We investigated structures of the ground and excited states
of 14C with the method of β-γ constraint AMD + GCM. The
results reproduce well observed data, such as the energy levels
except for 1+ and 0− states, the root-mean-square radii, and
the E2 transition strengths. The present results suggest that the
ground state has the intermediate structure between cluster and
shell-model structures. In the excited states, well-developed
cluster structures are found in both the positive- and the
negative-parity states. Owing to the 3α configurations and the
excess neutron motion, various structures appear.

By analyzing the E2 transition strengths as well as the
GCM amplitudes, we assigned members of four positive-parity
bands: the ground, the triaxial Kπ = 0+

2 , the triaxial Kπ = 2+,
and the linear-chain bands. The Kπ = 0+

2 band and the
Kπ = 2+ side band are constructed from the triaxially de-
formed intrinsic state, in which three α clusters have an almost
equilateral-triangular configuration and the excess neutrons
occupy the sd-like orbital. In the linear-chain band, the excess
neutrons distribute around two of the three α clusters, which
indicates the 10Be + α correlation. This is the first work that
suggests the triaxial bands in 14C. For the 3α linear-chain band,
which has been an attractive topic in C isotopes, there have
been few theoretical works suggesting the appearance of the
linear-chain band in 14C. In the present work, it was found that

excess neutrons play two important roles in the appearance
of the rotational band of the linear-chain structure as follows.
First, because of the existence of the excess neutrons, the
energy surfaces for the positive-parity states change to favor
the linear-chain structure. Second, the excess neutrons are
essential for constructing the triaxial bands, which occupy
the bending 3α configurations considerably and prevent the
linear-chain states from bending to satisfy the orthogonality to
each other. This result suggests an interesting mechanism for
the stabilization of the exotic cluster structures owing to the
excess neutron effects.

For the negative-parity states, because of the largely scat-
tered E2 strengths, we could not assign simple band structures.
The origin of these dispersions of the E2 strengths is the strong
mixing of the largely deformed prolate, oblate, and triaxial
states in the negative-parity states. Although the positive-parity
linear-chain band with the 10Be + α correlation was suggested,
its parity partner with negative parity disappears because of this
mixing. In spite of the largely scattered E2 strengths in the
negative-parity states, there are sets of states with significant
strong E2 transitions. These states can be interpreted as
members of a quasiband with 10Be + α cluster structure in
the negative-parity states of 14C.

As mentioned earlier, the linear-chain structure shows the
10Be correlation with the asymmetric structure instead of the
symmetric configuration of the linear-chain 3α + 2n structure.
Further analysis of the 10Be correlation in the linear-chain
structure will be reported in a future article.

The theoretically suggested excited states with 10Be + α

cluster structures are the candidates for the excited states which
were observed recently in 10Be + α decays. The decay widths
and the branching ratios to 10Be(0+

1 ) + α and 10Be(2+
1 ) + α

could be helpful for assigning the calculated states to the
observed states. Theoretical estimation of the partial decay
widths of the excited states above the 10Be + α threshold is
also a remaining future problem.

In the present calculations of 14C, although α clusters
are not assumed in the framework, three α-cluster cores are
found to develop in excited states. Owing to a variety of 3α

configurations and excess neutron motion, various interesting
structures appear in the 14C system, where the excess neutrons
play important roles in the appearance of cluster structures.
It is a challenging problem to investigate the excited states of
further neutron-rich C isotopes such as 16C while focusing on
the possibility of cluster states with three α-cluster cores with
more excess neutrons.
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