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Enhanced E1 transitions and α + 208Pb(3−) clustering in 212Po
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We formulate a model for 212Po, based on the coupled-channels of α + 208Pb(0+) and α + 208Pb(3−) in which
the α-Pb interaction contains scalar, quadrupole, and octupole terms. The model reproduces the recently observed
enhanced E1 transitions from the several new negative-parity levels to the yrast states. Because these data are
hard to understand in the shell model, this success gives a strong support for a unique role of α + 208Pb(3−)
clustering in 212Po.
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Alpha clustering plays a vital role in the structure of light
nuclei [1]. Its importance or persistence has continuously
been studied in heavier nuclei around 44Ti [2]. Whether or
not the α clustering persists throughout the nuclear chart
is one of the fundamental questions in nuclear many-body
systems. The nucleus 212Po serves as a testing ground to answer
this question as it contains two neutrons and two protons
outside the doubly magic nucleus 208Pb. Though the yrast band
structure in 212Po is certainly reproduced well in a shell-model
calculation [3], understanding the α-decay width of the ground
state and the electric quadrupole (E2) transition rates among
the band members definitely calls for a model that includes
explicitly the degree of α clustering. The large α-decay width
can successfully be accounted for in a microscopic model that
combines the shell model and the α + 208Pb(0+) cluster model
[4]. The enhancement of the α-decay width and the reduced
transition rates B(E2) is also explained by phenomenological
models that assume the α + 208Pb(0+) cluster structure for the
yrast band [5–7].

New information that appears closely relevant to the α

clustering has very recently been obtained by the α-transfer
reaction of 208Pb(18O, 14C) [8]. According to Ref. [8],
several negative-parity levels with even angular momentum
J have been observed in 212Po at unexpectedly low excitation
energies, and moreover they have been found to decay through
enhanced electric dipole (E1) transitions to the yrast band
states with the same J value. The enhancement is on the
order of 10−3 Weisskopf units (W.u.). These data appear
to be hard to understand in the shell model. The excitation
energies of first 4−, 6−, and 8− states predicted by the shell
model are Ex = 2.31, 2.63, and 2.78 MeV, respectively [3],
which are compared to the observed values of 1.74, 1.79, and
1.75 MeV [8]. In addition, the experiment reveals the second
negative-parity band shifted from the first band by only about
0.2 MeV.

These findings pose an intriguing nuclear structure prob-
lem. The purpose of this rapid communication is to show
the important role of α + 208Pb(3−) clustering by analyzing
how such low-excited negative-parity states appear and what
mechanism is responsible for the enhanced E1 transitions.
The view of an α cluster moving around the 208Pb core

leads to only natural-parity states with parity π = (−1)L

provided the core remains in its 0+ ground state, where L is
the α-208Pb relative orbital angular momentum. The situation
changes, however, if the excitation of 208Pb is allowed. The first
excited state of 208Pb, a famous octupole vibrational state, has
spin I = 3 and negative parity. An α-cluster motion around
the 3− core can produce both natural- and unnatural-parity
states.

The state of 212Po is described in an α + 208Pb coupled-
channels approximation:

�JM =
∑
IL

CJ
ILψILJM, (1)

ψILJM = φ(α)[φI (Pb)YL(r̂)]JMχJ
IL(r), (2)

where CJ
IL is an expansion coefficient and χJ

IL(r) in the basis
ψILJM is a normalized radial function for the relative motion.
The I = 0 component is considered small in the negative-
parity states because its energy is considerably high [7], and it
is neglected in what follows. This is reasonable in view of our
purpose because that component gives no contribution to the
unnatural negative-parity states. It should be noted that the E1
transition occurs only through the I = 3 components in the
present model. The model predicts two 0+, one 1+, and four
2+ states, in agreement with experiment.

The system is described with the Hamiltonian

H = T + V + HC, (3)

where T is the kinetic energy between α and 208Pb, and HC the
intrinsic Hamiltonian for the Pb core and α. The interaction
potential V between α and 208Pb is assumed to contain scalar,
quadrupole, and octupole terms:

V = V0(r) + V2(r)(Y2(Pb) · Y2(r̂)) + V3(r)(Y3(Pb) · Y3(r̂)).

(4)

Here (Yl(Pb) ·Yl(r̂)) stands for the scalar product. The scalar
term V0 acting on the diagonal channels represents the
dominant part of the interaction including the Coulomb
potential. In contrast to V0, the octupole term couples the
channels between I = 0 and I = 3, while the quadrupole term
couples the channels among I = 3 only.
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Assuming that the reduced matrix element involving the Pb
wave functions is given as

〈φI ′(Pb)||Y�(Pb)||φI (Pb)〉

= κI κI ′

√
(2� + 1)(2I + 1)

4π
〈�0I0|I ′0〉, (5)

with an appropriate constant κI that characterizes the wave
function φI (Pb), we obtain the matrix element of H in the
basis (2):

〈ψI ′L′JM |H |ψILJM〉
= EJ

ILδI,I ′δL,L′ +
∑
�=2,3

(−1)�+I+L
√

(2I + 1)(2L′ + 1)

×〈I0I ′0|�0〉〈L0L′0|�0〉U (I�JL′; I ′L)βJ
�II ′, (6)

with

EJ
IL = 〈

χJ
IL

∣∣TL + V0

∣∣χJ
IL

〉 + εI , (7)

βJ
�II ′ = (κI ′/4π )

〈
χJ

I ′L′
∣∣V�

∣∣χJ
IL

〉
, (8)

where TL = 〈YLM (r̂)|T |YLM (r̂)〉, εI is the excitation energy
of 208Pb(I ), and U is a Racah coefficient in unitary form. As
noted before, the diagonal matrix element of the quadrupole
term is not included in the calculation because the term is
assumed to be responsible only for the coupling among the
I = 3 components. We suppress constant energy from HC

in Eq. (6) and measure the energy from the ground state
of 212Po.

Even though the potential form factor V�(r) is obtained
in some way, solving the coupled-channels problem would
be complicated involving the unknown functions χJ

IL. It is
possible to avoid this complication by assuming that those
χJ

IL which are expected to belong to the same number of
oscillator quanta, Q = 2N + L, are virtually common for all
L [9], where N is the node number of the oscillator function.
This approximation is basically due to the Pauli principle.
In the lowest shell-model configurations, the four nucleons
altogether have Q = 22. Since they are assumed to form a
0h̄ω α cluster, all the oscillator quanta are distributed solely
to the α + 208Pb(0+) relative motion. Hence χJ=L

0L belonging
to Q = 22 are assumed to be independent of L. Similarly, χJ

3L

with odd L are generated from Q = 21 (not from Q = 23) [10]
because exciting the Pb(0+) core to the 3− state costs at least
1h̄ω, and these χJ

3L are taken to be the same for different
values of J and L. Under this approximation the Hamiltonian
matrix (6) for the positive parity is determined completely by
six parameters, A+

0 , B+
0 , A+

3 , B+
3 , β+

2 , and β+
3 , where the first

four parameters specify EJ
IL as

EJ
0L = A+

0 + B+
0 L, EJ

3L = A+
3 + B+

3 L, (9)

and β+
2 and β+

3 stand for βJ
233 and βJ

303 = βJ
330, respectively.

Similarly, χJ
3L for the negative parity all belong to Q = 22,

and the Hamiltonian matrix is specified by three parameters,
A−

3 , B−
3 , and β−

2 .
The six parameters for the positive parity are determined

to fit the low-lying levels [11], 0+(0, 1.801), 1+(1.621),
2+(0.727, 1.513, 1.679, 1.806), 4+(1.133), 6+(1.356),
8+(1.476), and 10+(1.834), where the numbers in the

parentheses denote the excitation energies in MeV. The
resulting values are, in units of MeV,

β+
2 = −0.208, β+

3 = −0.1592, A+
0 = 0.1156,

(10)
B+

0 = 0.412, A+
3 = 1.385, B+

3 = 0.078,

which give the χ2 value per datum, χ2/N = 0.0025 MeV2.
The ground-state energy turns out to be only 6 keV above
the experiment. In what follows, we ignore this small dis-
crepancy. The β+

2 value is about 60% of the one used in
Ref. [9]. If a rotational energy, L(L + 1), is used in Eq. (9)
instead of the linear term, the fit to the experiment becomes
worse.

Determination of the parameters for the negative parity
is hampered by the fact that there are not so many
confirmed negative-parity states and that not all the low-lying
negative-parity states may be observed yet. We find that the
choice of β−

2 = β+
2 produces the lowest 4−, 6−, and 8− states

at the energies close to experiment. The optimal parameters
are determined by fitting the states, 4−(1.744, 1.946),
6−(1.788, 2.017), and 8−(1.753). The values obtained
are

β−
2 = −0.182, A−

3 = 1.92, B−
3 = 0.012, (11)

which give χ2/N = 0.000 59 MeV2. The quadrupole strength
for the negative parity is about 10% weaker than the one
for the positive parity. This is reasonable because χJ

IL’s are
different for the positive- and negative-parity states.

In the present model, both E1 and E2 transition operators
are reduced to the one contributed by the α-Pb relative motion,
that is, the Eλ (λ = 1, 2) operator is proportional to rλYλµ(r̂).
The transition rate is calculated using the formula

〈ψI ′L′J ′ ||rλYλ(r̂)||ψILJ 〉

= δI,I ′(−1)L+L′
√

(2J ′ + 1)(2L + 1)

4π
〈L0L′0|λ0〉

×U (ILJ ′λ; JL′)
〈
χJ ′

IL′
∣∣rλ

∣∣χJ
IL

〉
. (12)

As mentioned already, the E1 matrix element has a
nonvanishing contribution between the I = 3 components
only, and it requires the radial matrix element D =
〈χJ ′

3L′ |r|χJ
3L〉. The E2 operator connects separately both I = 0

and I = 3 components, and its matrix element is specified
by two factors, Q0 = 〈χL′

0L′ |r2|χL
0L〉 and Q3 = 〈χJ ′

3L′ |r2|χJ
3L〉.

We assume these radial factors to be independent of the
angular momentum labels, following the argument made for
the Hamiltonian matrix element. The B(E2; J → J − 2) rate
of the yrast band can then be expressed as

B(E2; J → J − 2) = e2|a0Q0 + a3Q3|2, (13)

where the coefficients a0 and a3 indicate the contributions of
the I = 0 and I = 3 components, respectively.

Figures 1 and 2 compare the calculated positive- and
negative-parity levels with J � 11 to experiment. The levels
obtained above the excitation energy of 2.5 MeV are not
shown. All the known positive-parity states are reproduced
very well. The theory predicts four states with 3+, 5+, 4+, and
7+ below the 1+ state and a 3+ state by 46 keV above it. Four
α-decaying levels are observed around the 1+(1.621) state
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FIG. 1. Positive-parity levels of 212Po. The natural- and unnatural-
parity states are shown in the left and right columns, respectively. The
asterisk indicates that no parity confirmation has been made yet. See
Refs. [8,11] for experiment.

but their Jπ values are unknown [11,12]. Because the lowest
negative-parity level is at 1.68 MeV in our model, it is likely
that the Jπ values of these observed levels are 3+, 5+, 7+, and
3+. The possibility of 4+ is discarded because then it could
decay to the yrast band members by γ radiation, which is in
contradiction to experiment. The remaining other states cannot
decay to the yrast band members by E2 (though the E2 decay
among them could be, in principle, possible) but dominantly
α decay to the 3− state of 208Pb. As seen in Fig. 2, the
calculation predicts many more negative-parity states at low
excitation energies in addition to the double negative-parity
bands. For example, three 10− states are predicted at 1.80,
2.04, and 2.27 MeV but the observed 10− state appears only at

FIG. 2. The same as Fig. 1 but for the negative parity.

2.465 MeV. It is hard to identify which 10− state corresponds to
the experimental one. Thus a comparison between theory and
experiment has ambiguity in the 10− → 10+ E1 transition.
No such ambiguity occurs, however, for the E1 transitions
from the 4−, 6−, and 8− states.

Table I lists the probability of finding the (IL) component
for the positive-parity states. It should be noted that the
I = 0 channel does not occupy a main component in the
high J ( >=4) members of the yrast band, which is in a
sharp contrast to the α-cluster description employed in
Refs. [5–7]. As will be shown later, the structure change in
the main component of the yrast band leads to improvement
in the prediction of the B(E2) values among the band
members.

To evaluate the B(E2) rate, we set QI = 3
5R2

I with an
appropriate radius RI . For I = 0 we take R0 = 8.5 fm whose
choice is consistent with the one used to evaluate the α-decay
width [4,5,7]. For I = 3 we take R3 = 7.16 fm as estimated
from the radius of 212Po. Table II lists the resulting B(E2)
values together with a0 and a3 values. It should be noted that
both components contribute destructively to the B(E2) value.
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TABLE I. Probability, given in %, of finding the (IL) component
in the positive-parity state of 212Po.

J π (IL)

(0 J ) (3 J − 3) (3 J − 1) (3 J + 1) (3 J + 3)

0+
1 93.6 6.4

0+
2 6.4 93.6

2+
1 77.8 8.5 7.1 6.7

2+
2 7.9 81.8 3.6 6.7

2+
3 4.0 6.8 89.3 0.0

2+
4 10.4 3.0 0.1 86.6

4+
1 23.9 33.9 28.3 10.0 3.8

6+
1 7.9 44.7 34.5 10.7 2.2

8+
1 3.6 48.1 36.2 10.7 1.5

10+
1 2.0 49.5 36.7 10.6 1.2

Despite this cancellation, the B(E2) values are still enhanced
compared to the W.u., except for the 4+ → 2+ transition.
The calculated B(E2) value from the 8+ state is much closer
to the recent, accurate experimental value [8] than the ones
obtained in the pure α + 208Pb(0+) model [5,7]. Though the
calculation of Ref. [6] is also based on a similar α + 208Pb(0+)
model, the adopted radius parameter R (6.74 fm) for the
α-Pb potential is considerably smaller than the others, thus
leading to the smaller B(E2) values. The present model
reduces the B(E2) rates overestimated in the α + 208Pb(0+)
cluster model by introducing the excitation of the Pb core
to the 3− state. In the case of the B(E2; 4+ → 2+) rate, both
contributions almost cancel each other, which is a consequence
of the transient character of the 4+ member as indicated in
Table I.

The 0+
2 (1.801) state is known to decay to the ground state

by the monopole (E0) transition. The decay rate is calculated
easily if the charge radius of the 208Pb(3−) state is assumed to
be the same as that of its ground state. The resulting E0 matrix
element reads

|〈0+
2 |E0|0+

1 〉| = e
√

P0P3|Q0 − Q3|, (14)

where P0 and P3 are the probabilities of the I = 0 and I = 3
components in the ground state. The E0 matrix element turns
out to be 5.13 e fm2, which is compared to the experimental
value of 1.9 e fm2 [13]. It is noteworthy that this matrix element
is a measure of the admixture of the I = 3 component as well
as the difference between Q0 and Q3.

TABLE III. B(E1; J − → J +
1 ) values of 212Po in units of

10−3 W.u. The experimental data are taken from Ref. [8].

J − J + B(E1) J − J + B(E1)

Cal. Exp. Cal. Exp.

2−
1 2+

1 0.64 6−
3 6+

1 0.58
2−

2 2+
1 0.12 8−

1 8+
1 1.80 20 ± 10

4−
1 4+

1 4.81 2.5 ± 0.7 8−
2 8+

1 0.90
4−

2 4+
1 1.09 1.1 ± 0.3 8−

3 8+
1 0.35

4−
3 4+

1 0.70 10−
1 10+

1 1.22 1.8 ± 0.5
6−

1 6+
1 2.88 6.6 ± 1.2 10−

2 10+
1 0.66

6−
2 6+

1 1.19 1.9 ± 0.6 10−
3 10+

1 0.22

Table III lists the B(E1) values calculated using D = 3
4R

with R = 7.6 fm, in comparison with experiment. We choose
R to be approximately an average of R0 and R3 that are used
to estimate the B(E2) rates because χJ

I=3 L for the negative
parity extends further than the one for the positive parity. As
seen from the table, the order of magnitude of the B(E1)
value is about 10−4 to 10−3 W.u., which is in fair agreement
with experiment [8]. The B(E1) value is proportional to R2

but our result should not change at least qualitatively within
a reasonable choice of R. It is thus possible to obtain the
enhanced E1 strength of the order of 10−3 W.u. by including
the 3− excitation of the Pb core. The largest B(E1) value
observed for the 8−(1.751) → 8+(1.475) transition, though
the error bar is significantly large, is still 1 order of magnitude
larger than the calculation.

To summarize, we have included the ground and 3− states
of 208Pb in the α + Pb model to describe the low-lying levels
of 212Po. The α-Pb interaction contains the scalar, quadrupole,
and octupole terms. Solving the coupled equations is greatly
simplified by introducing the assumption that comes from the
Pauli principle. The calculated spectra are in fair agreement
with experiment. Especially, the double band structure of the
negative-parity states is very well reproduced. The theory
can account for the enhanced E1 transitions from these
negative-parity states to the yrast states with the same spin.
With the effect of channel coupling, the E2 transition rates,
which are too large in the α + 208Pb(0+) model, are found
to improve considerably. The α + 208Pb(3−) clustering is
concluded to play a vital role in reproducing the enhanced
E1 transitions of the newly observed negative-parity states.

TABLE II. B(E2; J → J − 2) values, in units of W.u., between the yrast band members in 212Po. See Eq. (13) for a0 and a3.

J a0 a3 B(E2)

Cal. Exp.

Present [5] [6] [7] [8] [11]

2 −0.470 0.0645 4.51 7.41 4.58 7.71
4 0.284 −0.253 0.27 10.3 6.32 10.8
6 0.0951 −0.571 2.40 10.6 6.50 11.2 13.5 ± 3.6 3.9 ± 1.1
8 0.0375 −0.662 4.67 10.0 6.12 10.7 4.6 ± 0.09 2.30 ± 0.9
10 −0.0190 0.694 5.60 9.16 5.42 9.71 2.2 ± 0.6
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It will be interesting to explore this type of interplay between
the clustering and enhanced E1 transition in other nuclei such
as Te isotopes (Z = 52) as well as 225Ra and 225Ac, as noted in
Ref. [8].
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