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Microscopic examination of Np Nn dominance in the evolution of nuclear structure
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The proton-neutron interaction in determining the evolution of nuclear structure has been studied by using the
Brillouin-Wigner perturbation expansion. The particle-hole and particle-particle p-n interactions are unifiedly
described in the theory. The obtained formulas of level energies and excitation energies scaled in the small-
and large-NpNn limits can well explain the linearity of the extracted proton-neutron interaction energies and the
attenuation of the 2+

1 excitation energies against the valence nucleon product NpNnfor five mass regions from
A = 100–200.

DOI: 10.1103/PhysRevC.82.037303 PACS number(s): 21.60.Fw, 21.10.Re, 27.60.+j

One of the most interesting discoveries in nuclei is the
evolution of nuclear structure from the spherical multinucleon
shell model or vibrational states to the deformed collective
rotation as the nucleus moves away from the closed shells
on the nuclear chart. It has been long recognized that the
proton-neutron (p-n) interaction is primarily responsible for
configuration mixing in nuclei and therefore plays a key role
in the onset of nuclear deformation and collectivity [1,2];
Federman and Pittel showed by the shell model calculation
the importance of the p-n interaction in developing nuclear
deformation in heavy nuclei [3]. Since the product NpNn of
valence nucleon numbers Np and Nn roughly estimates the
integrated p-n interaction strength, the observables, such as
the excitation energies Ex(2+

1 ) of the first 2+ states, the ratios
Ex (4+

1 )
Ex (2+

1 )
and so on, are smooth functions of NpNn and thus

the product NpNn should be dominated in the evolution of
nuclear structure [4–6]. Here Npand Nn are counted as the
numbers of particles above the highest filled major shells or
holes if the Fermi levels are beyond the midshell within the
highest major shells [4–6]. The realistic p-n interaction has
two principal components. The monopole term is responsible
for the nuclear bulk properties and the residual part obtained
after extracting the monopole term is dominated by the long-
range quadrupole interaction [7]. The extracted monopole
and evaluated quadrupole p-n interaction energies, which
displayed approximate linearity and saturation phenomenon,
gave a direct support to the NpNn scheme [6,8]. Although
phenomenological studies of the NpNn scheme have been
carried out over two decades, a microscopic examination
of NpNn dominance in the evolution of nuclear structure
has so far been missing. In this study, we present the
first result of the Brillouin-Wigner perturbation expansion
applied to the microscopic study of NpNn dominance in the
evolution of nuclear level energies, where the particle-hole and
particle-particle p-n interactions are unifiedly described in the
theory [9].

We assume that the total Hamiltonian H of the even-even
nucleus with Np and Nn valence nucleons can be separated into
two parts H = H0 + V . One part H0 is the sum of the valence-
proton and valence-neutron Hamiltonians and the other part
V represents the p-n interaction energy. Let eigenstates |�i〉
of H0 with eigenvalues Ei form a complete set, in which |�0〉

with eigenvalue E
(0)
J is the unperturbed yrast state with angular

momentum J . If the particle-particle p-n force is attractive,
the particle-hole interaction is repulsive. We therefore adopt
the particle-hole (particle-particle) p-n interaction energy to
be positive (negative). The Schrödinger’s equation takes the
forms ±(E − H0)|�〉 = ±V |�〉 for the respective particle-
hole and particle-particle systems. By using the projection
operator |�0〉〈�0| and its supplement P = 1 − |�0〉〈�0|, the
Schrödinger’s equation can be transformed into an integral
form [9]

|�〉 = |�0〉 − 1

H0 − E
PV |�〉,

(1)
±E = ±〈�0|H0|�0〉 ± 〈�0|V |�〉.

The perturbed energy of the yrast state can be written as the
Brillouin-Wigner perturbation expansion [9]

±EJ = ±〈�0|H0|�0〉 ±
∞∑

k=0

〈�0|V

×
( −1

H0 − EJ

PV

)k

|�0〉 = ±E
(0)
J

±
∑

m=1,3,...

E
(m)
J ∓

∑
m=2,4,...

E
(m)
J , (2)

where E
(0)
J = 〈�0|H0|�0〉, E

(m)
J = 〈�0|V (

∑
i

|�i 〉〈�i |
Ei−EJ

V )m−1

|�0〉 (Ei > EJ ) and the sum is taken over the eigenstates
except the yrast one.

When H0 is dominated by the pairing forces, the eigenstates
|�i〉 can be approximately described by the seniority υ =
υmax − i, where the maximum seniority υmax = Np + Nn state
has energy zero. Thus, Ei − EJ approximately depends on
Np + Nn rather than NpNn. If the p-n interaction energies
among the eigenstates |�0〉, |�i〉, and |�l〉 are roughly
estimated as 〈�0|V |�0〉 = χNpNn + χJ NpNn, 〈�0|V |�i〉 =√

χJ χiNpNn and 〈�l|V |�i〉 = √
χlχiNpNn (χ � 0, i, l �=

0), then the perturbed energy can be denoted by

±EJ = ±E
(0)
J ± χNpNn ± χJ NpNn

×
[ ∑

m=0,2,...

(λ′NpNn)m −
∑

m=1,3,...

(λ′NpNn)m
]

, (3)
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FIG. 1. Plots of the proton-neutron interaction energies and the first 2+ excitation energies against the valence nucleon product NpNn for
five mass regions from A = 100–200.

where λ′ = ∑
i

χi

Ei−EJ
. Here χNpNn and χJ NpNn represent

the monopole and quadrupole p-n interaction energies, respec-
tively. As λ′NpNn < 1, the geometric series is convergent and
the ±χNpNn ± χJ NpNn

1+λ′NpNn
can therefore describe the linearity

and saturation phenomenon of the p-n interaction energy.
However, the infinite power series is not convergent any

more as λ′NpNn � 1. In fact, the linear scaling of the p-n
interaction energy with particle number 〈�i |V |�i〉 = χiNpNn

is too simple to reflect the saturation phenomenon. The
saturated phenomenon of the p-n interaction energy suggests
that χi or

∑
i

χi

Ei−EJ
also depends on NpNn. We proceed

by assuming that the expression
∑

i
χi

Ei−EJ
NpNn can also be

expanded as an infinite power series in λNpNn, where λ (� 0)
depends on J , EJ , and Np + Nn. By substituting in series (3)
for

∑
i

χi

Ei−EJ
NpNn, we can obtain a new infinite power series

for ±EJ . In order to sufficiently assure the global convergence
of the infinite power series for ±EJ , we suggest the m-order

term takes the form χJ

λ

(λNpNn)m
m! . Thus, the perturbed energy of

the yrast state can be written as

±EJ = ±E
(0)
J ± χNpNn ± χJ

λ

∑
m=1,3,...

(λNpNn)m

m!
∓ χJ

λ

×
∑

m=0,2,...

(λNpNn)m

m!
± χJ

λ
= ±χNpNn ± E

(0)
J

× exp(−λNpNn) ±
(
E

(0)
J + χJ

λ

)
× [1 − exp(−λNpNn)]. (4)

By comparing Eq. (4) and the geometric series, we can
hence infer that the concrete form for

∑
i �=0

χi

Ei−EJ
NpNn is

λNpNn + λNpNn exp(−λNpNn)
1−exp(−λNpNn) − 1, which includes a linear term

λNpNn and a saturated term λNpNn exp(−λNpNn)
1−exp(−λNpNn) − 1. The exact

solution of Eq. (4) is almost impossible. An intermediate
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FIG. 2. Plots of the yrast state excitation energies against the valence nucleon product NpNn for A ∼ 100 mass region.

approximation can be obtained by iteration for given initial
value λ = λ(J , EJ , Np + Nn) until EJ approaches to the min-
imum. The unperturbed yrast state energy can be decomposed
into the sum of the ground state energy and the excitation
energy ±E

(0)
J = ±E

(0)
0 + �E

(0)
J . Substituting ±E

(0)
0 + �E

(0)
J

and χ0 ∓ �χJ for ±E
(0)
J and ±χJ , we obtain the perturbed

energy of the yrast state

±EJ = ±χNpNn ± E
(0)
0 exp(−λNpNn) ±

(
E

(0)
0 + χ0

λ

)
× [1 − exp(−λNpNn)] + �E

(0)
J exp(−λNpNn)

+
(

�E
(0)
J − �χJ

λ

)
[1 − exp(−λNpNn)], (5)

which is decomposed into the sum of the ground state energy
and the excitation energy. In the small- and large-NpNn limits,
�E

(0)
J and �E

(0)
J − �χJ

λ
represent the pairing-force-like and

rotational spectra, respectively. If �E
(0)
J − �χJ

λ
is replaced by

h̄2

2	J (J + 1), then the excitation energy becomes

Ex(J ) = �E
(0)
J exp(−λNpNn)

+ h̄2

2	J (J + 1)[1 − exp(−λNpNn)], (6)

where 	 is the moment of inertia. It is clear from the replace-
ment �E

(0)
J − �χJ

λ
= h̄2

2	J (J + 1) that the decomposition of
χJ into χ0 ∓ �χJ is to ensure the p-n interaction �χJ

λ

effectively counteracting the like-nucleon correlations �E
(0)
J ,

which is crucial in the development of nuclear rotation.
We review the NpNn schemes of five mass regions from

A = 100–200 [5,8], shown in Fig. 1. The data are taken
from Refs. [10,11]. The excitation energies of the first 2+
states display exponential attenuation and can be well fitted
by �E

(0)
2 exp(−λNpNn) + h̄2

2	2(2 + 1)[1 − exp(−λNpNn)]. It
is ∼ 1.0 MeV for one broken-pair state of nucleus near
closed shells and descends to ≈100 keV for a typical
rotor by the p-n interaction counteracting the like-nucleon
correlations. The p-n interaction energy for the ground
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FIG. 3. The yrast state excitation energy in the large-NpNn limit
as a function of the yrast state spin for A ∼ 100 mass region.

state is extracted from the difference in binding ener-
gies |Vpn(NpNn)| = |B(Z0 + Np,N0 + Nn) + B(Z0, N0) −
B(Z0, N0 + Nn) − B(Z0 + Np,N0)|, where (Z0, N0) spec-
ify the nearest magic numbers. In principle, the p-n in-
teraction energy should be described by χNpNn + χ0

λ
[1 −

exp(−λNpNn)]. However, the p-n interaction energy indicated
in Fig. 1 approximately exhibits a linearly increasing trend
against the valence nucleon product NpNn. This implies that
the saturation term is smaller in magnitude than the linear one.
The p-n interaction amounts to a maximum value of 390 keV
for the spin-orbit-partner g9/2 proton and g7/2 neutron in the
100 mass region and goes to the minimum value of 280 keV for
A ∼ 130 nuclei, in agreement with the estimates in Ref. [5].

In order to test the arbitrarily introduced J (J + 1) law, we
also plotted the data of the other yrast states up to 12+ for the

five mass regions. As a typical example, Fig. 2 exhibits the
data of A ∼ 100 nuclei [10]. The NpNn schemes of the other
mass regions for higher-spin yrast states have similar behavior.
The yrast state excitation energies are fitted by the formula
�E

(0)
J exp(−λNpNn) + (�E

(0)
J − �χJ

λ
)[1 − exp(−λNpNn)],

where we assume that λ is independent on the yrast state
J . The fitted curve was obtained by iteration until most of
the points fall around the curve. In the large-NpNn limit, the
excitation energy �E

(0)
J − �χJ

λ
as a function of the yrast state

spin J is indicated in Fig. 3. It is obvious that the excitation
energy �E

(0)
J − �χJ

λ
basically obeys the J (J + 1) rule.

In summary, we present the first result of the Brillouin-
Wigner perturbation expansion applied to the microscopic
study of NpNn dominance in the evolution of nuclear level
energies, where the particle-hole and particle-particle p-n
interaction energies are described in a unified way. The
linearity and saturation phenomenon of the p-n interaction
energies can be seen from the obtained level-energy formula.
The obtained formulas of level energies and excitation energies
of yrast states can well explain the NpNn schemes of five mass
regions from A = 100–200, i.e., the linearity of the extracted
proton-neutron interaction energies and the exponential atten-
uation of the 2+

1 excitation energies.
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