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Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness
and stability of neutron-star matter
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We construct three new Hartree-Fock-Bogoliubov (HFB) mass models, labeled HFB-19, HFB-20, and HFB-21,
with unconventional Skyrme forces containing t4 and t5 terms, i.e., density-dependent generalizations of the usual
t1 and t2 terms, respectively. The new forces underlying these models are fitted respectively to three different
realistic equations of state of neutron matter for which the density dependence of the symmetry energy ranges
from the very soft to the very stiff, reflecting thereby our present lack of complete knowledge of the high-density
behavior of nuclear matter. All unphysical instabilities of nuclear matter, including the transition to a polarized
state in neutron-star matter, are eliminated with the new forces. At the same time the new models fit essentially all
the available mass data with rms deviations of 0.58 MeV and give the same high-quality fits to measured charge
radii that we obtained in earlier models with conventional Skyrme forces. Being constrained by neutron matter,
these new mass models, which all give similar extrapolations out to the neutron drip line, are highly appropriate
for studies of the r process and the outer crust of neutron stars. Moreover, the underlying forces, labeled BSk19,
BSk20 and BSk21, respectively, are well adapted to the study of the inner crust and core of neutron stars. The
new family of Skyrme forces thus opens the way to a unified description of all regions of neutron stars.
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I. INTRODUCTION

With a view to their astrophysical application in neutron-
rich environments, we have for some years been developing
a series of nuclear-mass models based on the Hartree-Fock-
Bogoliubov (HFB) method with Skyrme and contact-pairing
forces, together with phenomenological Wigner terms and
correction terms for the spurious collective energy; all the
model parameters have been fitted to essentially all the
experimental mass data. The different Skyrme forces used in
each of our models up to and including HFB-17 [1] had the
conventional form

vij = t0(1 + x0Pσ )δ(r ij )

+ 1

2
t1(1 + x1Pσ )

1

h̄2

[
p2

ij δ(r ij ) + δ(r ij )p2
ij

]
+ t2(1 + x2Pσ )

1

h̄2 pij .δ(r ij ) pij + 1

6
t3(1 + x3Pσ )

× ρ(r)αδ(r ij ) + i

h̄2 W0( σ i + σ j ) · pij × δ(r ij ) pij ,

(1)

where r ij = r i − rj , r = (r i + rj )/2, pij = −ih̄(∇i −
∇j )/2 is the relative momentum, Pσ is the two-body spin-
exchange operator, and ρ(r) = ρn(r) + ρp(r) is the total
local density, ρn(r) and ρp(r) being the neutron and proton
densities, respectively. With this model we were able to fit
with an rms deviation of 0.581 MeV the 2149 measured
masses of nuclei with N and Z � 8 given in the 2003
Atomic Mass Evaluation [2] (AME), while at the same time
constraining the underlying Skyrme force to fit properties
of homogeneous neutron matter (NeuM), as determined by
many-body calculations with realistic two- and three-nucleon
forces; the pairing force was fitted to the 1S0 pairing gaps
of homogeneous nuclear matter of the appropriate charge
asymmetry.

The constraint of the Skyrme force to NeuM enhances
the reliability with which model HFB-17 can make mass
predictions for the experimentally inaccessible highly neutron-
rich nuclei that appear in the outer crust of neutron stars and
that are involved in the r process of stellar nucleosynthesis.
Moreover, such a mass model can be used to extrapolate
beyond the drip line to the inner crust of neutron stars, using
the underlying force (BSk17 in the case of the HFB-17 mass
model) to calculate the equation of state (EOS) in this region,
i.e., the energy per nucleon as a function of density for a given
temperature. Our confidence in this extrapolation derives not
only from the fit of the interactions to NeuM but also from
the precision fit to masses, which means that the presence
of protons and the existence of inhomogeneities in the inner
crust are well represented. Being able to use the same effective
force for the outer and inner crusts means that a coherent
treatment of the interface between the two regions becomes
possible [3].

The fit to the calculated properties of NeuM suggests that
the extrapolation beyond the drip line can be extended still
further, into the homogeneous core of neutron stars, making
it possible to use the model force to calculate the EOS of
the matter of that region, the so-called neutron-star matter
(N*M), which is highly neutron rich but contains also proton-
electron pairs and possibly muons (and other particles, such
as hyperons, quarks, etc., toward the center of the star). Being
able to use the effective force in this region would provide a
valuable tool for extending the information given directly by
the realistic calculations of NeuM to which the force had been
fitted. In particular it could be indispensable for a calculation
of the EOS of N*M, realistic calculations being extremely
limited in this respect, if not nonexistent. In this way we would
open up the prospect of a unified treatment of all regions of
the neutron star using a unique effective force; in particular a
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coherent treatment of the interface between the inner crust and
the core would become possible, as for the interface between
the inner and outer crusts.

However, in the case of HFB-17 and all our previous
models, this development was frustrated by the fact that they
predict NeuM and N*M to have polarized ground states that
would lead to neutron stars being unstable against collapse to
indefinitely high densities: the unpolarized state of NeuM to
which our forces were fitted turns out not to be the ground
state. We dealt with this problem in our latest published
model, HFB-18 [4], by adding to the conventional form of
Skyrme force (1) two extra terms, writing our complete Skyrme
force as

v′
i,j = vi,j + 1

2
t4(1 + x4Pσ )

× 1

h̄2

{
p2

ij ρ(r)βδ(r ij ) + δ(r ij )ρ(r)βp2
ij

}
+ t5(1 + x5Pσ )

1

h̄2 pij .ρ(r)γ δ(r ij ) pij , (2)

where the t4 and t5 terms are density-dependent generalizations
of the t1 and t2 terms, respectively. The full formalism for this
generalized Skyrme force is presented in the Appendix of
Ref. [4]. With the new terms it was possible in the HFB-18
model to stop the unphysical transition of NeuM (and N*M) to
a spin-ordered state, with only an insignificant deterioration in
the quality of the mass fit. Furthermore, in the HFB-18 model
our adjustment of these new terms was minimal, in the sense
that the three parameters of the t5 term were chosen in a rather
arbitrary way, subject only to the condition of stopping the
unwanted transition, while the three parameters of the t4 term
were fixed by the equations

β = γ, (3a)

t4 = −1

3
t5(5 + 4x5), (3b)

x4 = −4 + 5x5

5 + 4x5
, (3c)

which ensure that the t4 term cancels exactly the t5 term in
unpolarized homogeneous nuclear matter of any degree of
charge asymmetry at all densities. This latter condition is
not strictly necessary, since it can be violated significantly
without compromising the quality of the mass fit or the
stability of NeuM and N*M against a transition to a polarized
state; we imposed it just to simplify the parameter search
in the mass fit. Thus the prescription that we adopted for
determining both the t4 and t5 terms in model HFB-18
leaves us with considerable flexibility for realizing further
improvements, and in this article we begin to exploit these
possibilities.

The main defect of the HFB-18 model that we address in
this article is its lack of flexibility in fitting the EOS of NeuM at
zero temperature. In developing this model we had no trouble
in constraining to the EOS of Friedman and Pandharipande [5]
(FP), which is based on a variational calculation using the
realistic Urbana v14 nucleon-nucleon force with the three-body
force TNI. However, it is by no means clear that the FP EOS for
NeuM is the correct one, since some quite different ones that

are at least equally plausible have been published. For example,
the EOS of Akmal et al. [6] labeled “A18 + δv + UIX∗,” which
we refer to as APR, is considerably stiffer. This EOS, like FP, is
based on a variational calculation but uses the realistic Argonne
A18 two-body force and the semiphenomenological UIX∗
three-body force (see Ref. [6] for details of these forces); there
is also a so-called relativistic boost correction δv. Actually,
while the latter EOS is more recent and more complete, there
have been some recent experimental indications that it might
be too stiff [7]. On the other hand, several realistic EOSs for
NeuM that are still stiffer than APR have been published. One
such striking case is based on the same A18 two-body force
as is APR but uses a much more realistic three-body force and
is calculated with the Brueckner-Hartree-Fock (BHF) method.
This is the EOS labeled “V18” in Ref. [8], which we will refer
to as LS2 (a very similar EOS, based on the quantum Monte
Carlo method, has been published in Ref. [9]). In this article
we make no assumption as to which of these three, EOSs,
FP, APR, or LS2, is closer to reality but rather generate a
family of three mass models with effective forces constrained
respectively to these three realistic EOSs. In this way we may
reasonably hope with our family of effective forces to cover
the range of possibilities left open by the present limitations of
our knowledge. However, we find that as long as the conditions
(3a)–(3c) are maintained it is impossible to constrain to any
EOS stiffer than that of FP while maintaining a high-quality
mass fit. We shall see here that by releasing these conditions
and exploiting the degrees of freedom associated with the
t4 and t5 terms we can stiffen the EOS of NeuM without
sacrificing any of the achievements of the HFB-18 model.

Other problems that appear to be inevitable in mass
models based on the conventional form of Skyrme forces
include an incorrect distribution of the total potential energy
among the four two-body spin-isospin channels in symmetric
nuclear matter (SNM), and Landau parameters with values
indicating various unphysical instabilities in homogeneous
nuclear matter. The new terms in t4 and t5 allow us enough
flexibility to handle both of these problems as well as that of
the stiffness of the EOS of NeuM.

Accordingly, we present in this article three new mass
models, HFB-19, HFB-20, and HFB-21. The first of these,
HFB-19 has its underlying force, BSk19, constrained, like
BSk18 (the force of model HFB-18), to the FP neutron-
matter EOS, while BSk20 and BSk21 (the forces of models
HFB-20 and HFB-21, respectively), are constrained to the
APR and LS2 neutron-matter EOSs, respectively. All three
satisfy the required stability properties of nuclear matter and
a qualitatively acceptable distribution of the potential energy
among the spin-isospin channels. In Sec. II we describe the
new models and many of their properties, with discussions of
their symmetry energy and Landau parameters being treated
separately in Secs. III and IV, respectively. The behavior of
these models in N*M is dealt with in Sec. V. We summarize
our conclusions and discuss possible future developments in
Sec. VI. Appendix A describes some microscopic calculations
that support our more phenomenological collective correc-
tions, while Appendix B gives the expressions for the Landau
parameters of neutron matter with our generalized Skyrme
forces.
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II. THE HFB-19, HFB-20, AND HFB-21 MASS MODELS

A. Principal features of models

Our new HFB calculations for finite nuclei are performed
almost exactly as for the HFB-18 model [4]. In particular, the
treatment of pairing is highly realistic. As usual, we take a
contact pairing force that acts only between nucleons of the
same charge state q,

vpair
q (r i , rj ) = vπq[ρn(r), ρp(r)]δ(r ij ), (4)

where the strength vπq[ρn, ρp] is a functional of both the
neutron and proton densities. But instead of postulating a
simple functional form for the density dependence, as is
usually done, we construct the pairing force by solving
the HFB equations in uniform asymmetric nuclear matter
with the appropriate neutron and proton densities, requiring
that the resulting gap reproduce exactly, as a function of den-
sity, the microscopic 1S0 pairing gap calculated with realistic
forces [10]. We follow our usual practice in finite nuclei of
allowing the proton pairing strength to differ from the neutron
pairing strength and for allowing each of these strengths to
depend on whether there is an even or odd number of nucleons
of the charge type in question. These extra degrees of freedom
are taken into account by multiplying the value of vπq[ρn, ρp],
as determined by the nuclear-matter calculations that we have
just described, with renormalizing factors f ±

q , where f +
p ,

f −
p , and f −

n are free, density-independent parameters to be
included in the mass fit, and we set f +

n = 1. (For more details
see Refs. [1,11].)

To the HFB energy calculated for the Skyrme and pairing
forces we add a Wigner correction,

EW = VW exp

{
−λ

(
N − Z

A

)2}

+V ′
W |N − Z| exp

{
−

(
A

A0

)2}
, (5)

which contributes significantly only for light nuclei (A < A0)
or nuclei with N close to Z. Our treatment of this correction
is purely phenomenological, although physical interpretations
of each of the two terms can be made [11,12].

A second correction that must be made is to subtract from
the HFB energy an estimate for the spurious collective energy.
As described in Ref. [11], the form we adopt here is

Ecoll = Ecrank
rot

{
b tanh(c|β2|) + d|β2| exp

{−l
(|β2| − β0

2

)2}}
,

(6)

in which Ecrank
rot denotes the cranking-model value of the

rotational correction and β2 the quadrupole deformation, while
all other parameters are fitted freely. While the first term
here represents the rotational correction, phenomenologically
modified from its cranking-model value, the second term takes
account of the deformation dependence of the vibrational
correction [since Ecoll as given by Eq. (6) vanishes for spherical
nuclei we must suppose that the vibrational correction for
such nuclei is absorbed into the fitted force parameters].
We have tested [13] the reliability of the rotational part of
this expression against an exact calculation made by Bender

et al. [14], while in Ref. [15] we discussed the validity of our
vibrational correction in terms of the constraints provided by
shape isomers and fission barriers. Further validation of our
collective correction comes from the microscopic calculations
described in Appendix A.

The final correction that we make is to drop Coulomb
exchange. This is a device that we have successfully adopted
in our most recent models, beginning with HFB-15 [16], and
it can be interpreted as simulating neglected effects such
as Coulomb correlations, charge-symmetry breaking of the
nuclear forces, and vacuum polarization.

The only difference between the present HFB calculations
and those for the HFB-18 model [4] is that we now drop
all the terms in J 2 and J 2

q from the Hamiltonian density
(A3) of Ref. [4], as is done in most parametrizations of the
Skyrme force. We were able to accommodate these terms in
our HFB codes without any problem, and our initial motivation
for dropping them here was simply to make the forces more
compatible with our EOS code for the inner crust of neutron
stars [3], where the inclusion of these terms would have led to
considerable complexity. However, omitting the time-even J 2

and J 2
q terms requires, on the grounds of gauge invariance [17],

that we drop also the time-odd terms in (sn + sp) · (Tn + Tp)
and (sn − sp) · (Tn − Tp). This is ensured in the notation of
Ref. [18] by setting CT

0 = CT
1 = 0. In dropping these terms

from the mass fit, which arise jointly from the t1, t2, t4,
and t5 terms, their effect is to some extent absorbed by
all the Skyrme parameters, notably W0 (compare the values
of this parameter shown in Table I for force BSk18 with
those shown for BSk19–BSk21). In this way the contribution
of the omitted terms will be at least partially simulated in
the EOS calculations. At the same time, it will be seen in
the following that this approximation does not lead to any
deterioration in the global fit to masses or radii, although
there are implications for properties depending on the time-odd
terms in the Hamiltonian. In the present article such properties
include the EOS of polarized nuclear matter, the distribution of
the potential energy among the different spin-isospin channels,
and the Landau parameters. The time-odd terms also play a
role in the exact treatment of the masses of odd nuclei but not
in the equal-filling approximation [19], which we adopt here,
as in all our previous articles.

B. The data fits

The parameters of the three new models, i.e., of the
Skyrme and pairing forces, and of the Wigner and collective
corrections, are fitted to the same set of mass data as was the
HFB-18 model, i.e., the 2149 measured masses of nuclei with
N and Z � 8 given in Ref. [2]. In making these fits we imposed
the NeuM constraints discussed in Sec. I, with the FP EOS [5]
defining force BSk19, the APR EOS [6] defining BSk20, and
the LS2 EOS [8] defining BSk21 (throughout this article we
assume zero temperature). The fits were also subject to our
usual requirement that the isoscalar effective mass M∗

s take
the realistic value of 0.8M in SNM at the equilibrium density
ρ0 (see the discussion in Ref. [20]; note that the isovector
effective mass M∗

v has no role to play in SNM, as can be
seen from Eq. (10)). We likewise imposed a value of J =
30 MeV on the symmetry coefficient; this choice is certainly
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TABLE I. Forces BSk19–BSk21: lines 1–16 show the Skyrme
parameters, lines 17–21 the pairing parameters, and the last 4 lines
the Wigner parameters (see text for further details). Note that it is
more convenient to show the x2 parameter in the form t2x2, the only
combination in which x2 enters into the formalism. For convenience
of comparison we also show the force BSk18 [4].

BSk19 BSk20 BSk21 BSk18

t0 (MeV fm3) −4115.21 −4056.04 −3961.39 −1837.96
t1 (MeV fm5) 403.072 438.219 396.131 428.880
t2 (MeV fm5) 0 0 0 −3.237 04
t3 (MeV fm3+3α) 23 670.4 23 256.6 22 588.2 11 528.9
t4 (MeV fm5+3β ) −60.0 −100.000 −100.000 −400.000
t5 (MeV fm5+3γ ) −90.0 −120.000 −150.000 −400.000
x0 0.398 848 0.569 613 0.885 231 0.421 290
x1 −0.137 960 −0.392 047 0.064 8452 −0.907 175
t2x2 (MeV fm5) −1055.55 −1147.64 −1390.38 −186.837
x3 0.375 201 0.614 276 1.039 28 0.683 926
x4 −6.0 −3.000 00 2.000 00 −2.000 00
x5 −13.0 −11.0000 −11.0000 −2.000 00
W0 (MeV fm5) 110.802 110.228 109.622 138.904
α 1/12 1/12 1/12 0.3
β 1/3 1/6 1/2 1.0
γ 1/12 1/12 1/12 1.0
f +

n 1.00 1.00 1.00 1.00
f −

n 1.05 1.06 1.05 1.06
f +

p 1.10 1.09 1.07 1.04
f −

p 1.17 1.16 1.13 1.09
ε
 (MeV) 16.0 16.0 16.0 16.0
VW (MeV) −2.00 −2.10 −1.80 −2.10
λ 250 280 280 340
V ′

W (MeV) 1.16 0.96 0.96 0.74
A0 24 24 24 28

consistent with all the available evidence coming from both
experiment and theory, although the situation is somewhat
ambiguous (see especially Sec. III B). Also we required that
the incompressibility Kv fall in the experimental range 240 ±
10 MeV [21]. The values of the Skyrme, pairing, and Wigner
parameters resulting from these three fits are shown in Table I
(ε
 is the pairing cutoff parameter [1,11]). The parameters of
the collective correction of Eq. (6) are shown in Table II. (All
the expressions corresponding to the generalized Skyrme force
(2) required here are given in, or can be trivially derived from,
the Appendix of Ref. [4].)

Figure 1 shows that each of the three new forces of
this article, BSk19–BSk21, reproduces very well its realistic

TABLE II. Parameters of
Eq. (6) for collective correction
to models HFB-19, HFB-20,
and HFB-21.

b (MeV) 0.80
c 10
d (MeV) 3.4
l 17
β0

2 0.1

FIG. 1. (Color online) Zero-temperature EOSs for neutron matter
(NeuM) with forces BSk19, BSk20, and BSk21. Also shown are the
realistic EOSs FP [5], WFF [22], APR [6], and LS2 [8].

“target” EOS of NeuM. In this figure we show also the results
of the realistic calculation “UV14 plus TNI” of Wiringa
et al. [22], labeled here as WFF. This EOS uses the same
realistic forces as FP, and like FP is based on a variational
calculation; it agrees very closely with the EOS of FP but runs
to higher densities, and so generally we shall henceforth take
WFF rather than FP as the reference EOS for BSk19. We have
checked for all of our forces that the ground state of NeuM
is unpolarized over the entire density range shown in Fig. 1,
that is, there is no ferromagnetic instability. At the same time,
in fitting the force parameters we have also to check that the
ground state of N*M is likewise stable against polarization,
since the stability of NeuM does not guarantee that of N*M
(see Sec. V for further details of the N*M calculations). It is
seen from Table I that we have relaxed the conditions (3a)–(3c)
that we imposed on the search for model HFB-18 [4], which
means that the t4 and t5 terms no longer exactly cancel in
unpolarized homogeneous nuclear matter of arbitrary charge
symmetry. This is the source of the extra flexibility that we
have gained in the present work, although it makes the fitting
process much more laborious.

Figure 2 is a low-density zoom of Fig. 1, comparing our
forces with the NeuM of FP and also that given by the BHF
calculations of Baldo et al. [23] (the calculations of WFF
are not taken to such low densities). This figure also shows

FIG. 2. (Color online) Low-density EOS in NeuM and SNM
of forces BSk19–BSk21. We compare with the calculations
of Refs. [5,23].
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TABLE III. rms (σ ) and mean (ε̄) deviations between data
and predictions for models HFB-19, HFB-20, and HFB-21; for
convenience of comparison we also show model HFB-18 [4]. The
first pair of lines refers to all the 2149 measured masses M that
were fitted [2], the second pair to the masses Mnr of the subset
of 185 neutron-rich nuclei with Sn � 5.0 MeV, the third pair to
the neutron separation energies Sn (1988 measured values), the
fourth pair to β-decay energies Qβ (1868 measured values) and
the fifth pair to charge radii (782 measured values [25]). The last
line shows the calculated neutron-skin thickness of 208Pb for these
models.

HFB-19 HFB-20 HFB-21 HFB-18

σ (M) (MeV) 0.583 0.583 0.577 0.585
ε̄(M) (MeV) −0.038 0.021 −0.054 0.007
σ (Mnr) (MeV) 0.803 0.790 0.762 0.758
ε̄(Mnr) (MeV) 0.243 0.217 −0.086 0.172
σ (Sn) (MeV) 0.502 0.525 0.532 0.487
ε̄(Sn) (MeV) −0.015 −0.012 −0.009 −0.012
σ (Qβ ) (MeV) 0.612 0.620 0.620 0.561
ε̄(Qβ ) (MeV) 0.027 0.024 0.000 0.025
σ (Rc) (fm) 0.0283 0.0274 0.0270 0.0274
ε̄(Rc) (fm) −0.0032 0.0009 −0.0014 0.0016
θ (208Pb) (fm) 0.140 0.140 0.137 0.150

the corresponding results for SNM. The excellent agreement
of all our forces with the realistic calculations, which have
served as the basis of a density functional for nuclear-structure
calculations [23], will be seen.

The rms and mean (data minus theory) values of the
deviations between the measured masses and the predictions
for the HFB-19, HFB-20, and HFB-21 models are given in the
first and second lines, respectively, of Table III, where we also
compare with HFB-18 [4]. With HFB-21 we have achieved
our best mass fit ever, although we do not regard its superiority
over the other three forces as significant. The next two lines of
Table III show the deviations for the subset consisting of the
most neutron-rich measured nuclei, here taken as those with
a neutron separation energy Sn � 5.0 MeV. All four models
display a slight deterioration as we move into the neutron-rich
region. (The rms deviation given by the finite-range droplet
model (FRDM) [24] for this same subset is 0.910 MeV.) Lines
5–8 show the deviations for the Sn and β-decay energies
Qβ of all measured nuclei; these differential quantities are
of greater astrophysical relevance than the absolute masses
for both the r process and the inner crust of neutron stars. It
will be seen that all models fit the Sn better than they fit the
absolute masses. However, this is the case for the Qβ only with
model HFB-18. Overall, all four models give mass fits of very
similar quality. Likewise, from lines 9 and 10 we see that all
four models are essentially equivalent from the standpoint of
charge radii (the data are taken from Ref. [25]). The last line
of Table III shows the calculated values of the neutron-skin
thickness of 208Pb; the experimental values are discussed in
Sec. III B.

Using the forces BSk19, BSk20, and BSk21 we have
constructed complete mass tables HFB-19, HFB-20, and
HFB-21, respectively, running from one drip line to the other

FIG. 3. (Upper panel) Mass differences between HFB-21 and
HFB-19 mass models for all 8509 nuclei included in the tables.
(Lower panel) Ditto for HFB-21 and HFB-20 models.

over the range Z and N � 8 and Z � 110. We plot the
differences between these three mass models in Fig. 3, where
it will be seen that globally they are very similar, with no
striking systematic differences emerging even for the highest
values of N , corresponding to the neutron drip line. On the
other hand, the upper panel of Fig. 4 shows that there are
somewhat larger deviations between our models (represented
here by the typical HFB-21) and the model D1M [26] based
on a Gogny-type force (note the different scale used in Fig. 4);
moreover, with increasing N there is a systematic tendency
for D1M to bind less strongly than the HFB models (the rms
deviation of this model for the same data set that we take here
is 0.798 MeV). The lower panel of Fig. 4 compares HFB-21
with the FRDM [24], and here we see that at large N the
deviations are much bigger than is the case for D1M.

C. Properties of infinite nuclear matter

The first seven parameters of Table IV are defined by first
writing the energy per nucleon of infinite nuclear matter of
density ρ and charge asymmetry η = (ρn − ρp)/ρ in the form

e(ρ, η) = e(ρ, η = 0) + e(1)
sym(ρ)η2 + O(η4), (7)
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FIG. 4. (Upper panel) Mass differences between HFB-21 and
D1M mass models for all 8509 nuclei included in the tables. (Lower
panel) Ditto for HFB-21 and FRDM models.

in which the first term on the right-hand side is just the energy
per nucleon of SNM; we have neglected charge-symmetry
breaking terms, such as those arising from the neutron-proton
mass difference (note that in Ref. [4] we wrote e(1)

sym simply as
esym, but here we have to distinguish it from another symmetry
energy to be defined in Eq. (11)). We then expand e(ρ, η = 0)
and e(1)

sym(ρ) about the SNM equilibrium density ρ0 in powers
of ε = (ρ − ρ0)/ρ0, thus

e(ρ, η = 0) = av + 1
18Kvε

2 − 1
162K ′ε3 + · · · (8a)

and

e(1)
sym(ρ) = J + 1

3Lε + 1
18Ksymε2 + · · · . (8b)

Since the expressions corresponding to the generalized Skyrme
force (2) for the coefficients K ′ and Ksym were not given in
the Appendix of Ref. [4] we show them here:

K ′ = −12h̄2

5M
k2
F + 3

8
[3t1 + t2(5 + 4x2)] ρk2

F

− 27

16
(α + 1)α(α − 1)t3ρ

α+1

TABLE IV. Parameters of infinite nuclear matter for forces
BSk19, BSk20 and BSk21; for convenience of comparison we also
show force BSk18 [4].

BSk19 BSk20 BSk21 BSk18

av (MeV) −16.078 −16.080 −16.053 −16.063
ρ0 (fm−3) 0.1596 0.1596 0.1582 0.1586
J (MeV) 30.0 30.0 30.0 30.0
Kv (MeV) 237.3 241.4 245.8 241.8
K ′ (MeV) 297.8 282.2 274.1 363.8
L (MeV) 31.9 37.4 46.6 36.2
Ksym (MeV) −191.4 −136.5 −37.2 −180.9
Kτ (MeV) −342.8 −317.1 −264.6 −343.7
Kcoul (MeV) −5.093 −5.158 −5.186 −4.897
M∗

s /M 0.80 0.80 0.80 0.80
M∗

v /M 0.61 0.65 0.71 0.79
F0 −0.14 −0.13 −0.10 −0.12
F ′

0 0.96 0.96 0.97 0.97
F1 −0.60 −0.60 −0.60 −0.60
F ′

1 0.96 0.69 0.38 0.032
G0 −0.016 0.25 0.56 −0.33
G′

0 0.95 0.95 0.95 0.46
G1 0 0 0 1.23
G′

1 0 0 0 0.50
ρc(N*M) (fm−3) 1.45 0.98 0.99 1.77
ρc(NeuM) (fm−3) 1.45 0.95 0.69 1.77

− 9

80
(3β + 5) (3β + 2) (3β − 1)t4ρ

β+1k2
F

− 3

80
(3γ + 5) (3γ + 2) (3γ − 1)t5(5 + 4x5)ργ+1k2

F

(9a)

and

Ksym = − h̄2

3M
k2
F + 5

12
[−3t1x1 + t2(4 + 5x2)] ρk2

F

− 3

16
α(α + 1)t3(1 + 2x3)ρα+1

− 1

8
(3β + 5) (3β + 2)t4x4ρ

β+1k2
F

+ 1

24
(3γ + 5) (3γ + 2)t5(4 + 5x5)ργ+1k2

F . (9b)

The coefficients appearing in lines 8 and 9 of Table IV are
functions of the preceding coefficients and are defined in
Eqs. (14) and (17), respectively. They will be used in Sec. III.

1. Effective masses

The values of the isoscalar and isovector effective masses,
M∗

s and M∗
v , respectively, shown in Table IV, are calculated at

the equilibrium density ρ0 of SNM. The value M∗
s = 0.8M for

all the models was, as already explained, a constraint imposed
on the fit to the data, but the various values of M∗

v were left
free and emerged from the fit. Experimental estimates of this
quantity vary widely: Measurements of the isovector giant
dipole resonance (IVGDR) in heavy nuclei, as summarized in
Fig. 47 of Ref. [27], indicate that the value of M∗

v /M can range
from 0.7 to 1 (this figure in effect plots M/M∗

v ). However,
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FIG. 5. (Color online) Variation with density of M∗
s /M (upper

panel) and M∗
v /M (lower panel).

the subsequent discussion in Ref. [27] points out that lower
values are possible, which means that none of our models is
in clear conflict with experiment. Moreover, all four models
have M∗

v < M∗
s , which implies that the neutron effective mass

M∗
n is larger than the proton effective mass M∗

p in neutron-rich
matter, since the effective mass of a nucleon of charge type q

in nuclear matter at density ρ is given by

M

M∗
q

= 2ρq

ρ

M

M∗
s

+
(

1 − 2ρq

ρ

)
M

M∗
v

. (10)

This prediction is consistent with measurements of the
IVGDR [28] and has been confirmed in many-body cal-
culations with realistic forces [29]. With these latter cal-
culations giving M∗

s = 0.825M and M∗
v = 0.727M , we see

that the magnitude of the splitting given by the new forces,
especially BSk21, is much more realistic than that given by
BSk18.

Figure 5 shows for the three new models and BSk18 how
M∗

s and M∗
v vary with density. For Skyrme forces of the

conventional form (1) both 1/M∗
s and 1/M∗

v depend linearly
on the density, as is also the case for BSk18, because of
the constraints (3a)–(3c). However, these constraints are not
applied to the new forces, BSk19–BSk21, with the result that
1/M∗

s and 1/M∗
v will vary nonlinearly with density for these

three forces. This accounts for the low-density peak seen in
M∗

s for these forces. There are peaks also in M∗
v for all three of

the new forces, but they occur at such low densities that they
are quite invisible in Fig. 5.

Using now Eq. (10) and the density distributions given by
the HFB calculations, we calculate the radial variation of M∗

n

FIG. 6. (Color online) Variation of M∗
n/M (upper panel) and

M∗
p/M (lower panel) with radial position in 208Pb.

and M∗
p in 208Pb and show the results for the three new models

and BSk18 in Fig. 6. We see that the average value of M∗
n over

the nucleus of 208Pb will be significantly larger for the three
new forces than for BSk18, and we would therefore expect the
neutron single-particle (s.p.) level density close to the Fermi
surface to be greater for the new forces than for BSk18. Table V
shows that this is indeed the case (of the new forces we show

TABLE V. Single-particle neutron levels in 208Pb (MeV). Exper-
imental values are taken from Ref. [30]. The asterisk denotes the
Fermi level. The quantity �n is the interval between the centroids of
the 2f and 3d doublets.

Level HFB-18 HFB-20 Expt.

1s1/2 −51.0 −49.1 –
. . . . . . . . . . . .

1h9/2 −12.6 −11.7 −10.9
2f7/2 −11.6 −11.3 −9.7
1i13/2 −9.4 −9.7 −9.0
3p3/2 −8.8 −8.7 −8.3
2f5/2 −8.8 −8.6 −8.0
3p1/2

∗ −7.7 −7.7 −7.4
2g9/2 −3.5 −3.7 −3.9
1i11/2 −2.7 −2.3 −3.2
1j15/2 −1.2 −1.8 −2.5
3d5/2 −1.2 −1.5 −2.4
4s1/2 −0.7 −0.9 −1.9
2g7/2 −0.4 −0.7 −1.5
3d3/2 −0.2 −0.5 −1.4
�n 9.6 9.0 7.0
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TABLE VI. Single-particle proton levels in 208Pb (MeV). Exper-
imental values are taken from Ref. [30]. The asterisk denotes the
Fermi level. The quantity �p is the interval between the centroids of
the 1g and 2f doublets.

Level HFB-18 HFB-20 Expt.

1s1/2 −39.8 −41.0 –
. . . . . . . . . . . .

1g9/2 −16.3 −16.6 −15.4
1g7/2 −13.0 −12.7 −11.4
2d5/2 −10.2 −10.3 −9.7
1h11/2 −8.8 −9.0 −9.4
2d3/2 −8.4 −8.6 −8.4
3s1/2

∗ −7.7 −7.8 −8.0
1h9/2 −4.0 −3.5 −3.8
2f7/2 −2.2 −2.2 −2.9
1i13/2 −1.0 −1.1 −2.2
3p3/2 1.0 0.9 −1.0
2f5/2 0.2 0.1 −0.5
�p 13.6 13.7 11.7

only BSk20 in this and Table VI since the other two give almost
identical s.p. energies), if we take as a measure of the s.p. level
density the separation of certain spin-orbit doublets (we have
to adopt this measure because of the distorting effect of the
spin-orbit splitting). However, for all four forces the neutron
s.p. level density is still much lower than the experimental
value (our data on s.p. energies are taken from Ref. [30]),
essentially because even for the new forces the average value
of M∗

n over the nucleus is not big enough. On the other hand,
for the proton s.p. level densities the new forces give just as
poor an agreement with experiment as does BSk18 (Table VI),
a result that can be understood from the lower panel of Fig. 6,
where it will be seen that M∗

p for the new forces lies sometimes
above and sometimes below the BSk18 value.

Nevertheless, we see that with a more thorough exploitation
of the t4 and t5 terms it should be possible in principle for the
s.p. level densities to be well reproduced, at least in heavy
nuclei, while maintaining realistic values of M∗

s and M∗
v in

SNM at density ρ0. Some partial success in this direction
has already been achieved in Ref. [31], where the s.p. proton
level density in the vicinity of the Fermi surface of 208Pb was
well reproduced, although the s.p. neutron level density was
far too low, and no attempt was made to impose a global
mass fit. The peaks in that work were much stronger than
here, M∗

s having a maximum value of 1.13M , while M∗
v had

a maximum value of 1.33M , suggesting that forces BSk19–
BSk21 do not have nearly enough nonlinearity in 1/M∗

s and
1/M∗

v . However, sufficiently strengthening the peaks in M∗
s

and M∗
v while maintaining the present quality of the mass fits

and respecting all the other constraints might be impossible
with the present form (2) of Skyrme force: despite its great
generality it might have to be generalized still further by adding
extra t3, t4, and t5 terms, each characterized by different density
exponents. Fitting such a force would be highly labor intensive.

2. Distribution of potential energy among the (S, T ) channels

Fitting our forces to the mass data and the EOS of NeuM is
not a sufficient condition for ensuring a realistic distribution

of the potential energy per nucleon among the four two-body
spin-isospin (S, T ) channels in SNM. This is made clear in
Fig. 7, which shows this distribution in SNM for each of our
three new forces, calculated using Eq. (B6) of Ref. [28], as
a function of density, and compares with two different BHF
calculations: “Catania 1,” based on Ref. [8] and “Catania 2,”
based on Ref. [32]. The data of the former were kindly supplied
by U. Lombardo [33] and of the latter by M. Baldo [34]. Given
the evident uncertainty in what the real distribution actually
is, the level of agreement we have found with our new forces
can be regarded as satisfactory. This is the first time that we
have been able to achieve such a level of conformity to reality
with any of our forces; the improvement in the (1, 1) channel
is particularly striking, as can be seen by comparing Fig. 7
with Fig. 4 of Ref. [1] and Fig. 9 of Ref. [11]. As discussed
in Refs. [11] and [28], this improvement would have been
very difficult within the framework of conventional Skyrme
forces, and the terms in t4 and t5 have been indispensable in
this respect.

III. SYMMETRY ENERGY

A. Generalities

The properties of neutron-star matter (N*M) depend cru-
cially on the difference between the energy per nucleon in
NeuM and the energy per nucleon in SNM, i.e., on the
symmetry energy

e(2)
sym(ρ) = e(ρ, η = 1) − e(ρ, η = 0) (11)

(see Sec. V). Because of quartic and higher-order terms in η

this symmetry energy is not identical to the symmetry energy
e(1)

sym(ρ) defined in Eq. (7) [35]; we return to this point later
in this section. Figure 8 shows that the EOSs in SNM for
our three new forces, BSk19–BSk21, are remarkably similar,
despite having quite different properties in NeuM (see also
Fig. 2). It seems that the fit to the data, none of which relates to
densities much greater than ρ0, determines almost completely
the properties of SNM up to more than 4ρ0, at least under the
constraint of given values of J and Kv . Moreover, we have
calculated the pressure in SNM as a function of density for
our forces and find that it is consistent with measurements of
nuclear-matter flow in heavy-ion collisions, although close to
the upper limit: see Fig. 3 of Ref. [36].

In Fig. 8 we show also the realistic EOSs for SNM given
by the WFF [22], APR [6], and LS2 [8] calculations. It will be
seen that while BSk19 agrees very closely (by construction)
with WFF in NeuM (and thus with FP [5]), it is significantly
stiffer in SNM; a similar remark applies to BSk20 and its APR
counterpart and likewise to BSk21 and its LS2 counterpart.
In this connection it should be realized that the uncertainties
in many-body theory are even greater for SNM than for
NeuM, essentially because of the 3S1-3D1 tensor coupling,
which acts in the former but not the latter. Thus in all such
calculations performed so far it has been necessary to make a
phenomenological adjustment of the three-body force in order
to get an acceptable equilibrium point of SNM. The way in
which this adjustment is made is far from unique, both with
regard to the parametrization of the three-body force and the
actual values of the parameters av and ρ0 characterizing the
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FIG. 7. (Color online) Potential energy per particle Epot/A in each (S, T ) channel as a function of density for symmetric infinite nuclear
matter. The open symbols correspond to the “Catania 1” BHF calculations [8], and the solid symbols to the “Catania 2” BHF calculations [32].

equilibrium point of SNM (we stress that in the case of our
forces the values of av and ρ0 given in Table IV were not fixed
a priori but emerged from the mass fit).

Using Figs. 1 and 8, we now plot in Fig. 9 the symmetry
energy e(2)

sym for all the forces of Fig. 8. We see that our three
forces agree very closely in their predictions for e(2)

sym up to
and slightly beyond ρ0. However, as the density increases the
curves for our forces diverge strongly from each other. In fact,
for BSk19 e(2)

sym becomes negative at high densities, NeuM
having lower energy per nucleon than SNM. Figure 9 also
shows that WFF (and thus FP) has higher symmetry energy

FIG. 8. (Color online) Zero-temperature EOSs for symmetric
nuclear matter (SNM) with forces BSk19–BSk21. Also shown are
the realistic EOSs WFF [22], APR [6], and LS2 [8].

than its BSk19 counterpart, and likewise for APR as compared
to BSk20, and LS2 as compared to BSk21. These differences
can be traced almost entirely to the differences in SNM that
we have remarked above (note that stiffer SNM implies softer
symmetry energy, for a given EOS of NeuM).

To examine the relationship between the symmetry energy
e(2)

sym discussed in this section and the symmetry energy e(1)
sym

defined in Eq. (7) we plot in Fig. 10 the difference e(2)
sym − e(1)

sym
for our three new forces. Contrary to the usual assumption,
this difference is seen to be far from negligible, amounting to
around 1 MeV in the vicinity of ρ = ρ0 and possibly becoming

FIG. 9. (Color online) Symmetry energy e(2)
sym for forces BSk19,

BSk20, and BSk21. Also shown are the realistic EOSs WFF [22],
APR [6], and LS2 [8].
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FIG. 10. (Color online) Difference e(2)
sym − e(1)

sym for forces BSk19–
BSk21.

much larger at higher densities, depending on the force in
question.

1. High-density behavior

Since the EOSs of NeuM to which we have fitted our three
new forces differ so strongly at high densities, it would be
highly desirable to know how the symmetry energy actually
does vary with density at high density. Unfortunately, as
we now see, our knowledge in this respect is extremely
limited. Turning first to many-body theory with realistic forces,
we note that all three of our new forces are supported by
their realistic counterparts. In particular, the plausibility of
the negative symmetry energy of BSk19 is supported by
the realistic EOS of WFF. The reason why the realistic
calculations of the symmetry energy show almost as large
a high-density divergence as our phenomenological forces lies
at least partially with the choice of three-nucleon force and
its behavior at high densities. Dirac-Brueckner-Hartree-Fock
calculations, in which there is no three-nucleon force, also
show a high-density softening of the EOS [37].

In the present state of the theory only experiment can decide
the issue, but so far there has been only one measurement
of symmetry energy at the high densities found in the core
of neutron stars. This involves pion production in heavy-
ion collisions at very high energies, measuring the π−/π+
ratio [7]. It was found that the data were consistent with models
predicting negative symmetry energy at densities above 3ρ0.

2. Low-density behavior

Since e(2)
sym is roughly equal to e(1)

sym for our forces at nuclear
and lower densities it can be represented by the expansion
(8b) in this density region, at least qualitatively. The close
agreement between our forces seen in Fig. 9 for these densities
can now be related firstly to the fact that J is the same for all
our forces (by choice) and also to the fact that the L coefficient,
which measures the slopes of the curves at ρ = ρ0, has similar
values, as shown in Table IV. Moreover, the origin of the
high-density divergence between our EOSs can be found in
Table IV, where we see that the second derivative of these
curves, measured by Ksym, differs considerably from one force
to another.

We devote the rest of this section to our knowledge, both
experimental and theoretical, of symmetry energy in the region

of nuclear densities, since much more information is available
here than in the high-density region.

B. The J and L coefficients

The determination of the J and L coefficients from
measurements on finite nuclei requires the use of some model
to describe the nuclei in question. One obvious approach is via
mass measurements, but fits of mass models to the data yield a
wide range of values of J and L. For example, the finite-range
droplet model [24] yields J = 32.73 MeV (actually, this is just
for the macroscopic part; in the microscopic part J is given as
35 MeV). On the other hand, mass models based on Skyrme
forces of the conventional form (1) give an optimal mass fit
with J ≈ 27.5 MeV [13] (we adopt higher values in all our
HFB models in order to avoid a collapse of NeuM, which
would otherwise occur even when assuming a nonpolarized
ground state). However, despite this ambiguity in the value
of J given by mass fits there is a fairly tight correlation
with the value of L. This correlation was explored more than
30 years ago [38] and then in Ref. [39] (see especially Table II
of that article); it has subsequently been revisited several times,
e.g., Refs. [40–42]. As for our own HFB mass models, the
L-J correlation is clearly seen in Table 3 of Ref. [13] and is
manifested in the present article by the relative closeness of
the L values for our forces.

The fact that fitting nuclear masses correlates J with L can
be easily understood as follows. Increasing J will increase the
symmetry energy in the center of the nucleus, an increase that
will have to be compensated by a decrease in the symmetry
energy in the surface. Such a decrease can be achieved by a
reduction in L, since ρ < ρ0 in that region.

A similar but somewhat weaker L-J correlation is also
found in measurements of isospin diffusion in heavy-ion
collisions: see Fig. 3 of Tsang et al. [43]. The data leave a
large range in the possible values of L for a given value of J ,
but for our chosen value of J = 30 MeV the lower limit on L

is about 45 MeV, which is consistent with force BSk21 but not
the other forces.

We now summarize two types of measurement that lead in
principle to unique values of either J or L.

1. Heavy-ion collisions

Chen et al. [44] have analyzed isospin-diffusion data and
find L = 88 ± 25 MeV, which is much higher than is given by
any of our forces. On the other hand, the analysis of Famiano
et al. [45] finds that the symmetry energy varies roughly as
ρ1/2, which yields L ≈ 3J/2, i.e., 47 ± 2 MeV, which agrees
best with BSk21. The interpretation of these experiments is
clearly very model dependent.

2. Neutron-skin thickness

For a given nucleus this is defined by

θ ≡ Rrms
n − Rrms

p , (12)

where the rms radii refer to point nucleons. By considering
the results of nonrelativistic Hartree-Fock and relativistic
mean-field calculations with many different forces it was
noted by Brown [46] and by Typel and Brown [47] that a
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strong correlation exists between the neutron-skin thickness
and the value of the L coefficient. Thus the strong correlation
already noted between L and J implies that the value of θ

is likewise correlated with J : see, for example, Table 2 of
Ref. [39]. This correlation can easily be understood [13] in
terms of the droplet-model expression (2.21) of Ref. [48] for
the neutron-skin thickness of a nucleus of atomic number Z

and mass number A,

θ = 3

2
r0

J

Q
I, (13)

where r0 = (3/4πρ0)1/3, I = (N − Z)/A, and Q is the
surface-stiffness coefficient, which is anticorrelated with J

if masses are fitted [49,50]; see also Ref. [41] for a recent
extensive discussion. (The correlation between θ and J might
be expected to be more robust than that between θ and L,
since the latter can hold only to the extent that a local-
density approximation is valid in the surface, L relating to
homogeneous nuclear matter.) Measurement of the neutron-
skin thickness is difficult, but one particular method involves
the use of antiprotons as a probe [51]. Analyzing the results
on 26 nuclei, Ref. [41] found L = 55 ± 25 MeV, which is
compatible with all three forces of this article.

A nucleus of particular interest is 208Pb, since several
measurements of its neutron-skin thickness have been made,
and a very precise one is being planned. It is for this reason that
we show in the last line of Table III our calculated values of
the neutron-skin thickness for this nucleus. One of the lowest
published values, obtained from high-energy proton scattering,
is 0.14 ± 0.04 fm [52], which certainly agrees with all our
forces. A similarly low value, 0.15 ± 0.02 fm, was originally
extracted from the antiprotonic measurements [51], but a new
analysis of this data [53] gives a result that is barely consistent
with any of our forces: 0.20 ± 0.04 ± 0.05 fm, in which the
first error bar represents the experimental uncertainty and
the second the theoretical uncertainty associated with the
strong-interaction model.

This latter source of uncertainty besets, in one form
or another, all the different determinations of neutron-skin
thickness published so far but will be avoided in the proposed
PREX experiment [54], which is to measure parity violation
in the elastic scattering of electrons on 208Pb. However, the
expected error bars, ± 0.05 fm, will still be much too large to
distinguish between our different forces. On the other hand,
it is conceivable that the PREX experiment will give a result
that is quite incompatible with any of our predictions. In that
case it would be necessary to make a new mass fit with J

constrained to a value appropriately higher or lower than the
value of 30 MeV taken here.

3. Many-body theory with realistic forces

Several such calculations of J and L have been published,
but usually these consider only SNM and NeuM and then
assume that e(1)

sym = e(2)
sym, an approximation that we estimate,

on the basis of the forces BSk18-21, to lead to J being
overestimated by around 1 MeV. Further errors in the values
of J and L calculated in this way arise from the uncertainties
that are specific to the many-body calculation of SNM (see
above). Thus it is not surprising that the values of J and L

predicted by different calculations should disagree widely, as
we now see.

For example, while the three BHF calculations of Ref. [55]
have J lying in the range 34.7 ± 1.1 MeV and L in the
range 65.0 ± 1.9 MeV, the BHF calculations underlying the
LS2 EOS (to which BSk21 was constrained) yield the quite
different values of J = 30.6 MeV and L = 101.4 MeV [8].
Our final example is the BHF calculation [8] using the Bonn
B [56] two-nucleon interaction and a three-nucleon interaction
of the same realistic form as adopted for LS2: this calculation
gives J = 29.4 MeV and L = 74.4 MeV.

All in all, it is clear that in the search for the correct values
of J and L many-body theory does not help us to narrow down
the wide range of possibilities left open by experiment.

C. The Ksym coefficient

The coefficient Ksym appearing in the expansion (8b) can
only be measured in the combination

Kτ = Ksym + L

(
K ′

Kv

− 6

)
, (14)

because for nonzero L values the equilibrium density of
asymmetric nuclear matter is displaced away from ρ0.

1. Many-body theory with realistic forces

The only such calculations of Kτ with which we are familiar
are the three BHF calculations of Ref. [55], which yield values
lying in the range −344 to −335 MeV, discriminating thereby
against BSk21. Of course, the doubts we expressed above
concerning the reliability of calculations of J and L with
realistic forces apply equally well to these calculations of Kτ .

2. Isospin diffusion in heavy-ion collisions

These measurements yield a value for Kτ of −370 ±
120 MeV [57], which is consistent with all our forces (see
Table IV) and with the ab initio calculations of Ref. [55].
Clearly, improved accuracy will be necessary before it is
possible to discriminate between our different forces on this
basis.

3. Isotopic variation of “breathing-mode” energies

The coefficient Kτ can in principle be determined by
measuring the finite-nucleus incompressibility K(Z,A) of a
string of isotopes of the same element. Such a determination
was made recently in Ref. [58] by measurements of the
energies of the giant isoscalar monopole resonance EGMR in
the seven even-even Sn isotopes between 112Sn and 124Sn.
Using the relation

K(Z,A) = M

h̄2 R2E2
GMR, (15)

where R is the rms matter radius, they fitted their results to the
simple expression [59]

K(Z,A) = Kv + Ksf A−1/3 + KτI
2 + Kcoul

Z2

A4/3
, (16)

in which

Kcoul = 3e2

5r0

(
K ′

Kv

− 8

)
. (17)
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The parametrization (16), which assumes a scaling model
for the resonance, is based on the leptodermous approxima-
tion [48] and makes use of the expansions (8a) and (8b) for
infinite nuclear matter, only the lowest-order terms beyond Kv

being retained. Likewise, only the lowest order associated with
semi-infinite nuclear matter, Ksf A−1/3, is retained.

The value of Kτ that Ref. [58] extracts from the mea-
surements is −550 ± 100 MeV, in clear-cut disagreement
with all our forces (line 8 of Table IV), and with the
ab initio calculations of Ref. [55]. It also barely overlaps
with the measurement of Ref. [57]. Moreover, it has been
argued [60,61] that a value Kτ ≈ −550 MeV is too strongly
negative to be compatible with the behavior of low-density
neutron matter, which is determined unambiguously by low-
energy neutron-neutron scattering.

However, as we have recently pointed out [62], the analysis
that Ref. [58] made of their data is invalid, essentially because
as soon as higher-order terms, notably the surface-symmetry
term KssI

2A−1/3, are admitted into the leptodermous expan-
sion of K(A,Z), then Kτ becomes indeterminate, and it is
impossible to say that values in the vicinity of −350 MeV
are not consistent with the data (see also Colò [63]). Actually,
the situation becomes even worse when one realizes that it is
not possible to identify the Kv of Eq. (16) with the incom-
pressibility of infinite nuclear matter K∞ if the structure of the
breathing mode deviates from a strict scaling model [64,65];
similar considerations must also apply to Kτ itself, since it
refers, like Kv , to a volume term. The only reliable way to see
whether our forces are consistent with the breathing-mode data
would be to use them in self-consistent QRPA (or constrained
HFB) calculations of the breathing-mode energies [65], which
is beyond the scope of the present article.

This approach has, in fact, been followed by
Piekarewicz [61,66], whose RPA calculations are based on
the relativistic mean-field method, using the FSU Gold
parameters [67]. This interaction reproduces well a certain
number of key data points and in particular the measured
breathing-mode energies of 208Pb, 144Sm, and 90Zr. On the
other hand, his calculated breathing-mode energies for the Sn
isotopes lie significantly higher than the measured values of
Ref. [58]. The value of Kτ for FSU Gold is −276.8 MeV,
very close to our value for interaction BSk20 and differing
insignificantly from the values for the two other forces of this
article.

The two attempts that have been made to account for the
anomalously soft properties of the Sn isotopes are summarized
in Ref. [61] and found to be incomplete: we are left with an
open problem in nuclear structure. As far as the present article
is concerned the situation is rather troubling, since as long
as one does not understand the compressional properties of
the Sn isotopes one cannot claim to fully understand those
of the other nuclei from which values of Kv are extracted.
The most that we can conclude is that at the present time the
breathing-mode measurements offer no basis for eliminating
any of the forces discussed here. On the other hand, if it turns
out that the solution to the tin problem lies in taking a value
for Kv that differs radically from what we have assumed here
the present forces would all have to be abandoned and new fits
made.

IV. LANDAU PARAMETERS AND STABILITY
CONDITIONS

The values of the dimensionless Landau parameters in SNM
at the equilibrium density ρ0 are given in lines 12–19 of
Table IV. All four forces predict almost identical values of
the parameters F0, F ′

0, and F1, even though these parameters
can in principle be modified by the new t4 and t5 terms (except
in the case of force BSk18, where the conditions (3a)–(3c) are
imposed). The close agreement between the different forces
can be traced back to the constraints imposed during the mass
fit on the incompressibility Kv , the isoscalar effective mass
M∗

s , and the symmetry energy J , since these quantities are
related uniquely to the Landau parameters through

Kv = 3h̄2k2
F

M∗
s

(1 + F0), (18a)

M∗
s

M
= 1 + F1

3
, (18b)

and

J = h̄2k2
F

6M∗
s

(1 + F ′
0). (18c)

However, the four forces yield quite different predictions
for the remaining Landau parameters. The differences in the
values of F ′

1 can easily be understood in terms of the different
values of the isovector effective mass, since the two quantities
are related by

M∗
s

M∗
v

= 1 + F ′
1

3
. (19)

As for the parameters G0, G′
0, G1, and G′

1, it will be seen
that the three new forces give values that differ substantially
from those of the older BSk18 force. In particular, G1 and G′

1
are now identically zero, while G0 and G′

0 are significantly
higher. This is a result of dropping the time-odd terms
associated with the neglect of the J 2 and J 2

q terms (see
Sec. II A). Our value of G′

0, 0.95 for all three new forces
is in good agreement with the value of around 1.2 found in
BHF calculations using the Argonne A18 potential with a
three-body force [68]. (On the other hand, all our values of G0

are significantly lower than the value of around 0.8 found in
these same realistic calculations, although some improvement
over BSk18 can be seen in the three new models.) Our value of
G′

0 also falls within the empirical range of 1.0 ± 0.1 deduced in
Ref. [69] from the analysis of Gamow-Teller (GT) resonances
and magnetic-dipole modes in finite nuclei.

It is well known that for the Fermi liquid theory to be
internally consistent, the Landau parameters have to satisfy
the two basic sum rules which follow from the Pauli exclusion
principle [70]

S1 =
∑

�

F�

1 + F�/(2� + 1)
+ F ′

�

1 + F ′
�/(2� + 1)

+ G�

1 + G�/(2� + 1)
+ G′

�

1 + G′
�/(2� + 1)

= 0 (20a)
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and

S2 =
∑

�

F�

1 + F�/(2� + 1)
− 3

F ′
�

1 + F ′
�/(2� + 1)

− 3
G�

1 + G�/(2� + 1)
+ 9

G′
�

1 + G′
�/(2� + 1)

= 0. (20b)

Skyrme forces generally violate these sum rules. However,
we have found that our new forces significantly improve
the second sum rule compared to our previous forces. In
particular, while for BSk18 we have S2 = 3.05, our new forces
BSk19, BSk20, and BSk21 yield −0.13, −0.26, and −0.03,
respectively. In the latter case, the discrepancy between the
calculated value of S2 and the exact result is reduced by two
orders of magnitude. On the other hand, the values of the first
sum S1 for the different forces remain very close, lying between
0.7 and 0.9. All the forces quoted above include t4 and t5
terms. For comparison, our parametrization BSk17 based on a
conventional Skyrme force yields S1 = −0.76 and S2 = 7.42.

Extending the calculation of the Landau parameters to
higher densities we find, with one exception, that for all
densities ρ > ρ0 encountered in the interior of supernova
cores and neutron stars, the new forces satistify the following
stability conditions for � = 0 and 1, the only values applicable
in the case of Skyrme forces:

F� > −(2� + 1), F ′
� > −(2� + 1) (21a)

and

G� > −(2� + 1), G′
� > −(2� + 1), (21b)

as shown in Fig. 11 (these conditions are still fulfilled when
the time-odd terms associated with J 2 and J 2

q terms are taken
into account). The � = 0 cases are of particular interest, as we
now discuss.

(i) The condition on G0 ensures that the spin asymmetry
coefficient, defined by

aσ ≡
(

1

2

∂2e

∂I 2
σ

)
Iσ =0

= h̄2k2
F

6M∗
s

(1 + G0), (22)

where Iσ = (ρ↑ − ρ↓)/ρ, always remains positive,
i.e., SNM is stable with respect to a ferromagnetic
transition.

(ii) The condition on G′
0 ensures that the spin-isospin

asymmetry coefficient, defined by

aστ ≡ 1

2

(
∂2e

∂I 2
στ

)
Iστ =0

= h̄2k2
F

6M∗
s

(1 + G′
0), (23)

where Iστ = (ρn↑ − ρn↓ − ρp↑ + ρp↓)/ρ, always re-
mains positive, i.e., there is no instability with respect
to spin-isospin transitions. Unlike our three new forces,
BSk19, BSk20, and BSk21, our earlier model force
BSk18 predicts that such an instability occurs at density
of ρ = 0.62 fm−3.

FIG. 11. (Color online) Landau parameters in symmetric nuclear
matter for forces BSk19–BSk21 (note that the curves for the three
forces are indistinguishable from each other in the case of F0, F1, and
G′

0). For comparison we show also the results of BHF calculations
from Ref. [71]. We also indicate the stability limit −(2� + 1).

(iii) The condition on F0 ensures that the incompressibility
coefficient, defined by

aρ ≡ 1

2

∂2e

∂(ρ/ρ0)2
= h̄2k2

F

6M∗
s

(1 + F0), (24)

is always positive, at least for ρ > ρ0, i.e., SNM is stable
against mechanical breakup, of the sort that occurs
for ρ < ρ0. [Note that aρ(ρ = ρ0) = Kv/18ρ2

0 , whence
Eq. (18a) follows.]

(iv) The condition on F ′
0, where it holds, ensures that the

isospin asymmetry coefficient, defined by

aτ ≡ 1

2

(
∂2e

∂I 2
τ

)
Iτ =0

= h̄2k2
F

6M∗
s

(1 + F ′
0), (25)

where Iτ = (ρn − ρp)/ρ, always remains positive, i.e.,
there is no isospin instability, in which the neutrons of
SNM tend to become protons and vice versa. This holds
at all densities ρ > ρ0 for forces BSk20 and BSk21 but
breaks down for BSk19 above ρ = 0.64 fm−3, which
is precisely the density at which e(1)

sym goes negative for
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FIG. 12. (Color online) Landau parameters in neutron matter for forces BSk19–BSk21 (note that the curves for the three forces are
indistinguishable from each other in the case of G1). For comparison we show also the results of BHF calculations from Ref. [72]. We also
indicate the stability limit −(2� + 1).

this force. (This is close to, but not coincident with,
the density at which e(2)

sym goes negative for BSk19,
0.73 fm−3, as can be read off from Fig. 9.) There is a
similar instability for BSk18. In addition to instabilities
in F ′

0 and G′
0, BSk18 predicts instability with respect to

fluctuations in the spin-orbit current J , since G1 falls
below −3 at density ρ = 0.79 fm−3.

We have also evaluated the Landau parameters in NeuM.
The appropriate expressions for the generalized Skyrme force
(2) can be found in Appendix B, while the numerical values
are shown in Fig. 12. As in the case of SNM, all the
new forces BSk19–BSk21 are stable with respect to all the
Landau parameters in NeuM. On the other hand, our earlier
force BSk18 predicted an instability in GNeuM

1 at density
ρ = 0.90 fm−3.

V. NEUTRON-STAR MATTER

We treat neutron-star matter (N*M), the matter constituting
the homogeneous core of neutron stars, as an electrically
neutral β-equilibrated mixture of neutrons, protons, electrons,
and negative muons (muons were neglected in our article on
mass model HFB-18 [4]). Other particles, such as hyperons and
quarks, may appear toward the center of the star, but we neglect
them here, since the many uncertainties associated with them
would serve only to obscure the points that we want to make.

A. Equation of state and composition

Figure 13 shows the zero-temperature EOS of N*M for
each of our three new forces (the EOS for the older force,
BSk18, is quite similar to that of BSk19). In each case we have,

as mentioned earlier, checked that N*M remains unpolarized
over the whole density range. In Fig. 14 we see as a function
of density the fraction Yp of nucleons that are protons, while
Fig. 15 shows the fraction Xµ of leptons that are muons (the
number of leptons per nucleon is just Yp).

Comparing Figs. 1 with 13, we see that although the EOS of
N*M might be considerably softer than the corresponding EOS
of NeuM, there is still a correlation between the two systems
in the sense that the stiffer the EOS of NeuM, the stiffer the
EOS of N*M. Likewise, comparison of Figs. 9 with 14 shows
that the symmetry energy e(2)

sym is strongly correlated with the
protonic fraction Yp, as is well known (see, for example,
Sec. 5.11.2 of Ref. [73]). It is particularly to be noted that
even though the EOS of BSk19 is “supersoft,” in the sense that

FIG. 13. (Color online) EOSs of neutron-star matter for forces
BSk19–BSk21.
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FIG. 14. (Color online) Proton fraction Yp in neutron-star matter
for forces BSk19–BSk21.

the symmetry energy turns negative at densities encountered
in neutron-star cores, it will still support a stable neutron star
(contrary to the suggestion of Ref. [74]), since, as seen in
Fig. 13, the energy per nucleon increases monotonically with
density, i.e., the pressure is always positive. Indeed, precisely
because the EOS is “supersoft,” N*M becomes, for BSk19,
pure NeuM at higher densities, and the symmetry energy plays
no direct role.

The value of Yp found at any given density in a neutron
star is of considerable interest, since if, but only if, it exceeds
≈11–15% a direct Urca process of neutrino cooling [75] will
be possible. Inspection of Fig. 14 tells us that with BSk19 a
direct Urca process will be quite impossible, with BSk20 it will
be unlikely, while it will certainly occur for BSk21. We recall
that the one available experimental result on the high-density
behavior of the symmetry energy tends to favor the BSk19
force, thereby casting doubt on the possibility of a direct
Urca process. On the other hand, the low luminosity from the
pulsar in CTA 1 and from several young supernova remnants
likely to contain a still unobserved neutron star [76,77] might
be an indication that a direct Urca process was actually
occurring [78,79]. Evidently, an enormous amount of work,
both theoretical and experimental, remains to be done on
the question of symmetry energy at the high densities found
toward the center of neutron stars. In the meantime, a clear
demonstration that a direct Urca process was or was not
contributing to neutron-star cooling would serve as a most
valuable signpost to nuclear physicists.

FIG. 15. (Color online) Number of muons per proton in neutron-
star matter for forces BSk19–BSk21.

B. Causality

A necessary condition for the validity of our forces is that
the speed of sound vs in N*M must not exceed the speed of
light c at the densities encountered in neutron stars. We have
therefore calculated the density ρc above which this condition
is violated. The velocity of sound is given by (see Sec. 5.13.3
of Ref. [73])

vs

c
=

√(
dP

dE

)
fr

=
√

γfrP

E + P
, (26)

in which P is the pressure, E is the total energy density
(including the rest-mass energy), and γfr is the adiabatic index,
defined by

γfr = ρ

P

(
dP

dρ

)
fr

; (27)

the subscript “fr” is to indicate that the derivatives have to
evaluated with the composition frozen. The value of ρc for
the different forces are given in Table IV. Even though the
contribution of electrons and muons to the EOS is rather small,
it was included in vs , treating them as relativistic Fermi gases.
As can be seen from Fig. 13, the stiffer the EOS, the lower ρc

is: For comparison we have also shown in Table IV the critical
density ρc in pure NeuM. For force BSk19 the critical densities
in NeuM and in N*M are the same because at high densities
N*M consists of neutrons only. On the other hand, for BSk21
N*M contains a sizable amount of proton-lepton pairs, their
effect on the EOS and vs being to significantly increase ρc.
For all our forces the relatively low values of ρc(N*M) that
we find may lead to a violation of causality in heavier neutron
stars, but in this respect we are limited by the corresponding
violation that occurs in the realistic EOSs of NeuM to which
we have fitted our forces.

VI. CONCLUSIONS

This article describes the latest effort in our long-standing
quest for effective forces (Skyrme plus contact pairing)
that will lead to high-precision mass models, while at the
same time respecting the physical constraints appropriate to
the neutron-rich environments found in neutron stars and
supernova cores. Specifically, we present here a family of three
generalized Skyrme forces, each of which, when taken with
the appropriate pairing force, leads to a mass model that fits
essentially all the mass data [2] with an rms deviation of about
0.58 MeV. However, although these models give very similar
extrapolations out to the neutron drip line, the corresponding
Skyrme forces are distinguished by the very different way
in which the symmetry energy of each varies at the high
densities found in the core of neutron stars, ranging from the
supersoft (i.e., negative symmetry energy) to the very stiff.
This degree of flexibility, maintaining a high-quality mass fit
with very different neutron-matter constraints, has been made
possible only through the introduction of the t4 and t5 terms,
i.e., density-dependent generalizations of the usual t1 and t2
terms, respectively. Despite these differences, each of these
Skyrme forces finds theoretical support in the sense of having
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been fitted to one realistic many-body calculation or another
of neutron matter. Moreover, the neutron matter corresponding
to each of these forces is stable against unphysical transitions,
such as a ferromagnetic flip. Finally, in symmetric nuclear
matter the distribution of potential energy among the different
spin-isospin channels is in qualitative accord with realistic
many-body calculations.

We claim now that with the forces presented here, along
with their respective mass models, it has become possible for
the first time to adopt a unified treatment at the level of effective
forces of all the nuclear properties of the highly neutron-rich
systems of astrophysical interest. Thus by constraining the
forces to fit not only all the available mass data but also
the EOS of neutron matter our HFB mass models may be
expected to provide the most reliable estimates of the masses
of the experimentally inaccessible highly neutron-rich nuclei
that appear in the outer crust of neutron stars and that are
involved in the r process (note that the predictions of our three
forces for neutron matter begin to diverge from each other
only at densities of about 2ρ0). Moreover, since our forces,
having been fitted not only to neutron matter but also to nuclear
masses, take account of both inhomogeneities and the presence
of protons they can be used with confidence to calculate the
EOS of the inner crust of neutron stars. Indeed, since our forces
do not lead to any unphysical instability in neutron matter they
can likewise be used for the study of the core of neutron
stars, whence a unified treatment of the whole star becomes
possible.

Of course, the three different Skyrme forces will make quite
different predictions for the properties of the core (and thus
for global properties such as the mass-radius relationship), but
this simply reflects our present ignorance of the properties of
neutron matter at high density. But even if many-body theory
could be developed to the point where the EOS of neutron
matter could be tied down unambiguously, there would still be
uncertainties associated with the possible presence of hyperons
and other exotica. Thus we believe that the ultimate discrim-
ination among our different forces will come either from
experiment or observation of neutron stars. (As for experiment,
we stress that measurement must relate to high densities: we
cannot draw conclusions about the high-density behavior from
low-density quantities such as the symmetry-compressibility
coefficients Ksym or Kτ , even if measured with sufficient
precision.) But whichever of our three forces is ultimately
favored, we have shown here that the Skyrme form of effective
interaction is flexible enough to permit a description of the
nuclear physics of the entire neutron star with a unique set of
parameters.

We also want to be able to apply the same Skyrme force to
the calculation of nuclear quantities relevant to the r process.
In addition to masses, such quantities include β strength
functions, fission barriers, and level densities. In connection
with the first of these quantities an outstanding difficulty with
all our previously published HFB models has been that of
obtaining a reasonable value for the Landau parameter G′

0;
for the first time we can claim that with our forces BSk19–
BSk21 we have resolved this problem. Previous articles have
already dealt successfully with fission barriers [15] and level
densities [80,81].
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APPENDIX A: MICROSCOPIC CALCULATION
OF COLLECTIVE QUADRUPOLE ENERGY

Systematic calculations of the collective quadrupole energy
have recently been performed on the basis of the D1M Gogny
interaction by solving the collective Schrödinger equation with
the five-dimensional collective Hamiltonian [26]. The five
collective quadrupole coordinates correspond to the rotation,
the quadrupole vibration, and the coupling between these

FIG. 16. (Color online) (Upper panel) Comparison between the
D1M quadrupole correction energy (crosses) [26] and the HFB-20
collective energy (circles) as a function of N for the 1770 even-
even nuclei with Z, N > 8 and Z � 110. (Lower panel) Differences
between the D1M quadrupole correction energy and the HFB-19
collective energy.
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collective modes; it includes axial as well as triaxial
quadrupole deformations. The corresponding quadrupole cor-
rection energy obtained with the D1M force is compared in
Fig. 16 with the collective correction energy (6) for the 1770
even-even nuclei with Z,N > 8 and Z � 110. Globally, our
simple approximation is seen to be in relatively good agree-
ment with the D1M quadrupole energies, so we can be confi-
dent that most of the quadrupole effects are indeed explicitly
treated and not taken at the level of the mean-field calculation
(hence not absorbed into the effective force). Some systematic
deviations between both approaches can be observed in the
lower panel of Fig. 16. Interestingly these differences are cor-
related to those found between experimental and D1M masses
(see in particular Fig. 1 of Ref. [26]) for N > 60 nuclei, so
midshell correlations, in particular around N � 100 and 150,
may in fact be underestimated by the collective Hamiltonian
model.

APPENDIX B: LANDAU PARAMETERS
IN NEUTRON MATTER

The expressions of the Landau parameters for symmetric
nuclear matter associated with generalized Skyrme forces (2)
were given in Ref. [4]. Here we provide the expressions of
the Landau parameters in pure neutron matter, using the same

notations.

F NeuM
0 = N

[
2C

ρ

0 + 2C
ρ

1 + 2k2
F

(
Cτ

0 + Cτ
1

)

+ 4ρ

(
dC

ρ

0

dρ
+ dC

ρ

1

dρ

)
+ ρ2

(
d2C

ρ

0

dρ2
+ d2C

ρ

1

dρ2

)

+ ρτ

(
d2Cτ

0

dρ2
+ d2Cτ

1

dρ2

)
+

(
dCτ

0

dρ
+ dCτ

1

dρ

)

× (
2τ + 2ρk2

F

)]
, (B1a)

F NeuM
1 = −2N

(
Cτ

0 + Cτ
1

)
k2
F , (B1b)

GNeuM
0 = 2N

[
Cs

0 + Cs
1 + k2

F

(
CT

0 + CT
1

)]
, (B1c)

and

GNeuM
1 = −2Nk2

F

(
CT

0 + CT
1

)
, (B1d)

where N is the density of s.p. states at the Fermi level

N = M∗
nkF

h̄2π2
, (B2)

kF = (3π2ρ)1/3 and M∗
n is the neutron effective mass given by

Mn

M∗
n

= 1 + 2Mn

h̄2

(
Cτ

0 + Cτ
1

)
ρ. (B3)
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