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Modeling hybrid stars with an SU(3) nonlinear σ model
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We study the behavior of hybrid stars by using an extended hadronic and quark SU(3) nonlinear sigma model.
The degrees of freedom change naturally, in this model, from hadrons to quarks as the density/temperature
increases. At zero temperature, we reproduce massive neutron stars, which contain cores of hybrid matter of
2 km for the nonrotating case and 1.18 and 0.87 km, in the equatorial and polar directions, respectively, for stars
that rotate at the Kepler frequency (physical cases lie in between). The cooling of such stars is also analyzed.

DOI: 10.1103/PhysRevC.82.035803 PACS number(s): 26.60.Dd, 11.30.Rd, 21.65.Qr, 97.60.Jd

I. INTRODUCTION

As the densest bodies in the universe, neutron stars are one
of the best-suited candidates in which to look for quark matter.
The study of when and how the deconfinement from hadronic
to quark matter occurs is crucial for the understanding and
identification of such phenomena. Usual approaches for hybrid
neutron stars consist of two different models with separate
equations of state for hadronic and quark phases (see, e.g.,
Ref. [1]), connected at the point for which the pressure of
the quark phase exceeds that of the hadronic one. Within our
approach, we employ a single model for the hadronic and quark
phases, which avoids the need for two separate equations of
state. This approach, which presents a more natural transition
from hadronic to quark matter, allows us to follow the spin
evolution of a hybrid star with a single equation of state. In
this paper, we will investigate the structural changes that follow
the stellar spin down and the subsequent effects on the cooling
of the object.

The SU(3) nonlinear σ model introduces baryons and
quarks as flavor-SU(3) multiplets. Baryons and quarks obtain
their masses through their coupling to the scalar fields of
the theory (with an additional coupling to the Polyakov loop
as discussed in the following) via spontaneous symmetry
breaking. We include the quark degrees of freedom in the
hadronic model in analogy to the Polyakov-loop extended
Nambu-Jona-Lasinio (PNJL) model [2] by using an effective
field that can be related to the QCD Polyakov loop, defined via
� = 1

3 Tr [exp (i
∫

dτ A4)], where A4 = iA0 is the temporal
component of the SU(3) gauge field. The effect of the field is
to suppress quarks in the low-density/temperature regime and
baryons at high densities and temperatures, respectively.
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This paper is divided as follows: in Sec. II, we review the
properties of the model used for the composition and equation
of state; in Sec. III, we present our results, which encompass
the structure of rotating and spherically symmetric compact
stars and cooling effects; and in Sec. IV, our conclusions are
presented.

II. THE MODEL

The Lagrangian density for the σ -type model, in mean-field
approximation, is given by

L = LKin + LInt + LSelf + LSB − U, (1)

where, in addition to the kinetic-energy term for hadrons,
quarks, and leptons, the terms,

LInt = −
∑

i

ψ̄i[γ0(giωω + giφφ + giρτ3ρ) + M∗
i ]ψi, (2)

LSelf = −1

2

(
m2

ωω2 + m2
ρρ

2 + m2
φφ2

)

+ g4

(
ω4 + φ4

4
+ 3ω2φ2 + 4ω3φ√

2
+ 2ωφ3

√
2

)

+ k0(σ 2 + ζ 2 + δ2) + k1(σ 2 + ζ 2 + δ2)2

+ k2

(
σ 4

2
+ δ4

2
+ 3σ 2δ2 + ζ 4

)
+ k3(σ 2 − δ2)ζ

+ k4 ln
(σ 2 − δ2)ζ

σ 2
0 ζ0

, (3)

LSB = m2
πfπσ +

(√
2m2

kfk − 1√
2
m2

πfπ

)
ζ (4)

represent the baryon (and quark) meson interactions, meson
self-interactions, and an explicit chiral symmetry-breaking
term that is responsible for producing the masses of the
pseudoscalar mesons. We will discuss the potential U further
along in this paper. The model has an SU(3)-flavor symmetry,
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FIG. 1. (Color online) Effective normalized mass of different
species as a function of baryonic chemical potential for star matter at
zero temperature [3].

and the index i denotes the baryon octet and the three
light quarks. In our calculations, we take the following
mesons: the vector isoscalars ω and φ, the vector isovector
ρ, the scalar isoscalars σ and ζ (nonstrange and strange
quark-antiquark states, respectively), and the scalar isovector
δ into account. The coupling constants of the model can
be found in Ref. [3]. They were fitted to reproduce the
vacuum masses of the baryons and mesons, nuclear satura-
tion properties (density ρ0 = 0.15 fm−3, binding energy per
nucleon B/A = −16.00 MeV, nucleon effective mass M∗

N =
0.67 MN , and compressibility K = 297.32 MeV ), asymmetry
energy (Esym = 32.50 MeV ), and reasonable values for the
hyperon potentials (U� = −28.00 MeV , U = 5.35 MeV ,
and U� = −18.36 MeV ). The vacuum expectation values
of the scalar mesons are constrained by reproducing the
pion- and kaon-decay constants. A detailed discussion of
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FIG. 2. (Color online) Mass-radius diagram for the model inves-
tigated in this paper. The horizontal lines represent observed pulsar
masses (Refs. [11–17] and references therein). The band delimited by
the two thick horizontal lines (orange) represent the range of pulsar
masses observed, which account for the error of the highest and lowest
observed masses. c.n., charge neutrality.
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FIG. 3. (Color online) Population (baryonic density for different
species as a function of baryonic chemical potential) for star matter
at zero temperature by using global c.n. [3].

the purely hadronic part of the Lagrangian can be found in
Refs. [4–6].

The effective masses of the baryons and quarks are
given by

M∗
B = gBσσ + gBδτ3δ + gBζ ζ + M0B

+ gB��2, (5)

M∗
q = gqσ σ + gqδτ3δ + gqζ ζ + M0q

+ gq�(1 − �), (6)

where M0 is equal to 150 MeV for nucleons, 354 MeV for
hyperons, 5 MeV for up and down quarks, and 150 MeV for
strange quarks.

Equations (5) and (6) show that, as the field � increases
(with the increase in density/temperature), baryons are sup-
pressed, which gives way to the quark phase, effectively to
model the QCD deconfinement phase transition. The opposite
is true for low values of � (at low density/temperature).

The effective normalized masses of baryons and quarks are
shown in Fig. 1. Since the coupling constants in the � term of
the effective mass formulas are high but still finite, the effective
masses of the species not present in each phase are large but
also finite.
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FIG. 4. (Color online) Equation of state (pressure as a function
of energy density) for star matter at zero temperature by using local
and global c.n. [3].
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FIG. 5. (Color online) Gravitational mass as a function of central
density. The lowermost sequences represent static stars (� = 0 Hz),
whereas the highermost sequence represents stars that rotate at their
Kepler frequency. The curves that connect the Kepler frequency
to the static sequence are for stars with constant baryonic mass.
These sequences represent the evolution of Kepler frequency stars to
nonrotating objects.

In analogy to the PNJL model, we define the potential U

for � as

U = (a0T
4 + a1µ

4 + a2T
2µ2)�2

+ a3T
4

0 log (1 − 6�2 + 8�3 − 3�4). (7)

In our case, U (�) is a simplified version of the potential
used in Refs. [7,8] and adapted to include terms that depend
on the chemical potential. These two extra terms are not
unique but are the most simple natural choice for extending
the potential. The corresponding parameters are chosen to
reproduce the main features of the phase diagram at finite
densities. The coupling constants for the quarks can be found
in Ref. [3] and are chosen to reproduce lattice data as well as
known information about the phase diagram. The lattice data
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FIG. 6. (Color online) Gravitational mass as a function of
frequency for the stars of Fig. 5. The stars from the static sequence
are on the y axis of the graph.

0 100 200 300 400 500 600 700 800 900 1000
Ω (Hz)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Z
f

M
0
/M  = 1.4

M
0
/M  = 1.6

M
0
/M  = 1.8

M
0
/M  = 2.0

M
0
/M  = 2.2

FIG. 7. (Color online) Forward redshift for the constant baryon
mass sequences of Fig. 5. The dotted lines represent the redshift of
the equivalent sequence for purely hadronic matter, which are almost
identical to that of hybrid stars.

include a first-order phase transition at T = 270 MeV and a
pressure function P (T ) similar to Refs. [7,8] at µ = 0 for pure
gauge (for the quenched case without hadrons and quarks).

III. RESULTS

A. Deconfinement to quark matter

In our model, the quarks are suppressed in the hadronic
phase, and the hadrons are suppressed in the quark phase up
to µB = 1700 MeV for T = 0. This behavior is caused by the
fact that the coupling constants in the � term of the effective
mass formulas are high but still finite, so, in principle, at
very high chemical potential, the threshold for hadrons can
be reached a second time. This threshold, which is higher
than the density in the center of the neutron stars, establishes
a limit for the applicability of the model. The hyperons,
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FIG. 8. (Color online) Moment of inertia for the constant baryon
mass sequences of Fig. 5. During the spin down, the geometry of the
objects changes significantly; and, therefore, the moment of inertia
for these stars is substantially modified.
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FIG. 9. (Color online) Strangeness content for a compact star with M0/M� = 2.18 for frequencies of (a) 988.4 Hz, (b) 746.0 Hz,
(c) 356.3 Hz, and (d) 0.0 Hz. The z axis represents the relative population of � (ρ�/ρb).

despite being included in the calculation, are suppressed by
the appearance of the quark phase. Only a very small amount
of �’s appears immediately before the phase transition. The
strange quarks appear after the other quarks with relatively low
abundance. The density of electrons and muons is significant
in the hadronic phase but not in the quark phase, since the down
and strange quarks are negatively charged, which reduces the
need for leptons to maintain c.n.

By focusing on the high-density/low-temperature region of
the phase diagram, we are able to calculate neutron star masses
and radii, which are solutions of the Tolman-Oppenheimer-
Volkoff equations [9,10]. The solutions for hadronic (same
model but without quarks) and hybrid stars are shown in Fig. 2,
where, in addition to our equation of state for the core, a sepa-
rate equation of state was used for the crust [18]. The horizontal
lines in Fig. 2 represent observed masses of some prominent
millisecond pulsars (Refs. [11–17] and references therein). To
avoid cluttering the graph, we only indicated the names of the
pulsars that establish the lowest and highest observed masses:
J0751 + 1807 with mass M/M� = 1.26 ± 0.14 [15] and
J0437 − 4715 with M/M� = 1.76 ± 0.2 [11,14], respectively.
Any plausible equation of state must be able to produce
neutron stars within the range delimited by these two objects,

as is the case for the model investigated in this paper. Our
model predicts a maximum neutron star mass of 2.1 M�
by considering local charge neutrality, which, as shown in
Fig. 2, is in agreement with the observational constraints
shown. By comparing to the hadronic star sequence, the hybrid
sequence has a much sharper peak. This peak (which denotes
the most massive stable star in the sequence) signals the phase
transition into quark matter at the core of the star. Because
the equation of state for quark matter is much softer than the
one for hadronic matter, the star becomes unstable at the point
where the central density is higher than the phase-transition
threshold.

There is still another possible option for the configuration
of the particles in the neutron star [19]. If, instead of local, we
consider global c.n., we find a mixture of phases even for zero
temperature as discussed in Ref. [20]. This possibility, which
is a more realistic approach, changes the particle densities in
the coexistence region by making them appear and vanish in a
smoother way (Fig. 3). Therefore, the maximum mass allowed
for the star is slightly lower in this case than in the previous
one, as can be seen from the dotted line in Fig. 2; however,
this possibility allows stable hybrid stars with a small amount
of quarks. The mixed phase constitutes the inner core of the
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FIG. 10. (Color online) Strangeness content for a compact star with M0/M� = 2.38 in the pure hadronic model. The frequencies are
(a) 828.3 Hz, (b) 639.9 Hz, (c) 394.8 Hz, and (d) 0.0 Hz. The z axis represents the relative population of � and − [(ρ� + ρ−/ρb)].

star up to a radius of approximately 2 km. The equation of
state for both cases is shown in Fig. 4. The large jump in the
pressure for the local c.n. case explains why the neutron stars
become immediately unstable after the phase transition in this
configuration.

B. Rotational effects

The results shown in Fig. 2 are for static neutron stars
without including rotational effects. The rotational nature
of pulsars (which, in some cases, may be rotating with
frequencies as high as 700 Hz) warrants the investigation
of the structure of rapidly rotating neutron stars, which is
considerably more complicated than that of static objects.
In Refs. [6,21], the rotational effects of the hadronic part
of our model were investigated by means of the improved
Hartle-Thorne perturbative method [22]. Here, we will extend
this research by performing exact rotational calculations and
by including the quark phase described in Secs. II and III A.
The numerical method used for the solution of Einstein’s
field equations, and for the stellar structure of rapidly rotating
neutron stars is based on the Komatsu, Eriguchi, and Hachisu
method [23], which basically consists of expanding the

metric functions in terms of Green’s functions, which can be
iteratively integrated, which allows us to calculate the structure
of the star. This method has been expanded by several authors,
and details can be found in Refs. [24,25].

In Fig. 5, we show the mass as a function of central density.
The lowermost sequence represents static stars (� = 0 Hz),
whereas the highest one represents stars that rotate at their
Kepler frequencies. The Kepler frequency, or mass shedding
frequency, is the maximum frequency at which a compact star
may rotate. When rotating above this frequency, an object
would shed mass at its equator. Therefore, this quantity sets
an absolute limit for the frequency of compact stars. The
curves that connect the Kepler frequency to the static sequence
indicate stars with constant baryonic mass. These sequences
represent the evolution of Kepler frequency stars to nonrotating
objects. This is better illustrated in Fig. 6, which shows the
gravitational mass as a function of frequency for the constant
baryon mass stars. Figure 6 also shows that the gravitational
mass may be as high as 3% higher for a star that rotates at
the Kepler frequency (compared to a nonrotating star with the
same baryonic mass). The central density, on the other hand,
may be decreased by as much as 38%, as shown in Fig. 5. It
is important to stress that the constant baryon mass sequences
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shown in Figs. 5 and 6 represent the spin-down evolution of
an isolated compact star (i.e., no accretion, hence, the constant
baryon mass). Obviously, the spin-down evolution is a function
of time; therefore, the x axis of Fig. 6 could just as well be
replaced by time. How the frequency (or, equivalently, the
central density) varies with time will depend on the spin-down
rate of the star. The computation of this quantity is not trivial
and depends on properties, such as magnetic field and/or
gravitational radiation emission. Those issues are beyond the
scope of the current paper; and, therefore, we show our results
as a function of frequency and central density by always
keeping the implicit time dependence in mind.

As shown in Figs. 5 and 6, when rotating at their Kepler
frequencies, neutron stars can attain higher masses. Loosely
speaking, this may be explained by the centrifugal force
that provides an extra support against gravitational collapse.
Although we can find stable rotating neutron stars with masses
up to ∼2.5 solar masses, these objects will collapse into black
holes during spin-down evolution, which might be observed
by the sudden stop of the neutrino signal that originates from
the star. As shown in Fig. 5, there is no stable static neutron star
with a baryon mass greater than 2.18 solar masses predicted
by our model.

The rotation also alters the redshift of the stars significantly.
In Fig. 7, we show the forward redshift as a function of
frequency for the stars of constant baryon mass from Fig. 5. As
one can see, the forward redshift is substantially modified as
the star’s rotational frequency is reduced. In the extreme case
of high frequencies, the forward redshift becomes negative.
For comparison purposes, we also have plotted the redshift of
the equivalent stellar sequences with no quark phase (purely
hadronic matter). The redshift of these objects is almost
identical to those of hybrid stars, with a very slight deviation
for very high frequencies.

Just as the redshift is changed during the spin-down
evolution, the moment of inertia of the star should be modified
as well. The moment of inertia, as a function of frequency for
the stars shown in Fig. 5, is given in Fig. 8.

Another particular feature of the model investigated here is
the relatively low level of strangeness featured by the compact
stars. As shown in Fig. 3, the � states (the first strange particle
states to be populated) start to be occupied just before the onset
of quark matter, which triggers the unstable branch of compact
stars. Thus, the phase transition to quark matter suppresses
the presence of strangeness in the object in the local charge
neutrality case. Only for the densest objects do we find a small
region near the core with a low population of � states. The spin
down will also affect the strangeness of the object by increasing
the radius of strangeness content near the core as the object
spins down and becomes denser. This result is shown in Fig. 9
where the relative population (ρ�/ρb) for the � states is shown
for frequencies of (a) 988.4 Hz, (b) 746.0 Hz, (c) 356.3 Hz,
and (d) 0.0 Hz. This result represents the strangeness content
of the star, since no other particles that contain strangeness
are present. Figure 9 shows that, for higher frequencies (and,
thus, for lower densities), strangeness states are either absent
or are very lowly populated. As the object spins down and its
density increases, the strange core expands and becomes more
highly populated. For comparison purposes, in Fig. 10, we
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FIG. 11. (Color online) Cooling of a range of spherically symmet-
ric neutron stars from Fig. 2. The symbol T∞ denotes the redshifted
temperature as detected by an observer at an infinite distance from the
star. The onset of the DU process happens for neutron stars with 1.22
solar masses. Any star with a lower mass will have a slow cooling. For
masses above this value, an enhanced cooling is achieved. Also shown
are some prominently observed temperatures of neutron stars [33,34].
Squares denote that the age was estimated based on the spin-down
rate, and circles indicate age estimates based on the motion of the
pulsar with respect to its originating supernova remnant.

also show the strangeness content for a M0/M� = 2.38 star in
the pure hadronic model. In this case, since there is no phase
transition to quark matter, the stars are able to attain higher
masses (as can be seen in Fig. 2). Furthermore, the hyperons
are not suppressed by the onset of the quark phase, and these
stars attain a higher strangeness content. As shown in Fig. 10,
the � fraction at the core of the nonrotating star is 3.4 times
higher than that found at the core of the densest (stable) hybrid
star. Once more, we recall that the different frequencies shown
in Figs. 9 and 10 represent different stages of time along the
spin evolution of the star, with the time scale that depends on
the spin-down rate of the object.

C. Cooling process

Another method for probing the inner core of compact
stars is by investigating its thermal evolution. All the thermal
processes, which take place in a compact star, strongly depend
on its composition; therefore, by comparing theoretical pre-
dictions with observed thermal data, one can obtain valuable
information about the cores of neutron stars.

The thermal evolution of neutron stars is dominated by
neutrino emissions for the first 1000 years (maybe more in the
slow-cooling scenario) [26] and later is replaced by photon
emission from the surface. The direct Urca (DU) process [27]
is the most efficient cooling mechanism in a neutron star. With
emissivities on the order of 1026 erg cm3 s−1 [27], neutron stars
in which the DU process takes place will cool very quickly.
However, because of momentum conservation, the DU process
can only take place when the proton fraction reaches a certain
value (which depends on the underlying equation of state, but
it is usually between 11%–15%). Compact stars, whose proton
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FIG. 12. (Color online) DU threshold for a compact star with M0/M� = 1.6, for frequencies of (a) 792.4 Hz, (b) 656.8 Hz, (c) 496.5 Hz,
and (d) 0.0 Hz. The gray-shaded areas denote the region in which the DU process is allowed to take place (denoted by z = 1).

fractions are below this threshold, will feature a slower cooling.
Other processes, such as pairing and meson condensates, for
example, might have an influence on whether or not a neutron
star will feature a fast or a slow cooling. These topics are
beyond the scope of the current research and will be pursued
in future investigations.

We solve the thermal evolution equations [28] for the spher-
ically symmetric stars shown in Fig. 2. The emission processes
considered for the core are the DU process [27], the modified
Urca process [29], and the bremsstrahlung process [29,30];
as for the crust, we consider the electron bremsstrahlung
process [31], the electron-positron annihilation [32], and the
plasmon decay [32]. The results are shown in Fig. 11 where
we show the cooling curves for neutron stars with different
gravitational masses. The symbol T∞ denotes the redshifted
temperature as detected by an observer at an infinite distance
from the star.

We have also plotted some prominently observed temper-
atures of neutron stars [33,34]. Since there are two estimates
for the age of pulsars, we have plotted two sets of observed
data. The first set is for objects whose age estimate is based on
the observed spin-down rate; these are represented by squares.
The second set is for ages obtained by tracking the pulsar back

to its original supernova remnant (kinematic age, represented
by circles).

As shown in Fig. 11, our model is in relatively good
agreement with the observed data, with the exception of
a few high-temperature pulsars. It is possible that these
objects feature nonstandard processes, such as pairing or
some reheating mechanism, which would explain their high
temperature. The shaded area represents all possible cooling
curves for our model, which can be obtained by solving the
cooling equations for the whole spectrum of stable hybrid stars
shown in Fig. 2. We can also see that, within our model, neutron
stars with masses higher than 1.22 solar masses, which feature
an enhanced cooling, cool down too fast to be in agreement
with observed data. It is important to mention that these results
can be further improved if one considers more sophisticated
processes, such as pairing and meson condensation.

Finally, we have also investigated how spin-down effects
might affect the thermal evolution. As shown in Fig. 9, the
increase in density that follows spin down has a strong effect
on the strangeness content of the star. It is only natural to
expect that other particle states will also be altered by the
spin down. Particularly interesting is the proton, electron,
and neutron populations, since these particle populations will
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FIG. 13. (Color online) �(M) diagram. Any star with mass and
frequency that falls within the dark-gray-shaded area allows for the
DU process to take place. The light-gray-shaded area, on the top of the
diagram, represents a forbidden region, where no stars can be found,
since their frequencies would be above their Kepler frequencies.
Finally, the white area represents stars in which the DU process
cannot take place.

dictate whether or not the DU process will take place. This
process can only take place if the following triangle inequality
(and cyclic permutations of it) are satisfied

kf
n + kf

p � kf
e , (8)

with k
f

i as the Fermi momentum of particle i. We calculated the
radius threshold for different frequency stars from the sequence
with M0/M� = 1.6. This result is shown in Fig. 12, where
the gray-shaded areas represent the region in which the DU
process is allowed to take place.

The results of Fig. 12 show that the region in which the DU
process takes place changes substantially during the evolution
of the compact star. For the case studied, for higher frequencies
(where the density is lower), the DU process can only take
place in a very small region near the core. This region grows as
the stellar frequency decreases and the object becomes denser.
This hints that the cooling of compact stars might be slower
if one considers effects of spin down. Current efforts are in
progress to better understand this issue and will be discussed
in a future paper.

Finally, we also have generated a diagram �(M) that shows
the domain of frequencies and mass for which the DU process
is allowed. This result is shown in Fig. 13, where any star with
mass and frequency that falls within the dark-gray-shaded area
allows for the DU process to take place. The light-gray-shaded
area, on the top of the diagram, represents a forbidden region,
where no stars can be found, since their frequencies would
be above their Kepler frequencies. The white area represents
stars in which the DU process cannot take place. Currently,
the spin of many x-ray burst sources is known, and in some
cases, their masses can also be inferred (see Refs. [35–37]
and references therein). In the case of transient neutron stars,
the core temperature can be inferred from the quiescent
emission state [38]. Furthermore, for some neutron stars, the
spin frequency and the core temperature are bound (see, for

instance, Ref. [39]). In the event that one might estimate the
core temperature, the spin frequency, and the stellar mass, the
diagram shown in Fig. 13 might be used as a further test for
this model.

IV. CONCLUSION

A major advantage of our paper, when compared to other
studies of hybrid stars, is that, because we have only one
equation of state for different degrees of freedom, we can study,
in detail, the way in which chiral symmetry is restored and
the way deconfinement occurs in the stars. Such phenomena
happen, for example, during the star spin down.

We have found that the SU(3) nonlinear σ model is suitable
for the description of hybrid stars. The predicted maximum
masses and the respective radii lie in the observed range. For
a static object, our model predicts a star that contains 2 km of
hybrid matter (radius) surrounded by hadronic matter. In the
event that the object is rotating at its Kepler frequency, the hy-
brid core becomes an oblate ellipsoid with equatorial and polar
radii of 1.18 and 0.87 km, respectively. The reduction of the
quark core for a rotating object should not be surprising if one
considers the reduction in density that follows rapid rotation.

Also, we have investigated the cooling of spherically sym-
metric (static) neutron stars, whose composition is described
by our model. We have found that the threshold for the DU
process is reached for stars with masses greater than 1.0 M�.
We have compared the cooling curves predicted by our model
with some prominently observed compact star temperatures.
We have found that, within our model, objects with masses up
to 1.22 M� are in good agreement with the observed data.
Any star with a mass above this value features a thermal
evolution that is too fast to be in agreement with the observed
data. This result might seem inconsistent with the observed
data, since most of these objects are expected to have a
mass higher than 1.22 M�. It is important to notice that the
results shown in Fig. 11 were obtained by assuming a froze-in
structure/composition. As noted in Ref. [38], many observed
accreting neutron stars are in agreement with the slow-cooling
scenario. The fact that they are accreting implies that their
structures are changing, as their frequencies are modified as
a result of the accretion process. As we showed in Fig. 12,
the threshold radius for the DU process strongly depends on
the frequency of the star. Therefore, the fast cooling for stars
with masses above 1.22 M� might be deceiving, since, if we
consider rotation, we might obtain stars with M0 = 1.6 M�
without presenting the DU process (if the frequency is high
enough). We could also see that a few observed objects present
a very high temperature, which cannot be explained by our
model. Most likely, there is some nontrivial heating process
that takes place in these objects, which would explain why they
are so warm at their relatively old ages; this topic, however, is
beyond the scope of this paper. It is important to mention that
the quarks found in the 2-km hybrid core have little effect on
the cooling of these objects. Not only is the hybrid core very
small, but also the quarks are present at a smaller ratio than
the hadrons, which allows the hadrons to dominate the cooling
processes. On the other hand, the suppression of hyperons
caused by the onset of the quark phase is important. Since
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the hyperons do not appear in great quantities, some cooling
channels (hyperon Urca processes, for instance) are not open.
These channels are not very efficient cooling mechanisms [40],
nonetheless, their absence slows down the cooling.
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