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Unstable hadrons in hot hadron gas: In the laboratory and in the early Universe
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We study kinetic master equations for chemical reactions involving the formation and the natural decay of
unstable particles in a thermal bath. We consider the decay channel of one into two particles and the inverse
process, fusion of two thermal particles into one. We present the master equations for the evolution of the
density of the unstable particles in the early Universe. We obtain the thermal invariant reaction rate using as
an input the free space (vacuum) decay time and show the medium quantum effects on π + π ↔ ρ reaction
relaxation time. As another laboratory example we describe the K + K ↔ φ process in thermal hadronic gas in
heavy-ion collisions. A particularly interesting application of our formalism is the π0 ↔ γ + γ process in the
early Universe. We also explore the physics of π± and µ± freeze-out in the Universe.
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I. OVERVIEW

A. Particles in the Universe for T > 5 MeV

This study began with the question: At what temperature in
the expanding early Universe does the reaction

π0 ↔ γ + γ (1)

“freeze” out, that is, the π0 decay overwhelms the production
rate and the yield falls away from chemical equilibrium yield.
Because the π0 life span (8.4 × 10−17 s) is rather short, one is
tempted to presume that the decay process [rightward arrow in
Eq. (1)] dominates. However, there must be a detailed balance
in the thermal bath: the production process (leftward arrow) in
a suitable environment must be able to form π0 with a strength
corresponding to the decay process life span.

We demonstrate here that the π0 production and equili-
bration relaxation time is of the same order of magnitude as
the life span of π0 in the post–quark-gluon-plasma (QGP)
hadronization Universe, T < 200 MeV. The point is that the
π0 life span is much shorter than the Universe expansion time
(inverse expansion rate) 1/H [2]:

H = Ṙ

R
= 1.66

√
g∗ T 2

mpl
, (2)

where g∗ is the number of degrees of freedom. mpl =
1.2211 × 1019 GeV is the Plank mass. Figure 1 compares
the π0 production-equilibration time [solid (blue) line] with
the Universe expansion time 1/H [dashed (green) line]. We
see that the π0 equilibration time is much shorter, by 14
orders of magnitude at T = 10 MeV, compared to the Universe
expansion time constant.

The reason for this is that in thermal equilibrium the
photon density remains high [dash-dotted (red) line in Fig. 2]
also for relatively small T . Thus there is a small, non-
negligible probability of finding high-energy photons capable
of producing π0, whose density at low T is very small [solid
(blue) line in Fig. 2]. The π0 production has enough time to
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equilibrate with the decay process. Therefore the π0 density
does not freeze out but decreases with decreasing ambient
temperature of the expanding Universe, all the time remaining
in chemical equilibrium with the photon abundance.

Let us recall how the Bose distribution describes π0 density:

n
eq
π0 =

∫
d3p

(2π )3

1

eu·p/kT − 1
. (3)

Here uµ is the four-velocity of the observer with reference to
the heat-bath rest frame, and pµ is the momentum four-vector,

pµ =
(

E

c
, �p

)
, E =

√
�p 2 + m2, (4)

of the particle considered: a similar expression applies for
photons, which have twofold spin degeneracy, and m → 0.
The resulting π0 density falls exponentially when kT <

mπ0c2 (henceforth units are chosen such that h̄ = c = k = 1).
However, this density remains high compared to the nucleon’s
density in the Universe (dotted (black) line in Fig. 2; taken
from Ref. [4]), down to a temperature of about 6 MeV.
This is the lower T limit of validity in our present study,
as we consider particle production reactions in a particle-
antiparticle-symmetric Universe.

Some of the results we derive here were presented in [3]
without a derivation: there we considered a laboratory e+e−γ

plasma and postponed the theoretical and analytical details.
Here we evaluate the reaction relaxation time for reactions
involving two particles fusing into one particle and/or particle
decay into two, Eq. (1), and relate this to the life span of
decaying particles in vacuum. To complement this, in Sec. IV C
we also consider π±, which can be equilibrated by the reaction

π0 + π0 ↔ π+ + π− (5)

and, also, by reactions involving muons,

π± ↔ µ± + νµ(ν̄µ). (6)

We also consider how rapidly muons are produced in the
reactions

γ + γ ↔ µ+ + µ−, e+ + e− ↔ µ+ + µ− (7)
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FIG. 1. (Color online) π 0 equilibration time [solid (blue) line]
and Universe expansion time 1/H as functions of temperature
[dashed (green) line].

and show that these particles also do not freeze out down to
a T value of a few mega–electron volts [3]. The muon density
is slightly higher than that pions because of their smaller
mass; see the dashed (green) line in Fig. 2. Another reaction
that may influence muon chemical equilibration is the decay
of one particle to three particles and the reverse reaction,
including neutrinos:

µ± ↔ e± + νe(ν̄e) + ν̄µ(νµ). (8)

However, in this case the exact influence of medium effects on
the reaction rate is more complicated and we do not consider
this reaction in complete detail here. We do, however, compare
the relaxation times of particle production in all mentioned
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FIG. 2. (Color online) Thermal equilibrium density as a function
of temperature for γ [dash-dotted (red) line], π 0 [solid (blue) line],
µ± pair [dashed (green) line], and nucleons p + n [dotted (black)
line] [4].

reactions with the Universe expansion rate to see if the particle
densities stay in chemical equilibrium.

B. Degrees of freedom in the Universe

The life spans of all unstable hadrons and leptons, except
for neutrons n, are much shorter than the Universe expansion
rate for 5 < T < 200 MeV. Here we show that, as a result,
all unstable particles stay in chemical equilibrium, including
neutrons which are effectively stable on the time scale of
expansion. The importance of this remark is that we can
evaluate the active effective degeneracy (degrees of freedom)
in the Universe in the entire temperature domain including
all unstable hadron states. In the hadron phase we define
the effective degeneracy using as reference the Stephan-
Boltzmann law,

gE(T ) = ε

σT 4
, σ = π2

30
, (9)

where ε is the energy density,

ε =
∫ ∑

i

giEifi(p) d3p, Ei =
√

m2
i + �p 2, (10)

with the sum over all particles present.
In Fig. 3 we show the degeneracy, Eq. (9), as a function of

T . The dashed (red) line accounts for the photon, three families
of neutrino and antineutrino, electron, positron, muon, and an-
timuon contributions. The dot-dashed (green) line adds pions;
the solid (blue) line, all hadrons. Pions begin to contribute
noticeably to degeneracy at T > 30 MeV. Among hadrons
we included all light and strange mesons and baryons, up to a
mass of about 1700 MeV. The finite density of p and n is also
included. As noted earlier, this is a more complicated case;
fortunately the finite baryon density contributes, at most,
just a few percent to gE near the hadronization temperature,
where the particle-antiparticle symmetry is good to 10 orders
of magnitude.

The boundary between quark-gluon and hadron phase
(vertical line) is near Th = 170 MeV. In Fig. 3 we also
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FIG. 3. (Color online) Effective degeneracy gE in the Universe
based on the energy density of hadrons and for QGP, as a function of
T . See text for more details.
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show degeneracy in QGP for T > 160 MeV (upper lines).
The results shown are based on our earlier detailed study
of QGP properties [8]. Here the QGP degeneracy is shown
for the extreme case of either strange quark ms = 90 MeV
[upper dashed (purple) line] or strange quark ms = 160 MeV
[upper solid (turquoise) line]. Because the expansion of the
Universe is relatively slow compared to the expansion of QGP
in the laboratory, heavy and strange quarks also have enough
time to reach chemical equilibrium density in the QGP
temperature range presented in Fig. 3.

Figure 3 shows that the effective degeneracy of hadrons,
while rising fast, is still smaller than the degeneracy in QGP
in the domain of phase transformation temperature near 160–
170 MeV. Many heavy hadron states may be missing from the
experimental tables. Even though their individual contribution
to the degeneracy is decreasing, their number is expected to
grow rapidly, in accordance with the Hagedorn hypothesis, in
which the hadron mass spectrum diverges exponentially near
the hadronization temperature. This theoretical exponentially
growing component leads to a smoother transition between
hadronic gas and QGP, as is qualitatively indicated in Fig. 3
[dotted (black) line].

C. Production and decay of unstable particles

We show here for the first time the detailed derivation of
relaxation time for reactions involving one to two particles in
the thermal medium, which we considered in Refs. [6–8]. In
the rest frame of the decaying particle m3, the reaction

A1 + B2 ↔ C3 (11)

requires that m1 + m2 � m3, which allows the spontaneous
decay process. This is easily seen considering

m2
3 = (p1 + p2)2

= (m1 + m2)2 + 2(E1E2 − m1m2 − �p1 · �p2)

� (m1 + m2)2. (12)

In the last inequality we used E2
1E

2
2 � (m1m2 + �p1 · �p2)2,

which can be reorganized to read (m1 �p2 − m2 �p1)2 � �p1 ·
�p2 − �p 2

1 �p 2
2 . This is always true, as the right-hand side is always

negative, or 0 if both vectors are parallel. The equality sign
corresponds to the case m1 + m2 = m3, where the reaction
rate vanishes by virtue of vanishing phase space. This textbook
exercise shows that the reaction Eq. (1) is possible when
condition Eq. (12) is satisfied.

The constraint Eq. (12) forbids many reactions. For ex-
ample, the hydrogen formation p + e → H is forbidden as,
for a bound state, mH < mp + me. Thus there must be a
second particle in the final state. The electron capture involves
either a radiative emission, p + e → H + γ , or a surface/third
atom, which picks the recoil momentum. The situation would
be different if there were “resonant” intermediate states of
relatively long life spans with energies above the ionization
threshold. Such “doorway” resonances are available in many
important physical processes.

It is natural to evaluate the rates of the processes of
interest, Eq. (11), in the rest frame of particle 3, boosting,
as appropriate, from or to the laboratory frame. To do this

effectively we need the master population equations in an
explicitly covariant fashion, which is discussed in Sec. II; see
Ref. [6]. The kinetic equation for time evolution of number N

of decaying particles 3 can be written as

1

V

dN3

dt
=

(
ϒ1ϒ2

ϒ3
− 1

)
dW3→12

dV dt
, (13)

where dW3→12/dV dt is the decay rate of particle 3 and ϒi

is the fugacity of particle i. Here the number density ni of
particle i in thermal (kinetic), but not necessarily in chemical,
equilibrium is given by

Ni

V
≡ ni = 1

(2π )3

∫
d3pifb/f (pi), (14)

fb/f (ϒi, pi) = 1

ϒ−1
i e(u·pi−µi )/T ∓ 1

. (15)

f is the covariant form of the usual Bose or Fermi distribution
function defined in the rest frame of the thermal bath and
describes the corresponding quantity in a general reference
frame where the thermal bath has the relative velocity defined
by uµ. In the rest frame of the thermal bath frame we
have

uµ → (1, �0). (16)

pi is the four-momentum vector of particle i:

p
µ

i = (Ei, �pi). (17)

µi is the chemical potential, which shows the asymmetry in
particle and antiparticle densities µi = −µ̄i . For reactions
considered here we have µi � 0. This was assumed in Eq. (13).
Note that the distribution function f is a Lorentz scalar but the
spatial density ni is not.

Particle C3 attains the chemical equilibrium when the
following condition among fugacities is satisfied:

ϒ1ϒ2 = ϒ3. (18)

This, as expected, is equivalent to the Gibbs condition for the
chemical equilibrium. In Sec. III we evaluate the invariant
rate using the vacuum decay time established in the rest
frame of the decaying particle, and we discuss the behavior of
the average decay rate of an unstable particle in the presence
of the thermal bath. In Sec. IV, we apply our formalism to two
examples.

(i) We study the formation and decay rate of the ρ meson
through π + π ↔ ρ in a baryon-free hot hadronic gas,
where mesons are considered in thermal and chemical
equilibrium.

(ii) We consider the reaction γ + γ ↔ π0 in the early
Universe and find that the expansion of the Universe is
slow compared to pion equilibration, which somewhat
surprisingly (for us) implies that π0 is at all times in
chemical equilibrium (but at sufficiently low tempera-
tures, e.g., 3–4 MeV, the local density of π0 is too low
to apply the methods of statistical physics).

(iii) We consider the reaction Eq. (6) as an example of the
decay of π± to fermions, and the reverse reaction,
and show that π± and µ± are also in chemical
equilibrium until their equilibrium density vanishes at
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low temperatures (about 3–4 MeV) because of the large
mass. Also, we discuss neutrino equilibration by way
of this reaction.

(iv) We study φ meson evolution considering the reaction
K + K ↔ φ in thermal hadronic gas in heavy-ion
collisions.

To conclude this overview we draw attention to the
fact that, unlike the one-to-two reaction, the two-to-two
reactions,

A1 + B2 ↔ C3 + D4, (19)

have been extensively studied in the past, in the context of
astrophysics and cosmology [1,2] and heavy-ion reactions
[5]. However, the simpler one-to-two situation has escaped
attention so far, and the adaptation of kinetic methods is
in detail not trivial, given the novel quantum and relativis-
tic effects involving particle decay. Aside from cosmology
implications, the insights gained in this study are clearly of
relevance to the general understanding of QGP and hadron gas
evolution in relativistic heavy-ion collisions. For example, our
present work allows to consider the chemical yields arising
in reactions such as ρ ↔ ππ , π0 ↔ γ γ , 	 ↔ Nπ , and
K + K ↔ φ [6,7].

II. KINETIC EQUATIONS FOR DECAYING PARTICLES

A. Decaying particle density evolution equation

Consider an unstable particle, say C3, which decays into
other two particles,

C3 → A1 + B2 (20)

in the vacuum. In a dense and high-temperature thermal
ambient phase, particles A1 and B2 are present, and the inverse
reaction,

A1 + B2 → C3, (21)

can occur, producing the particle we called C3. For now we
assume that the abundance of particle C3 changes solely by the
decay, Eq. (20), and (thermal) production, Eq. (21), reactions.
The time variation of the number of particles N3 then is
controlled by the master equation

1

V

dN3

dt
= dW12→3

dV dt
− dW3→12

dV dt
, (22)

where dW12→3/dV dt is the production rate per unit volume of
particle type C3 via Eq. (21) and dW3→12/dV dt is the decay
rate of particle type C3 per unit volume.

A very similar master equation controls the abundance of
particles A1 and B2:

1

V

dN1,2

dt
= dW3→12

dV dt
− dW12→3

dV dt
+ Rother, (23)

where the rate Rother is caused by other reactions influencing
the abundance of particles of types A1 and B2.

As an example, consider the reaction ρ ↔ ππ in dense
hot matter formed in heavy-ion collisions. Pions can be easily
created by inelastic collisions of other hadrons and thus we
have to deal with a multicomponent system involving Rother

when looking at π abundance, but to evaluate ρ abundance the
dominant terms are as in Eq. (22). We often can assume that
Rother dominates the yield gains and losses, and thus we can
use the thermal distribution for particles A1 and B2, which, in
the preceding example, are pions.

In the following, we thus assume that particles A1 and
B2 are in thermal equilibrium, and further, we assume that
the system is spatially homogeneous. In thermal equilibrium,
the dynamical information can be obtained from the single-
particle distribution function f (p) for each particle; see
Eq. (15). f is controlled by two parameters: the temperature T

and the fugacity ϒ . In this paper, we assume that the fugacity
ϒ changes over time by way of chemical reactions much
more rapidly than does the temperature T of the ambient
thermal bath, and thus we can consider reactions at a given
constant T . This assumption is certainly valid in the domain
of temperatures we consider and may fail only at the very
highest primordial T in the early Universe.

B. Decay and production rates

The thermal production rate dW12→3/dV dt and the decay
rate of particle 3 under the thermal background dW3→12/dV dt

can then be expressed using these distribution functions for
each of the particles involved in the reaction. According
to the boson or fermion nature of particle A1, we have to
consider different cases. If particle A1 is a boson, then there
are two cases of the decay and production mode, and if the
particle C3 is a fermion, it can only decay into a boson and a
fermion:

boson3 ←→ boson1 + boson2, (24)

boson3 ←→ fermion1 + fermion2, (25)

fermion3 ←→ boson1 + fermion2. (26)

Accordingly, the Lorentz invariant transition probability
per unit time and unit volume corresponding to the process,
Eq. (11), is

dW12→3

dV dt
= 1

1 + I

g1

(2π )3

∫
d3p1

2E1
fb,f (ϒ1, p1)

g2

(2π )3

×
∫

d3p2

2E2
fb,f (ϒ2, p2)

∫
d3p3

2E3(2π )3

× (2π )4δ4(p1 + p2 − p3)
1

g1g2

×
∑
spin

|〈p1p2|M|p3〉|2[1 ± fb,f (ϒ3, p3)], (27)

where I = 1 for the case of a reaction between two indistin-
guishable particles A1 and B2, and I = 0 if A1 and B2 are
distinguishable. The factor 1/(g1g2) and the summation are
caused by averaging over all initial (iso)spin state. The last
factor in Eq. (27) accounts for the enhancement or hindrance
of the final-state phase owing to the quantum statistical effect,
as introduced first by Uehling and Uhlenbeck [9]. The upper
sign, +, is for the case when particle C3 is a boson; the
lower sign, −, for that when it is a fermion. Equation (27)
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is manifestly Lorentz invariant and therefore it can be used in
any frame of reference.

This rate is related by a detailed balance relation [6] to the
particle C3 decay rate:

dW12→3

dV dt
ϒ3 = dW3→12

dV dt
ϒ1ϒ2. (28)

Therefore chemical equilibrium ϒ1ϒ2 = ϒ3 corresponds to
the condition of equal decay and production rates, as we
expected. Using Eq. (28), Eq. (22) can be written in the form
of Eq. (13).

Equation (13) can be further simplified by defining the
decay time in matter of particle i:

τi = dni/dϒi

R
, (29)

where rate

R = 1

ϒ3

dW3→12

dV dt
= 1

ϒ1ϒ2

dW12→3

dV dt
. (30)

We show in the next section that this definition has the right
vacuum limit and that the dynamical equations assume a
particularly simple form. However, the reader should observe
that other definitions could be considered.

It is convenient to introduce kinematic reaction times in
analogy to the dynamic expression, Eq. (29). Doing this we
cast Eq. (13) into the form of an equation for ϒ3,

ϒ̇3 = 1

τT

ϒ3 + 1

τS

ϒ3 + 1

τ3
(ϒ1ϒ2 − ϒ3), (31)

where we define the kinematic relaxation times related to the
evolution of temperature and entropy:

1

τT

≡ −T 3g∗ d(nπ/(ϒ3g
∗T 3))/dT

dnπ/dϒ3
Ṫ , (32)

1

τS

≡ − nπ/ϒ3

dnπ/dϒ3

d ln(g∗V T 3)

dT
Ṫ . (33)

We introduced the minus sign previously in order to have τT ,
τS > 0. Compared to our earlier definition [6], we now include
g∗ in τT and τS .

While in principle the values of τT and τS are unrelated, for
a given kinematic stage of system evolution the temperature
change can be related to entropy change. For example, for the
radiation-dominated epoch of the Universe we have

Ṫ

T
= − Ṙ

R
. (34)

In the radiation-dominated Universe the entropy conservation
further implies that

1

τS

→ 0. (35)

Freeze-out from chemical equilibrium arises for

τT ≈ τ3. (36)

When τT is smaller than τ3, that is, the kinematic term in
Eq. (31) is important, ϒ3 begins to increase, often rapidly,
as the number of particles 3 is preserved but their density
decreases owing to dilution in expansion. Because ϒ3 > 1

the multiplicity of particle 3 in the slow decay is dominant,
especially so when the particle 1 and 2 yields remain in
chemical equilibrium by the action of other processes. These
considerations can be of great importance in the study of
dark-matter particle abundance, where the life span against
decay and/or annihilation is comparable to the life span
of the Universe. We postpone further discussion to a more
appropriate opportunity.

III. EVALUATION OF THE INVARIANT DECAY
(PRODUCTION) RATE

A. General case

The vacuum decay width of particle C3 in its own rest frame
can be found in textbooks. In our notation,

1

τ0
= 1

2m3

1

1 + I

∫
d3p1

2E1(2π )3

∫
d3p2

2E2(2π )3
(2π )4

× δ4(p1 + p2 − p3)
1

g3

∑
spin

|〈p1p2|M|p3〉|2

= 1

2m3g3

1

4(I + 1)(2π )2

∫
d3p

E1E2
δ(E1 + E2 − m3)

×
∑
spin

|〈 �p,− �p|M|m3〉|2

= 1

8m2
3g3

p

(I + 1)π

∑
spin

|〈 �p,− �p|M|m3〉|2. (37)

Here p = p1 = p2 and E1,2 =√
p2+m2

1,2 are, respectively, the
magnitudes of the momentum and the energies of the two
particles A1 and B2 in the rest frame of particle C3:

E1,2 = m2
3 ± (

m2
1 − m2

2

)
2m3

,

(38)

�p 2 = m2
3

4
− m2

1 + m2
2

2
+

(
m2

1 − m2
2

)2

4m2
3

.

The magnitude of three-momentum | �p| is of course the
same for particles A1 and B2 in the rest frame of decaying
particle C3.

We denote by τ ′
3 the decay rate of particle C3 in the rest

frame of the thermal bath in which it is emerged, E3 and p3 are
the corresponding energy and the momentum of particle C3,
which changes with thermal velocity distribution. The thermal
decay reaction rate per unit volume dW3→1+2/dV dt is then
obtained by weighting 1/τ ′

3 with the probability to find the
particle at a given momentum and introducing the Lorentz
factor γ , so that E3τ

′
3/m3 is the decay time of particle 3 with

moment p3:

dW3→1+2

dV dt
= g3

(2π )3

∫
d3p3fb,f (ϒ3, p3)

m3

E3

1

τ ′
3

. (39)

Comparing Eq. (39) with Eq. (27), we conclude that in
medium, at finite temperature T , the decay rate τ ′

3 of particle
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C3 in the rest frame of the heat bath is given by

1

τ ′
3

= 1

2m3

1

1 + I

∫
d3p1

2E1(2π )3

∫
d2p2

2E2(2π )3
(2π )4

× δ4(p1 + p2 − p3)
1

g3

∑
spin

|〈p1p2|M|p3〉|2fb,f (ϒ1, p1)

× fb,f (ϒ2, p2)ϒ−1
1 ϒ−1

2 exp(u · p3/T ), (40)

which is a Lorentz invariant form, but u · p3 → E3, the energy
of particle 3 in the rest frame of the thermal bath.

Using the in-vacuum particle C3 rest-frame decay time,
Eq. (37), we find that Eq. (40) takes the form

1

τ ′
3

= 1

τ0

eE3/T

2
�(p3). (41)

The function �(p3) is

�(p3) =
∫ 1

−1
dζ

ϒ−1
1

ϒ−1
1 e(a1−bζ ) ± 1

ϒ−1
2

ϒ−1
2 e(a2+bζ ) ± 1

, (42)

with

a1 = E1E3

m3T
, a2 = E2E3

m3T
, b = pp3

m3T
,

(43)
ζ = cos θ = cos( �p2 ∧ �p1).

With this the particle C3 decay rate per unit volume in a
thermally equilibrated system is given by

dW3→1+2

dV dt
= g3

(2π2)

m3

τ0

∫ ∞

0

p2
3dp3

E3

eE3/T

ϒ−1
3 eE3/T ± 1

�(p3).

(44)

We were able to evaluate the integral �(p3) analytically
in the absence of particle-antiparticle asymmetry (absence of
chemical potentials),

�(p3) = 1

b(ea1+a2 ± ϒ1ϒ2)
ln

(ϒ2e
−a2 ± eb)(ea1 ± ϒ1e

−b)

(ϒ2e−a2 ± e−b)(ea1 ± ϒ1eb)
,

(45)

and in the nonrelativistic limit (m3 � T , p3), this quantity
tends to

�(p3 → 0) = 2
ϒ−1

1 ϒ−1
2(

ϒ−1
1 eE1/T ± 1

)(
ϒ−1

2 eE2/T ± 1
) . (46)

B. Decay and production rates in the Boltzmann limit

A useful check of the more complex quantum decay case is
the Boltzmann limit. We can then omit unity in the distribution,
Eq. (15). This is possible when

ϒ−1
i eu·pi/T � 1, (47)

that is, when ϒi � 1 or T � m3/2. The condition T � m3/2
comes from the fact that the minimal energy of lighter particles
is m3/2 in the particle 3 rest frame. In this limit the decay time
in the particle 3 rest frame from Eq. (40) τ ′ → τ0, so that from
Eq. (29) we have, for the average decay rate τ in the reference
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FIG. 4. (Color online) The ratio τ/τ0 as a function of temperature
T in the reaction ρ ↔ ππ . The dotted (blu)e line is for the Boltzmann
limit showing only time dilation. Near this limit [dash-dotted (green)
line] the dilute system ϒρ = ϒπ = 0.1. Solid (red) line and dashed
(turquoise) lines represent ϒρ = ϒπ = 1 and ϒρ = ϒπ = 2.56,
respectively.

frame (the rest frame of the bath),

τ ′
3 ≈ τ0

∫ ∞
0 p2dp eE3/T∫ ∞

0 p2dp eE3/T m3/E3
(48)

= τ0
K2(m1/T )

K1(m1/T )
. (49)

Equation (39) shows that the average decay time τ ′
3 in the

laboratory frame is proportional to the (inverse) average of the
Lorentz factor of particle C3. We address this effect next in a
quantitative manner; the ratio of τ ′

3 to τ0 is shown in Fig. 4 as
the dotted line. For T � m3 this ratio goes to unity because
the Lorentz factor becomes 1. For large T , the rate increases
because of the higher average energy of particle C3, that is,
the increasing average Lorentz factor γ . Therefore, for the
low-density classical limit with ϒi � 1, the average particle
lifetime increases with T owing to relativistic effects. How-
ever, a different result can arise for a dense quantum medium.

IV. EXAMPLES

A. Hadrons in heavy-ion collisions

1. Production of ρ mesons via the ρ ↔ ππ process

First, we consider an example of ρ-meson thermal decay
and production in a thermal and chemically equilibrated pion
bath:

ρ0 ↔ π+ + π−, (50)

ρ± ↔ π± + π0. (51)

In this example all particles are bosons and we put m1 = m2

for simplicity, which is not quite exact for reaction (51). In
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integral (42) we have E1 = E2 = mρ/2 in the ρ rest frame.
The integrand in �(p) is a symmetric function. Then we can
write

�(pρ) = 2
∫ 1

0
dζ

ϒ−2
π

ϒ−1
π e(a−bζ ) − 1

1

ϒ−1
π e(a+bζ ) − 1

, (52)

where

a =
√

m2
ρ + p2

ρ

2T
; b =

√
1 − 4m2

π

/
m2

ρpρ

2T
. (53)

The integral, Eq. (52), can be evaluated in this case as

�(pρ) = 2ϒ−2
π

b
(
ϒ−2

π e2a − 1
)

×
[
b + ln

(
1 + ϒπ (e(b−a) − e−(a+b))

(1 − ϒπeb−a)

)]
. (54)

Then we substitute � into Eq. (39), and using Eq. (28) we can
calculate ρ decay and production rates. To calculate τ3 → τ

we use definition (29).
In Fig. 4 we present the ρ decay time in the laboratory frame

normalized by its decay time in the rest frame in a vacuum as
a function of temperature T for ϒρ = ϒπ = 1 [solid (red)
line], ϒρ = ϒπ = 2.56 (dashed line), and ϒρ = ϒπ = 0.1
(dash-dotted line); the dotted line shows the Boltzmann limit,
Eq. (49). We consider the range of temperatures between
50 and 150 MeV, which includes the QGP hadronization
temperature (≈140–165 MeV).

We show the case ϒρ = ϒπ = 0.1 (dot-dashed line) to
check the transition to the Boltzmann limit. We can see
that for this case, the result is close to the Boltzmann
approximation for our range of T , as expected. In the case of
chemical equilibrium, ϒρ = ϒπ = 1, the solid line in Fig. 4
shows a relatively small, 10%–15% increase in life span. We
finally consider a supersaturated pion state, ϒρ = ϒπ = 2.56,
which can arise after supercooled QGP hadronization near
T = 140 MeV [8]. For small T � mρ/2, the ratio τ/τ0 is
near the Boltzmann limit, close to unity, because for such
a small T , when the Boltzmann limit is applied, the decay
time τ does not depend on ϒ . When T increases quantum
effects dominate and τ decreases with increasing T . In
general, the larger ϒ is, the more rapidly τ decreases with
temperature.

Here we do not consider in depth the ρ-meson density
evolution in heavy-ion collisions, because without doubt, our
limited system (just a few hadron states) is not sufficiently
realistic to capture the physics of the ρ in dense matter.
Moreover, the ρ yield is a probe of the hadron density temporal
evolution and thus still more difficult to describe precisely. This
can be seen as follows: In the Boltzmann low-density limit, the
chemical equilibration time is τρ ≈ 1.7 fm. Our result shows
that the pion high-density quantum medium effects causes an
increase in ρ width, that is, a decrease in equilibration time
to τρ ≈ 1.25 fm, accelerating ρ-meson chemical equilibration
near the hadronization temperature. The kinetic-phase time
scale in heavy-ion collisions, when hadrons interact, is near

2–3 fm [6]. This means that the ρ-meson chemical evolution is
dependent on the ambient hadron density and thus is intricately
connected with the dynamics of fireball expansion.

2. φ-meson evolution in heavy-ion collisions

We consider here φ-meson yield evolution in a thermal
hadronic gas after QGP hadronization formed in heavy-ion
collisions. The temperature of QGP hadronization can be
within the range 140–180 MeV. After hadronization, indi-
vidual hadrons can continue to rescatter into resonances in
what we call the kinetic evolution phase or thermal hadronic
gas. This scattering effect does not materially change the final
stable particle yields, but it affects the yields of resonances
observed by the invariant mass method. The temperature of
kinetic-phase freeze-out is expected to be near 100 MeV. After
kinetic freeze-out, hadrons expand without interactions, via
decay only.

The φ meson has, on the hadron reaction scale a relatively
small width, �φ ≈ 4.26 MeV, that is, τφ ≈ 46 fm, which is
much longer than the duration of the kinetic phase. About
83% of φ mesons decay into K + K . Therefore we consider
here φ evolution in the reaction

K + K ↔ φ. (55)

We do not consider here the decay channel φ → ρ + π ,
which is about 15% and can influence our result at this level.
Moreover, the φ inelastic scattering in two- to two-particle
reactions also has a noticeable influence on φ yield, about
15% suppresion [10]. In Ref. [10] only the φ decay was
included, without the reverse reaction, assuming an initial
equilibrium yield at hadronization. We show here how the
reverse reaction and nonequilibrium hadronization conditions
can influence the resulting φ yield. The effect from the full
one-to-two reactions, Eq. (55), can be added to that from two-
to two-particle reactions.

We did a similar study previously for baryon resonances
	(1232) and �(1385) [6]. We found that in the case of initial
nonequilibrium yield, when we have an overabundance of
stable particles at hadronization, the resonance production
can be greater than the resonance decay. Decay becomes
dominant when the temperature drops with expansion, and
the lighter-mass decay product state becomes statistically
preferable. The final resonance yield depends on the study
of the balance between these two effects.

The φ-meson width is smaller than the width of
these baryon resonances, and its yield change during the
posthadronization kinetic phase is expected to be smaller.
However, the rather low threshold energy, mφ − mK − mK ≈
30 MeV, could mean that φ production is dominant over a
longer period of time than in the aforementioned case of baryon
resonance. The purpose of this short study is to determine how
much the yield of φ can change during the kinetic phase owing
to kaon fusion compared to its yield at hadronization. We do
not study how relativistic and quantum effects influence the
reaction, Eq. (55), relaxation time, because for the range of
temperature considered these effects are small.

Considering that the mass of all particles involved is greater
than the temperature, it is possible to use the Boltzmann
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distribution for φ and K:

Nφ

V
= ϒφ

T 3

2π2
gφx2

φK2(xφ), (56)

NK

V
= ϒK

T 3

2π2
gKx2

KK2(xK ), (57)

where xi = mi/T , and K2(x) is the Bessel function. We
proceed as in Ref. [6], using Eq. (31).

Initial conditions in the kinetic phase are defined by
conditions at QGP hadronization. We introduce the initial
hadron yields in a framework of a rapid QGP hadronization,
with all hadrons produced with yields governed by the entropy
and strangeness content of QGP by quark recombination. In
this model the yields of mesons and baryons are controlled by
the constituent quark fugacity γq :

ϒ0
K = γqγs ; ϒ0

φ = γ 2
s . (58)

Thus for γq > 1 we have the condition ϒφ < ϒKϒK . At first,
the reaction goes toward φ production until the φ density
reaches the equilibrium point when the right-hand side of
Eq. (31) is 0. If the φ density has enough time to reach this
point, it begins to decrease again because the temperature
decreases owing to expansion.

For each entropy content of the QGP fireball, the corre-
sponding fixed background value of γq can be found once the
hadronization temperature is known [8]. For T = 140 MeV
pions form a nearly fully degenerate Bose gas with γq � 1.6.
In the following discussion, besides this initial condition, we
also consider the value pairs T = 160 MeV with γq = 1.27
and T = 180 MeV with γq = 1. The value of γs � 1 plays
no significant role as, in the reaction considered, Eq. (55), the
number of strange quarks present is the same.

In Fig. 5 we present results for the ratio φ/φ0 at different
hadronization temperatures as functions of temperature T ,
beginning from the presumed initial hadronization temper-
ature T0 through Tmin = 90 MeV. φ0 is the initial yield
obtained at each hadronization temperature. For hadronization
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FIG. 5. (Color online) The yield ratio φ/φ0 for hadronization
temperatures T0 = 140 MeV [solid (blue) line], T0 = 160 MeV
[dashed (green) line], and T0 = 180 MeV [dash-dotted (red) line]
as functions of the ambient temperature T .

temperature T0 < 180 MeV (γq = 1.6), we initially have
ϒφ < ϒKϒK . In these cases the master equation leads to
an initial increase in the yield of resonances. In the case
T0 = 140 MeV, when the effect is largest, this increase in φ

yield continues over the full range of temperature considered.
However, the effect is relatively small, about 7%, owing to the
small φ width. For hadronization temperature T = 160 MeV,
when γq = 1.27 is smaller, the increase in yield is smaller, and
at T = 105 MeV the φ yield begins to decrease slowly owing
to the dynamics of the expansion.

We note that for T � 180 MeV there is always a slow
depletion of the φ resonance yield. This result implies that the
observed yield of φ has a systematic +7%/−4% uncertainty
owing to kaon rescattering in the medium. For comparison, in
Ref. [10] the effect from φ decay only for an equilibrium yield
at hadronization (γq = γs = 1) was determined to be −7.5%
and the effect from two- to two-particle reactions was −15%.
Therefore φ production in kaon fusion for nonequilibrium
hadronization conditions may have an enhancement effect of
about 15% on the final φ yield, compared to the scenario
where the φ can only decay after in-equilibrium hadronization
formation.

We cannot compare with experimental results considering
only the kaon fusion reaction, as it was argued in Ref. [10] that
certain two-to-two reactions and possibly other processes can
influence the yield. We note only that kaon fusion can add to
the observed φ yield [11].

B. Freeze-out processes in the early Universe

1. π 0 at T � mπ

As mentioned in Sec. I, it is interesting to examine the
mean lifetime of π0 in the end of the hadronic-gas stage of the
Universe where the temperature drops to a mega-electron-volt
level in the low teens. Then the reaction

π0 ↔ γ + γ

determines the abundance of π0.
The difference from the previous example is that the pho-

tons are massless and they are always in chemical equilibrium
in the early Universe (ϒ1 = ϒ2 = 1). Then we can rewrite
function (45) as

�(pπ0 ) = 2

b(e2a − 1)

[
b + ln

(
1 + e(b−a) − e−(a+b)

1 − eb−a

)]
,

(59)

with

a =
√

m2
π0 + p2

π0

2T
; b = pπ0

2T
. (60)

Again, using Eqs. (39) and (28) we can calculate the π0 decay
and production rates. To calculate τ for π0 decay in matter,
we use definition (29).

In Fig. 6 we show the ratio of the π0 decay time τ3 → τ in
the presence of thermal particles to the decay time in vacuum
in the π0 rest frame: τπ0/τ 0

π0 . In this figure a wider range
of temperature is shown: 1–200 MeV. For ϒπ0 = 1 the ratio
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FIG. 6. (Color online) The ratio τ/τ0 for π 0 decay and production
as a function of temperature T . Dashed (blue) line is for a dilute
system, ϒπ0 = ϒγ = 0.01 (Boltzmann limit); solid (green) line is for
a thermal chemically equilibrated system, ϒπ0 = 1.

τπ0/τ 0
π0 , the temperature dependence, is similar to that for

ρ decay, considered in the previous section. It increases at
first, owing to relativistic time dilution effects. Then, after
T ≈ 20 MeV, τ goes down slowly with temperature, when
the quantum in-medium effect becomes important. Quantum
in-medium effects arise here mostly from photons. They
compensate the relativistic Lorentz factor effect when T is
about mπ ; compare the lines in Fig. 6 for ϒπ = ϒγ = 0.01
[dashed (blue) line] and ϒπ = ϒγ = 1 [solid (green) line].
Note that when the yield of pions is small, that is, only ϒπ is
small, the result is almost the same as in chemical equilibrium,
ϒπ = ϒγ = 1.

As long as the π0 reaction relaxation time τ is much
shorter compared to the Hubble expansion time T/Ṫ = 1/H ,
there is chemical equilibrium in the Universe with ϒπ0 = 1.
Freeze-out from chemical equilibrium arises when condition
Eq. (36) is satisfied. Because τ ≈ τ0 = 8.4 × 10−17 s the
condition, Eq. (36), is always satisfied where π0 can exist.
Only at unrealistically high temperatures can this condition be
violated.

Therefore we conclude that for the temperature range of
interest, between a few and 180 MeV, the π0 are in chemical
equilibrium with photons because of their fast reaction rate.
Note that a weak interaction process such as neutron decay
n → p + e− + νe is 20 orders of magnitude slower, and the
Universe expansion rate can dominate the neutron decay rate,
for example, at T > 0.1 MeV, before having a good chance to
decay, neutrons are thus available to enter nuclear reactions.

The pion and muon equilibrium density is high until
temperatures near a few mega–electron volts, and as a result,
they participate in reactions with each other, nucleons and other
particles; for example, see the next sections. The importance
of this realization of pion chemical equilibrium in the Universe
is that it implies that all hadron species driven by pions also
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FIG. 7. (Color online) π± relaxation time as a function of T in
reaction (6), in thermal equilibrium [solid (blue) line], and in the
Boltzmann limit, obtained for ϒ = 0.01 [[dashed (green) line].

remain in chemical equilibrium. Their abundances can thus be
computed using the chemical equilibrium hypothesis, as done
in Ref. [4].

2. π±, µ±, and ν, ν̄ equilibration/freeze-out

In the laboratory the dominant π± production reaction is the
pion charge exchange reaction, Eq. (5), which we considered
in Ref. [3]. These reactions also can take place in the early
Universe. However, given the much slower evolution of the
early Universe, we also now encounter reactions involving
neutrinos, Eq. (6); the related in-vacuum, weak-decay lifespan
of the π± is τ0 = 2.60 × 10−8 s.

In Fig. 7 we show the relaxation times in units of τ0 for
π± equilibration, Eq. (29), in reaction (6), as functions of
temperature: near T � 160 MeV the life span is enhanced by
a factor of 3 for thermal equilibrium densities with ϒs = 1
[solid (blue) line in Fig. 7], mostly owing to Pauli blocking of
the decay products. The time dilation owing to thermal motion,
which also prolongs the life span, has a smaller effect, visible
in the Boltzmann limit, which we study for a dilute system
with ϒs = 0.01 [dashed (green) line].

Interestingly, as we next show, the process, Eq. (6), is the
fastest mechanism of neutrino equilibration in a wide range of
temperatures relevant here, T > 7 MeV, but the νµ-freeze-out
condition is at a lower T and seems to be controlled by the
reaction [12]

e+ + e− ↔ νe,µ + ν̄e,µ, (61)

which we also consider now. The neutrino oscillation effect
assures that all neutrinos remain in equilibrium as long as one
is strongly coupled to the system.

In Fig. 8 we show the muon-neutrino equilibration time
in reaction (6) [solid (blue) line]; recall that to obtain this
relaxation time from the results shown in Fig. 7, we need to
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FIG. 8. (Color online) Relaxation time for neutrino νµ equilibra-
tion as a function of temperature compared to the Universe expansion
time 1/H [dashed (turquoise) line]. Solid (blue) line represents
reaction (6) with equilibrium densities (ϒ = 1); dash-dotted (green)
line and dotted (red) line are for reaction (61) for muon and electron
neutrino, respectively.

replace the π density in the nominator of Eq. (29) by the
density of ν. This relaxation time intersects the Universe
expansion rate at T ≈ 5.5 MeV. Freese et al. [12] obtain
the relaxation time as a function of T assuming the neutrino
chemical potential µν � T in reaction:

τνµ(ee) = (0.1GF T 5)−1, τνe(ee) = (0.6GF T 5)−1, (62)

where GF = 1.1664 × 10−5 GeV−2 is the Fermi constant.
These two results are shown in Fig. 8. We see that the
muon-neutrino freeze-out temperature according to reaction
(6) is slightly higher than that according to reaction (61).
The temperature of the neutrino decoupling in reaction is
Td

∼= 3.5 MeV for νµ and Td
∼= 2.0 MeV for νe.

For a wide range of temperatures, to as low as 7 MeV, neu-
trino chemical equilibration by reaction (6) is dominant. This
example shows that reactions with chemically equilibrated
pions and muons can have an influence on other, even lighter
particle evolution for temperatures T � m.

Muons can be equilibrated by reaction (7) and by the 1 ↔ 3
reaction [Eq. (8)]. We do not consider this type of reaction in
detail here. For low temperatures, T � mµ, when relativistic
and medium effects are small, we assume that the muon decay
time and reverse reaction relaxation time are nearly the muon
life span in vacuum, τ0 = 2.20 × 10−6 s.

In Fig. 9 we show relaxation times for dominant reactions
for pion and muon equilibration. For the π± reaction, Eq. (6),
becomes dominant over reaction (5) at T ≈ 6 MeV. For the µ±
reaction Eq. (8) becomes dominant at T ≈ 4 MeV. Therefore
at these low temperatures, relaxation times for µ± and π±
equilibration become constant and far below the Universe
expansion rate and τT [dotted (turquoise) line]. We conclude
that µ± and π± stay in chemical equilibrium. This does not
mean that they play an important role in the global physics of
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FIG. 9. (Color online) Equilibration times as functions of tem-
perature, for π 0 [solid (red) line], π± [dash-dotted (green) line], µ±

[dashed (blue) line], and τT ≈ T/(Hmπ ) [dotted (turquoise) line].

the early Universe, because just at these temperatures, muon
and pion densities begin to drop rapidly and soon their yield is
negligibly small, far below the nucleon density in the Universe.

V. CONCLUSIONS

We have presented details of the kinetic master equation
for a process involving the formation of an unstable particle
through reaction (11) in a relativistically covariant fashion.
Assuming that all particles in the process are in thermal
equilibrium, we calculated the thermal averaged decay and
formation rates of the unstable particle. Using the time reversal
symmetry of quantum processes, we have shown that the
time evolution of the density of an unstable particle is given
by Eq. (13). Therefore in chemical equilibrium the particle
fugacities are connected by Eq. (18). We have explicitly
derived the thermal decay rate of an unstable particle, obtaining
Eq. (44).

The general properties of the thermal particle decay/
production kinetics have led us to consider the relaxation time
defined by Eq. (29), which results in a greatly simplified kinetic
equation, Eq. (31). The medium modification of reaction
rates we encountered are all caused by final-state quantum
effects, Bose enhancement, and/or Fermi blocking, absent
in the Boltzmann limit. Moreover, we note the presence of
kinematic effects, in that all life spans of particles are time
dilated owing to their motion with respect to the thermal bath
rest frame.

In the present formalism, we assume that the decay width
of an unstable particle is much smaller than the temperature T .
This approximation is safe in the examples we have discussed,
except perhaps the case of ρ decay, where some corrections
may be needed. For the formation of heavy resonances, whose
decay width becomes appreciable compared to the temperature
T , we may need to include the finite-width effect on the mass
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of an unstable particle in the thermal distribution. Such effects
on the statistical partition function and the equation of state
of a system have been studied based on the virial expansion
method [13]. The correction for a kinetic equation in such a
case has also been studied [14].

We have presented several examples, ρ ↔ π + π , φ ↔
K + K , π0 ↔ γ + γ , and π± ↔ µ± + νµ(ν̄µ), and explored
the physics cases of hot hadron matter created in laboratory
heavy-ion reactions and the early Universe from the condition
of hadronization down to the temperature of several mega–
electron volts. The two first processes can take place in
both circumstances. The third process is important to the
understanding of how the hadronic fraction evolves with the
expansion of the Universe. The last process we considered
appears to be the dominant mechanism of neutrino equilibra-
tion over the entire temperature range, except close to neutrino
freeze-out, a result that requires further refinement allowing for
finite chemical potentials. This example also shows that heavy
(m � T ) chemically equilibrated particles can be important in
the evolution of other particles, including lighter more dense
particles yields at relatively low temperatures.

The equilibration-relaxation time for π0 decay remains
close (within 25%) to the relaxation time in vacuum over a
large temperature range. This occurs because the relativistic
effect (Lorentz factor) is compensated by the quantum medium
effect. This time is short compared to the Universe expansion
time for all temperatures of interest here, below the GQP
hadronization temperature, when π0 hadrons are created.
Therefore π0 always stays in chemical equilibrium with
radiation for the temperature range of interest.

As long as π0 is abundant it can participate in reactions
with other hadrons and influence the dynamics of the Universe
evolution. Here we also considered π± evolution, in the fourth

reaction given, and their interaction with π0. We showed
that pions and muons (mesons) stay in chemical equilibrium
throughout the evolution of the Universe, despite their large
mass. They can be involved in reactions with nucleons, a
topic we postpone to a future study, down to temperatures
where the meson density drops well below the nucleon density.
The contribution of mesons disappears from the entropy and
the degeneracy g only at the relatively low T ≈ 10 MeV (see
Fig. 3).

Our study of the φ evolution in thermal hadron medium after
GQP hadronization in heavy-ion collisions, suggests a possible
slight modification of the observed φ yield: compared to initial
production, an increase in hadronization at T = 140 MeV,
γq = 1.6, at the level of about 6%–7%, or a suppression of
about 4% for hadronization at T = 180 MeV, γq = 1.

To conclude, we have presented here the process of decay
and re-creation of unstable particles and studied special cases
of relevance to heavy-ion collisions and the early Universe.
Our results indicate that the early Universe was in chemical
equilibrium throughout its evolution and that the first freeze-
out occurs when neutrinos decouple.
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