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The Chew-Mandelstam (CM) parametrization, which has been used extensively in the two-body hadronic
sector, is generalized in this exploratory paper to the electromagnetic sector by simultaneous fits to the π - and
η-photoproduction S-wave multipole amplitudes for center-of-mass energies from the pion threshold through
1.61 GeV. We review the CM parametrization in detail to clarify the theoretical content of the SAID hadronic
amplitude analysis and to place the proposed generalized SAID electromagnetic amplitudes in the context of
earlier employed parametrized forms. The parametrization is unitary at the two-body level, which employs four
hadronic channels and the γN electromagnetic channel. We compare the resulting fit to the MAID parametrization
and find qualitative agreement; although, numerically, the solution is somewhat different. Applications of the
extended parametrization to global fits of the photoproduction data and to global fits of the combined hadronic
and photoproduction data are discussed.
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I. INTRODUCTION

Most of our knowledge of the excited baryons has come
from fits to hadronic scattering data, in particular, pion-
nucleon scattering, for which an accurate and nearly complete
database exists that extends through and above the resonance
region. Sufficient polarization observables exist to constitute
complete measurements over a significant kinematic interval.
The range of hadroproduction data, which includes πN →
πN , πN → ηN , πN → ωN , and other inelastic processes,
which include, for example, strangeness production, have
also been used to constrain theoretical models and phe-
nomenological parametrizations of the scattering and reaction
amplitudes.

Currently, however, a renaissance is underway in meson
production and resonance physics with reaction data that
issue from a number of precision electromagnetic facilities.
Collaborative theoretical and phenomenological efforts have
started to analyze these data in ways consistent with some
subset of constraints imposed by quantum field theory upon
the reaction amplitudes. The quality and quantity of data
in electromagnetic-induced reactions are becoming suffi-
cient to rival, and possibly surpass, the hadroproduction
data. Since the electromagnetic reactions proceed mainly
through the hadronic channels, the new data offer the pos-
sibility of backconstraining the hadronic amplitudes, con-
ventionally determined only in fits to the hadroproduction
data.

It is in this context that we have completed an exploratory
study of the S-wave π - and η-photoproduction multipoles in
the Chew-Mandelstam (CM) approach, related to the N/D

representation, to the electromagnetic reaction amplitude. The
novel concept, which provokes and permits this exploratory
study, is the generalization of the CM approach to the
electromagnetic sector. We have developed a new form
for the amplitude that incorporates multichannel hadronic
rescattering effects in a complete manner consistent with
unitarity. The near-term objective is to develop a framework

in which to analyze the hadro- and electroproduction reactions
simultaneously in a global framework.

Recent experimental observations of the photoproduction
of the η meson from the proton have yielded measurements
of the unpolarized differential cross section [1–3] and pho-
ton beam asymmetry [4,5] of high precision. Forthcoming
measurements from the CLAS Collaboration at Jefferson
Laboratory [6] and Mainz [7] will rival, if not surpass, the
precision of the existing measurements.

Several interesting features of η-meson physics motivate
these measurements and their theoretical interpretation in
various fields of nuclear physics, astrophysics, and particle
physics. The possibility that the η-nucleon interaction may be
attractive [8,9] suggests the existence of bound states of the
η meson with nuclei. Certain resonances, the S11(1535) N∗
resonance, in particular, are significantly coupled to the ηN

channel, and the photoproduction of this final state provides
an independent method to probe the isospin T = 1

2 resonance
spectrum and its couplings [10].

The strong interactions of the π and η mesons require
multichannel descriptions that respect unitarity in the relevant
channel space to obtain a realistic description of the data. The
CM K-matrix approach [11–13] is an effective parametrization
of the observed reaction data, since the elements of the CM K

matrix may be assumed to be real if the couplings to neglected
open channels are small.

Several relatively recent K-matrix analyses of the coupled
πN , ηN , and γN channels [14–17] have been successful
in obtaining reasonable parametrizations of the two-body
partial-wave amplitudes [18]. The purpose of the present paper
is to investigate the extent to which a description of the
π photoproduction E

1/2
0+ (S11) amplitude and the modulus of

the η photoproduction amplitude yields an η-photoproduction
multipole with a resonant phase. Various calculations
[16,19–21] indicate that the modulus of the η-photoproduction
amplitude near threshold is fairly model independent, which
is reproduced in a range of calculational models or schemes.
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In the present paper, we take hadronic T -matrix elements as
input, determined in realistic (χ squared per datum ∼1) fits to
data [22], as discussed in Secs. II–IV.

In Sec. II, we review the CM form [13] of the parametriza-
tion in some detail. The purpose of this review is to
establish the theoretical considerations that motivate the
amplitude parametrizations used in the SAID program, to
place these amplitudes in the context of other hadronic
amplitude parametrization schemes, and to lay the groundwork
for future improvements. Section III gives the results for the fits
to the isospin T = 1

2 π -photoproduction amplitude Eπ
0+ and

the modulus of the η-photoproduction amplitude E
η

0+. The
conclusions are given in Sec. IV. We find, in this exploratory
paper, an η-photoproduction multipole, which has a resonant
shape, qualitatively similar to a Breit-Wigner form and similar
to other calculations [19,21,23]. There is, however, significant
deviation from the simple Breit-Wigner form.

II. CM PARAMETRIZATION

Previous work in the determination of the η-
photoproduction amplitudes [14–16] has shown that an ap-
proach, which includes the coupling of the electromagnetic
channel to the πN and ηN channels in the region of energies
near the center-of-mass energy W = 1535 MeV, gives a
reasonably good description of the data and a plausible form
for the amplitudes. However, as our ultimate objective is the
simultaneous parametrization of hadro- and photoproduction
scattering and reaction observables, we will go beyond the
two-channel treatment for this study of the E

η

0+ multipole
amplitude.

A. Unitarity constraint

The form of the CM parametrization, which we employ in
this paper, follows as a consequence of the analytic structure
imposed by the unitarity [24–28] of the S matrix in the physical
region W > mi + mt , where W is the center-of-mass energy
and mi and mt are the masses of the incident and target
particles. By confining our attention to two-particle initial and
final states, the S matrix is defined as

Sαβ (E) = 〈kαα|S|kββ〉 (1)

= δ(3)(kα − kβ)δαβ + 2iπδ(Eα − Eβ)〈kαα|T |kββ〉,
(2)

where kα,β are the final and the initial relative momenta, re-
spectively, E = Eα = Eβ = W is the center-of-mass energy,
and the labels α and β denote the particle species, spins, and
internal quantum numbers, such as isospin. The initial and final
energies Eβ and Eα , respectively, are related to the on-shell
relative momenta for channel α, kα as

W = Eα,1 + Eα,2, (3)

Eα,i =
√

k̄2
α + m2

α,i . (4)

The on-shell relative momentum may be expressed in terms of
the center-of-mass energy W as

k̄α = 1

2W

√
W − mα+

√
W − mα−

√
W + mα+

√
W + mα−,

(5)

with mα± = mα,1 ± mα,2.
The scattering operator S is unitary,

S†S = SS† = 1, (6)

and, if we restrict our analysis to energies where just two-
particle channels contribute, we obtain∑

σ

∫
d3kσ 〈kαα|S†|kσ σ 〉〈kσ σ |S|kββ〉 = δ(3)(kα − kβ)δαβ.

(7)

Substitution of Eq. (2) into the preceding relation yields the
unitarity constraint on T :

Tαβ − T
†
αβ = 2πi

∑
σ

∫
d3kσT †

ασ δ(Eα − Eσ )Tσβ. (8)

By effecting the integration on kσ ≡ |kσ | gives

Tαβ − T
†
αβ = 2i

∑
σ

∫
d
σ T †

ασ θ (W − mσ+)ρσTσβ, (9)

where

ρσ (k̄σ ) = πk̄σEσ1Eσ2

W
. (10)

The presence of the Heaviside step function θ (W − mσ+) is a
consequence of the fact that, over the range of integration kσ >

0, the argument of the δ function has a solution Eα − Eσ = 0
only when W > mσ+. Equation (9) implies discontinuities in
the derivative of the imaginary part at each channel threshold
W = mσ+,

1

2i
[Tαβ − T ∗

αβ] = Im Tαβ (11)

=
∑

σ

∫
d
σ T ∗

ασ θ (W − mσ+)ρσTσβ, (12)

where we have assumed that because of the time-reversal
invariance of the strong interaction Tαβ = Tβα . The violation
of the Cauchy-Riemann equations at the threshold indicates
the presence of a branch point. We distinguish between
the dynamical singularities at each threshold opening mσ+
and kinematical singularities because of the presence of
kinematical factors, such as kσ . The kinematical singularities
are removed from the unitarity constraint by considering
T ′

αβ = √
ρ

α
Tαβ

√
ρ

β
.

We may transform to the partial-wave representation and
write

T ′
αβ − T ′∗

αβ = 2i
∑

σ

T ′∗
ασ θ (W − mσ+)T ′

σβ, (13)

where the T ′
αβ now represent the partial-wave amplitudes. By

casting this relation as a matrix equation,

1

2i
[T ′ − T ′∗] = T ′∗θ (W − M+)T ′, (14)
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where M+,ασ = mσ+δασ and by multiplying from the left by
[T ′∗]−1 and from the right by T ′−1 gives

Im T ′−1 = −θ (W − M+), (15)

a diagonal matrix. Since this equation isolates the imaginary
part of the inverse-T matrix, we write

T ′−1 = Re T ′−1 + iImT ′−1, (16)

= K ′−1 − iθ (W − M+), (17)

where we have defined Re T ′−1 = K ′−1 and K ′
αβ =√

ραKαβ
√

ρβ . To multiply from one side by T ′ and the other
by K ′ gives the Heitler integral equation [29,30]:

T ′ = K ′ + K ′iθ (W − M+)T ′. (18)

This is the starting point for the CM parametrization of the
reaction amplitude.

We emphasize that, in the physical region, the unitarity
relation is satisfied by the imaginary part of T ′−1. Therefore,
the Heitler K matrix is analytic, except for possible isolated
poles [31] throughout the physical region [24,32]. This is
apparent if we consider a dynamical equation of, for example,
the Lippmann-Schwinger form

T = V + V G0T , (19)

G0 = P 1

E − H0
− iπδ(E − H0). (20)

Here, V is the interaction part of the full Hamiltonian E =
W , H0 is the free-particle Hamiltonian, and P denotes the
Cauchy principal value prescription. Substitution of Eq. (20)
into Eq. (19) gives T = K + iKδ(E − H0)T , where

K = V + VP 1

E − H0
K. (21)

The Cauchy principal value prescription in this equation yields
a kernel, which is completely continuous in the physical region.
Therefore, the spectrum of the kernel possesses no eigenvalues
in the continuum, and K is analytic (other than possible poles)
there [33]. The K matrix may possess singularities in other
regions of the complex energy plane. In fact, the interaction
V possesses singularities in regions outside the physical
region [34–36]. In particular, there is a branch point at some
value W < 0. We intend to neglect singularities in the region
Re W < 0 for the purposes of the present paper and avoid a
detailed discussion of them here. A description is available in
the literature [34–37]. Inclusion of singularities in the region
Re W < 0 will be explored in subsequent investigations.

Therefore, the partial-wave amplitude is known to have the
following singularities. There are branch points in the physical
region at the channel-opening thresholds as in Eq. (9), branch
points in the region W < 0, and possible poles consistent with
causality [32,38]. An efficient parametrization that follows
Ref. [37], which encodes these singularities, involves the
factorization of the partial-wave amplitude. This is referred
to as the N/D approach. We will use the N/D language to
clarify the nature of the singularities of the T matrix, which
are included and those neglected in our CM approach.

B. Relation to N/D approach

The N/D approach has been used to analyze a variety
of reactions [37,39,40]. As our long-term objective is the
generalization of the existing method used to parametrize
the hadronic and electromagnetic amplitudes, here, we collect
some of the relevant equations of the N/D approach. The T

matrix is written in the factorized form

T (W ) = D−1(W )N (W ), (22)

where N and D are Nch × Nch arrays [28], where Nch is the
number of included two-body channels. This relation has been
shown to be consistent with the requirement of time-reversal
invariance in Ref. [41]. The relations,

Im D(W ) = N (W ) Im T −1(W ), W > mi + mt, (23)
Im N (W ) = 0, W > mi + mt, (24)
Im N (W ) = D(W ) Im T (W ), W < 0, (25)
Im D(W ) = 0, W < 0 (26)

give the essential content of the N/D approach. They state
that the function D has branch points only in the physical W >

mi + mt region and that N has only unphysical W < 0 branch
points. These relations determine the following dispersion
relation (or Hilbert transform) representation for D:

D(W ) =
np∑
i=1

D(W ; Wi) − 1

π

np∏
i=1

(W − Wi)

×
∫ ∞

Wt

dW ′ N (W ′)ρ(W ′)
(W ′ − W )

∏
j (W ′ − Wj )

, (27)

with np subtractions. Here, D(W ; Wi) is a polynomial of order
np, W ∈ C, and Wt is the lowest production threshold. Here,
we show the polynomial ambiguity of the Hilbert transform
explicitly to allow for the possibility that the parametrization
includes several subtraction points.

By using the relation T = ND−1 in the physical region,
the numerator factor N can be shown to satisfy the integral
equation,

N (W ) = K

{∑
i

D(W ; Wi) − 1

π

np∏
i=1

(W − Wi)

×
∫
−

∞

Wt

dW ′ N (W ′)ρ(W ′)
(W ′ − W )

∏
j (W ′ − Wj )

}
, (28)

where
∫− denotes the Cauchy principal value integral, and

the Heitler K matrix K is defined by Eq. (18), with K =
ρ−1/2K ′ρ−1/2.

C. CM parametrization

The preceding discussion of unitarity and the N/D ap-
proach provide the context for our present parametrization.
The CM parametrization developed here is similar to those of
Refs. [11–13]. We consider Eq. (17) and rewrite it, by confining
our attention to the S-wave multipole as

T −1 = K−1 − iρ̃ (29)

= (K−1 + Re C) − (Re C + iρ̃)

= K
−1 − C, (30)

035202-3



MARK W. PARIS AND RON L. WORKMAN PHYSICAL REVIEW C 82, 035202 (2010)

where ρ̃ = ρθ (W − M+) and ImC = ρ̃ = θ (W − M+)ρ. The
transition matrix is given in terms of the CM K matrix K by

T = K + KCT. (31)

Equation (31) fixes our CM parametrization. In the lan-
guage of Sec. II B, we have neglected the W < 0 branch points
of N and made the approximation N (W ) = K(W ) an entire
function. The CM function Cα is determined solely by the
unitarity constraint Eq. (15), since Eq. (30) is equivalent to
taking D = 1 − KC. Then the CM function is given by a
Cauchy integral over the discontinuity of Cα in the physical
region,

Cα(W ) =
∫ ∞

Wt

dW ′

π

ρα(W ′)
W ′ − W

−
∫ ∞

Wt

dW ′

π

ρα(W ′)
W ′ − Ws

, (32)

where we have made one subtraction 0 � Ws < Wt . By
defining zα = W−Wt,α

W−Ws,α
, we can rewrite Eq. (32) as

Cα(W ) =
∫ 1

0

dx

π

ρ(x)

x − zα(W )
. (33)

The relationship between the Heitler K matrix and the CM
K matrix K is given by

K = K + K[Re C]K. (34)

This demonstrates a possible advantage of using the CM K

matrix. If we consider a polynomial parametrization of a given
CM K-matrix element,

Kαβ =
nαβ∑
n=0

cαβ,nz
n
αβ, (35)

where nαβ are channel-dependent integers that control the
order of the polynomial (polynomials typically less than fifth
order are used) and zαβ is a possibly channel-dependent linear
function of the center-of-mass energy W , then, we see, by
solving Eq. (34) for K ,

K = 1

1 − K[Re C]
K, (36)

that poles may appear in the K matrix. Attempts to relate
the K-matrix poles to resonances have been made [42–44].
Here, we simply point out that, although K-matrix poles are
not simply related to T -matrix poles [31], Eq. (34) shows
that one need not explicitly include pole terms in K to have
poles in K . Parametrizing K(W ) = N (W ) as a polynomial, as
noted, neglects singularities in the unphysical region W < 0
[45]. The branch points there and discontinuities across their

associated branch cuts are determined by the production
mechanisms [47] relevant for the reaction considered.

There are at least two reasons why polynomials may provide
a reasonable starting point for a realistic parametrization of
multichannel scattering and reaction amplitudes. The unitarity
branch points, given their physical nature, largely determine
the gross structure of the amplitudes in the physical region.
This leads, in an obvious way, to the supposition that more
distant singularities in the complex W plane associated, in
particular, with the branch points in the unphysical region may
be less important. Experience has also confirmed this to be true.
The existing SAID parametrizations of πN elastic scattering
[22], the πN → ηN [10] reaction, π -photoproduction [48,49],
electroproduction [50], and other reactions all reveal that a
realistic description with χ2 per datum in the range of 1–3 is
possible with the polynomial approximation for K .

III. RESULTS

The CM parametrization for the T matrix, described in
Sec. II, has recently been applied [22] to a coupled-channel
fit for the πN elastic scattering and the πN → ηN reaction.
It gives a realistic description of the data with χ2 per datum
better than any other parametrization or model to the best of
our knowledge. The χ2 per datum is shown in Table I against
other parametrizations and model calculations for which we
possess sufficient amplitude information to perform such an
analysis [55]. The current SAID parametrization used in this fit
is given as

Tαβ =
∑

σ

[1 − KC]−1
ασ Kσβ, (37)

where α, β, and σ are channel indices for the considered
channels πN , π
, ρN , and ηN . This parametrization has
been discussed in Refs. [13,22,56]. Given the success of this
approach in the hadronic two-body sector, the application to
the study of meson photoproduction is warranted.

The central result of the current exploratory paper is to show
that this form can be extended to include the electromagnetic
channel,

Tαγ =
∑

σ

[1 − KC]−1
ασ Kσγ , (38)

where γ denotes the electromagnetic channel γN . Note that
Eqs. (37) and (38) share the common factor [1 − KC]−1

ασ ,
which encodes, at least qualitatively speaking, the hadronic
channel-coupling (or rescattering) effects.

TABLE I. Normalized (left of each column pair) and unnormalized (right of each column pair) χ2 per datum for the SP 06 [22] and FA 02 [51]
solutions of SAID, KA 84 [52], EBAC [53], and GIESSEN [54]. The energy ranges of the four groups are from the threshold to 2.5, 2.9, 1.91, and
2.0 GeV, respectively [55].

SP 06 FA 02 KA 84 EBAC GIESSEN

π+p → π+p 2.0 6.1 2.1 8.8 5.0 24.9 13.1 23.7 10.5 17.7
π−p → π−p 1.9 6.2 2.0 6.6 9.1 51.9 4.9 16.0 12.1 34.1
π−p → π 0n 2.0 4.0 1.9 5.9 4.4 8.8 3.5 6.3 6.3 15.2
π−p → ηn 2.5 9.6 2.5 10.5 – – – – – –
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The form Eq. (38) for photoproduction should be contrasted
with that currently employed in the π -photoproduction studies
of Refs. [15,48,49],

Tπγ = A(W )[1 + iTππ (W )] + iB(W )Tππ (W ), (39)

where the structure functions A(W ) and B(W ) are
parametrized as polynomials in the energy W , Tπγ = TπN,γN ,
and Tππ = TπN,πN , and the factor A(W ) contains a con-
tribution from tree-level Born diagrams. This satisfies the
Watson theorem [57] [as does Eq. (38)] and is derived via
the considerations discussed in Ref. [58]. While resulting in a
realistic description of the data and being comparable, at least
qualitatively, with other parametrizations such as MAID [23]
for π photoproduction, it does not satisfy the full multichannel
unitarity constraint imposed by Eq. (9). This deficiency led us
to consider the form in Eq. (38), which manifestly satisfies the
multichannel unitarity constraint Eq. (9).

The need to include the multichannel unitarity effects of
Eq. (38) has also become apparent in difficulties faced in
attempts to parametrize the η-photoproduction reaction by
using forms [59] similar to Eq. (39). Forms of this type, used
in fits to the η-photoproduction data alone, yielded an S-wave
multipole without a clearly resonant shape, even while yielding
fits to the observed data with realistic χ2 per datum on the
order of 2 to 4. An example of such a fit, which employs
Eq. (39), is shown in Fig. 1. Near values of the center-of-mass
energy W � 1535, the amplitude in Fig. 1 is decidedly not
resonant. This is also clear in the Argand plot of Fig. 2.
Here, we have shown the comparison of the fit forms used in
Ref. [59] (with energies marked by triangles). This difficulty
was an early motivation for the present paper. Expectation
of resonant behavior for η photoproduction γN → ηN in
the S wave can be argued straightforwardly. For example,
since the electromagnetic coupling to the πN channel is
large, the γN → ηN reaction may proceed via the πN → ηN

amplitude of Fig. 3 or through direct resonance production.
Therefore, we anticipate the hadronic subprocess will drive a
significant resonant effect in the (isoscalar) electromagnetic
transition.

1490 1510 1530 1550 1570 1590 1610
W [MeV]

-5

0

5

10

15

20

E
η 0+

 [
m

fm
]

FIG. 1. The η-photoproduction S11 multipole amplitude E
η

0+
versus the energy W fit by using the previously employed nonunitary
form of Eq. (39). The behavior near W � 1535 MeV is not resonant
as can clearly be seen in Fig. 2.

-20 -15 -10 -5 5 10 15

Im E
η
0+

 [mfm]

-20

-15

-10

-5

5

10

15

20

Re E
η
0+

 [mfm]

FIG. 2. Argand-plot comparison of the η-photoproduction S11

multipole amplitudes, versus Im E
η

0+ plotted in the range
1490 MeV � W � 1610 MeV of center-of-mass energy W with two
fit forms. The curve with energies marked by triangles is another
representation of the result for E

η

0+ shown in Fig. 1, determined by
using the parametrization of Eq. (39). The curve with energies marked
by circles is another representation of the result for E

η

0+, shown in
Fig. 5, determined by using the parametrization of Eq. (38). The
curves span the same interval in energy but with different spacings.
The first curve (triangles) is clearly nonresonant in the region shown,
while the second curve (circles) clearly shows resonant behavior; the
apex on the Argand diagram of the second curve occurs at precisely
W = 1535 MeV.

Several other studies have determined that a resonant
structure near W ∼ 1535 MeV is consistent with the reaction
data. These works include those in Refs. [16,19,21,23]. We
should note that all of these works have assumed the S11

wave to be resonant, usually by including a Breit-Wigner or
similar term explicitly into their formalism. We do not make
this assumption in using Eq. (38).

In light of the study of Ref. [59] and the necessity of includ-
ing the full multichannel unitarity for the purposes of obtaining
a global description of the hadro- and photoproduction data,
we have carried out an exploratory study to determine the

1490 1510 1530 1550 1570 1590
W [GeV]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

T
ηN

,π
N

(W
)

FIG. 3. The SAID S11 multipole for the πN → ηN reaction as
a function of energy W [10]. The solid (dashed) line is the real
(imaginary) part of the amplitude.
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1120 1220 1320 1420 1520
W [MeV]

0

5

10

15

E
π 0+

 [
m

fm
]

FIG. 4. Comparison of the SAID real (solid curve) and the
imaginary (short-dashed curve) parts of the Eπ

0+ multipole amplitude
with that of the MAID [60] real (long-dashed curve) and the imaginary
(dot-dashed curve) parts. The amplitudes are plotted along with the
real (circles) and the imaginary (squares) of the SAID single-energy
solutions [60].

efficacy of doing such a fit within the CM parametrization
Eq. (38). In the present paper, we perform a coupled-channel
fit of the modulus |Eη

0+(W )| and (the real and imaginary parts
of) the existing SAID and MAID π -photoproduction amplitudes
Eπ

0+ in the S11(1535) resonance region, compared in Fig. 4.
The fit was carried out by taking the factor [1 − KC]−1

ασ in
Eq. (38), as determined in the the hadronic study of Ref. [22]
and by adjusting the parameters of Kσγ (discussed in detail in
the following). The phase of the E

η

0+ multipole in this paper
gives a resonant wave and encourages us to continue with this
approach, as discussed in Sec. IV.

The decision to fit the modulus |Eη

0+| is based on empirical
considerations. The MAID [23] parametrization and the model
calculations in Refs. [16,19,21,61] agree at the few-percent
level on the modulus of the low-energy η-photoproduction
amplitude |Eη

0+(W )|. This is anticipated on the grounds that,
in the S11(1535) resonance region, the differential cross section
is largely angle independent and, therefore, is dominated by
the S-wave production. It also indicates that the production is
largely resonant, but we do not make this common assumption.

While the modulus |Eη

0+| appears to be known at the
level of a few percent, the π -photoproduction S11 amplitude
is, surprisingly, not very well determined through different
parametrizations. Figure 4 shows the SAID [22] and the MAID

[23] results for Eπ
0+. Given this discrepancy, we have also

carried out the fit described earlier with the modulus |Eη

0+|
and the MAID parametrization.

A. Fit with SAID Eπ
0+

Figure 5 shows the result of fitting the modulus |Eη

0+| and
the real and imaginary parts of the SAID Eπ

0+ multipole [48] by
using an eight-parameter fit. The CM K matrix was assumed
to have the form

Kσγ (W ) = cσγ,0 + cσγ,1zσγ , (40)
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FIG. 5. The predicted values for the real (solid curve) and the
imaginary (dashed curve) for E

η

0+ versus the energy W . The modulus
|Eη

0+| (dotted curve), the real (dot-dashed curve), and the imaginary
(double dot-dashed curve) parts of the π -photoproduction Eπ

0+ were
fit to pseudodata generated from the SAID solution [48] with the
parametrized form Eq. (38) by using eight parameters (see text).

by taking nαβ = 1 in Eq. (35), for α and β by taking values
in the set of four channels πN , π
, ρN , and ηN . The energy
variable zαβ is

zαβ = W − Wt,α, (41)

where the threshold masses Wt,α are mπ + mN , 2mπ + mN ,
2mπ + mN , and mη + mN for α = πN , π
, ρN , and ηN ,
respectively, and Wt,α is taken to be the lower of the thresholds
for channels α and β. The eight parameters were varied in the fit
to a total of 113 pseudodata points, which include the modulus
|Eη

0+| over the energy range 1490 MeV � W � 1610 MeV and
the amplitude Eπ

0+ over the energy range 1120 MeV � W �
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FIG. 6. The predicted values for the real (solid curve) and the
imaginary (dashed curve) for E

η

0+ versus the energy W . The modulus
|Eη

0+| (dotted curve), the real (dot-dashed curve), and the imaginary
(double dot-dashed curve) parts of the π photoproduction Eπ

0+ were
fit to pseudodata generated from the MAID solution [60] with the
parametrized form Eq. (38) by using seven parameters (see text).
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FIG. 7. The predicted values for the real (solid curve) and
imaginary (dashed curve) for E

η

0+ versus the energy W . The modulus
|Eη

0+| (dotted curve), the real (dot-dashed curve), and the imaginary
(double dot-dashed curve) parts of the π photoproduction Eπ

0+ were
fit to pseudodata generated from the MAID solution [60] with the
parametrized form Eq. (38) by using 14 parameters (see text).

1610. The χ2 per datum over for the fits to the pseudodata,
generated with the SAID interactive code facility [62], were
less than one in all of the fits made in this paper, which include
those in the region 1120 MeV � W � 1490 MeV, which are
not displayed to keep the figures manageable and to focus
attention on the S11(1535) resonance region. The pseudodata
were assigned 5% errors in the fit.

B. Fit with MAID Eπ
0+

The graphs in Figs. 6 and 7 used 7 and 14 parameters,
respectively, to fit the |Eη

0+| and Eπ
0+amplitudes from MAID

[23]. The seven-parameter fit in Fig. 6 is the minimal set
of parameters needed to obtain a χ2 per datum �1. The
parameters used in Eq. (35) for this fit were cπγ,n, n = 0, 1, 2,
cργ,n, where n = 0, 1 and cηγ,0 and cηγ,1. The quality is
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FIG. 8. The real (solid curves) and the imaginary (dashed curve)
for E

η

0+ from the seven-parameter fit in Fig. 6 compared with the
η-MAID solution [23], marked by squares.
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FIG. 9. The real (solid curves) and the imaginary (dashed curve)
for E

η

0+ from the 14-parameter fit in Fig. 7 compared with the η-MAID

solution [23], marked by squares.

degraded at the higher-energy end of the fit region for the
imaginary part of Eπ

0+. Nearly perfect agreement is obtained if
we use a 14-parameter form for Kσγ . The parameters used in
Eq. (35) for this fit were cπγ,n, c
γ,n, cργ,n, where n = 0, 1, 2, 3
and cηγ,0 and cηγ,1.

Note, from Figs. 8 and 9, that the fit, which gives the better
representation of the MAID Eπ

0+ amplitude is similarly closer
to the MAID E

η

0+ result. This is somewhat surprising perhaps,
since although the MAID pion and the η photoproduction use the
same pole positions in both amplitudes, these parametrizations
are not constrained by unitarity.

IV. CONCLUSION AND ONGOING WORK

We reviewed the implication of unitarity on the analytic
structure of the single-meson production scattering and reac-
tion amplitudes. The nonanalyticities in the regions W > 0
and W < 0, the right- and left-hand cuts, respectively, were
demonstrated to be properly accounted for by the N/D

approach. We related the CM K-matrix parametrization to
the N/D approach by showing that the parametrization of the
K matrix neglects the effects of the distant left-hand cut. The
purpose of this review is to place the long-used SAID amplitudes
in the context of other hadronic amplitude parametrization
schemes and to lay the groundwork for future improvements
to the existing parametrization forms.

By using the CM K matrix K , we performed a simultaneous
coupled-channel fit of the η photoproduction S11 multipole
modulus |Eη

0+| and the π -photoproduction amplitude Eπ
0+.

The parametrization was restricted only to the CM K-matrix
elements Kσγ in Eq. (38), while the [1 − KC]−1 factors
were taken from the existing SAID fits to the hadronic data.
The anticipated resonant structure for the phase of the E

η

0+
multipole was demonstrated in fits to SAID amplitudes.

The results of the exploratory study indicate that this
is a reasonable approach toward the objective of determin-
ing a complete set of scattering and reaction amplitudes
for πN → πN , πN → ηN , γN → πN , and γN → ηN
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processes in a multichannel unitary formalism. The first
stage in this procedure, which demonstrates that coupled-
channel simultaneous fits of the π - and the η-photoproduction
reactions for a single partial wave (S11) is possible, has
been completed. The next phase consists of a fit to the
π -photoproduction reaction observables. By following this,
a simultaneous fit to the reaction observables for the π -
and the η-photoproduction reactions will be performed. As a
practical matter, these two phases will be completed by using
the [1 − KC]−1 rescattering factors determined in separate
fits to the hadronic scattering and reaction data. The final
phase of the study will be a simultaneous fit to both the
hadronic and the electromagnetic scattering and reaction

observables and will constitute, at least for two-body unitarity,
a global description of the hadro- and photoproduction
amplitudes.
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