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Hidden asymmetry and forward-backward correlations
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A model-independent method of studying the forward-backward correlations in symmetric high-energy
processes is developed. The method allows a systematic study of the properties of various particle sources
and allows one to uncover asymmetric structures hidden in symmetric hadron-hadron and nucleus-nucleus
inelastic reactions.
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I. INTRODUCTION

New data from the CERN Large Hadron Collider (LHC)
on soft particle production in pp collisions [1–3] open a new
chapter in the long history of this problem, thus reviving some
questions that were raised already many years ago. One of
these questions concerns forward-backward correlations that
were extensively studied in the framework of specific models
[4] and shown to be useful in discriminating between various
mechanisms of particle production.

In the present article we develop a systematic, model-
independent method to study forward-backward correlations
and show that it may be effective in addressing the issue
(debated since the early seventies) of the number and nature
of quasi-independent sources of particles contributing to
particle production in various rapidity regions. Specifically,
restricting ourselves to symmetric reactions (like pp or Au-Au
collisions), we ask what are the contributions from symmetric
and asymmetric sources and how do we measure them
experimentally. The problem may be interesting since various
models differ substantially in this respect.

The simplest hypothesis is to say that there is just one
symmetric source. This is the case of the Landau hydrody-
namic model [5] and its recent modifications [6] where particle
production is governed by the evolution of a fluid. A similar
conclusion follows from the simple multiperipheral model [7],
which suggests just one symmetric source in the form of the
multiperipheral chain. This idea was then reformulated in the
parton model [8] and in the bremsstrahlung mechanism [9].
One may of course also consider many symmetric sources.

A more sophisticated possibility, taking into account the
color structure of the colliding systems, was formulated in the
dual-parton model [10]. Here the number of sources depends
on the energy of the collision and on the type of projectiles.
For p-p collisions, at relatively low energies there are two
asymmetric sources (chains), spanning a valence diquark from
one projectile and the valence quark from the other one.
For nucleus-nucleus collisions the picture is similar, but the
number of asymmetric sources fluctuates, depending on the
number of participants in the two colliding nuclei. As energy
increases, contributions from symmetric chains, spanning the
sea quarks and the antiquarks, come into play.
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Simpler ideas have also been put forward. In the wounded
nucleon model [11] particles are emitted independently from
the two colliding nucleons, thus creating two asymmetric
sources [12]. A similar idea, applied to the constituent quarks
and diquarks, is proposed in Ref. [13]. In the Fritjof model [14]
there are also two sources, essentially two large diffractively
produced clusters (each one related to one of the colliding
hadrons).

In the present article we consider only symmetric collisions
(e.g., p-p or Au-Au). We show that in this case a systematic
study of forward-backward correlations allows one to distin-
guish between the various possibilities listed above and to
obtain information about some characteristic properties of the
sources.

Studies of forward-backward correlations in specific mod-
els have a long history (see, e.g., Refs. [4,10]). Our work was
mostly triggered by a recent series of papers by Bzdak [15–18],
suggesting that a strong asymmetric component is present
not only in p-p [4] and d-Au collisions [12] but also in
Au-Au collisions. This observation raises interesting questions
about the hydrodynamic evolution of the quark-gluon plasma
believed to be produced at the BNL Relativistic Heavy Ion
Collider (RHIC) [19].

In the next section we formulate the problem in terms of
generating functions. In Sec. III the relations that allow one to
test various hypotheses in p-p collisions are given. Symmetric
nucleus-nucleus collisions are discussed in Sec. IV. Some
comments on recent STAR measurements [20] are given in
Sec. V. Our conclusions are listed in the last section.

II. GENERAL FORMULATION

If particles emerge from M independent sources,
the generating function for the particle distribution in a
phase-space region G is a product of generating functions
describing distributions of particles from individual sources.

Restricting the discussion to rapidity spectra,1 we consider
two sources that are asymmetric with respect to y = yc.m. = 0
and a third symmetric source. Their generating functions are
denoted by φL, φR , and φC .

1Our discussion applies to any variable symmetric with respect to
an axis or a plane.
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We discuss multiplicity distributions in two intervals of
rapidity, denoted by �L and �R , situated symmetrically with
respect to y = 0.

Consider first the sum [�L + �R]. The generating function
of the multiplicity distribution in [�L + �R] can be written as

�(z; wL,wR,wC) ≡
∑

n

P (n)zn

= [φL(z)]wL[φR(z)]wR [φC(z)]wC , (1)

where wL, wR , and wC are numbers of the relevant sources.
Assuming now that the splitting between �L and �R of

particles from each source is random (i.e., it follows the
binomial distribution), we have for the joint distribution in
�L and �R

φm(zL, zR) ≡
∑
nL,nR

Pm(nL, nR)znL

L z
nR

R

= φm(pLmzL + pRmzR), (2)

where pLm and pRm are probabilities that a particle emitted
from the source labeled m ends up in �L or in �R . Thus
pLm + pRm = 1. Symmetry implies

pLL = pRR ≡ p+; pLR = pRL ≡ p− = 1 − p+;
(3)

pLC = pRC = 1
2 .

Consequently,

�(zL, zR; wL,wR,wC)

= [φ(p+zL + p−zR)]wL[φ(p−zL + p+zR)]wR

× [φC(zL/2 + zR/2)]wC . (4)

For symmetric collisions we have wL = wR ≡ w and φL(z) =
φR(z) ≡ φ(z). We also note that the distribution of particles
in one of the considered intervals, say �L, is evaluated from
�(z) = �(zL = z, zR = 1).

From these formulas one can evaluate all moments of the
joint distribution in �L and �R , as well as the moments of the
distribution in one of the intervals, in terms of the moments of
the distributions describing the sources.

When only symmetric or only asymmetric sources are
present, one can derive relations between the joint moments
(describing the forward-backward correlations) in terms of
the moments characterizing the distribution in one of the
intervals. These relations provide demanding tests for these
hypotheses, allowing one to distinguish between various
mechanisms of particle production. When both symmetric
and asymmetric sources contribute, the relations allow one to
obtain information on distributions characterizing the sources
themselves.

In the next two sections we discuss some of these relations.

III. RELATIONS BETWEEN CUMULANTS

In this section we derive relations between the cumulants
fik of the joint distributions in �+ and �− and the cumulants
fi of the distribution in one of the intervals.

In terms of the generating functions �(zL, zR) and �(z),
the cumulants are defined as

fkl = ∂k+l{log �(zL, zR)}
∂kzL∂lzR [zL=zR=1]

;

(5)

fi0 ≡ fi = di{log �(z)}
dzi

[z=1]
.

Since the logarithm changes the products in �(zL, zR) and
�(z) into sums, we immediately obtain

fk+l − fkl = 1
2 [pk+l

+ + pk+l
− − pk

+pl
− − pl

+pk
−]f̄k+l

= gkglε
2f̄k+l , (6)

where

2f̄i = di{log[φ(z)]2w}
dzi

[z=1]
(7)

are the cumulants of the particle distribution in [�+ + �−]
coming from the two asymmetric sources and

ε = p+ − p−; gk = pk
+ − pk

−
p+ − p−

= 1

2k−1

k/2∑
j=0

(
k

2j + 1

)
ε2j .

(8)

Note that in Eq. (6) the dependence on the number of
sources and the contributions from the symmetric sources
drop out.

The cumulants fi and fkl can be determined from the
standard factorial moments Fi0 = F0i ≡ Fi and from the joint
factorial moments in two intervals:

Fkl ≡ 〈nL · · · (nL − k + 1)nR · · · (nR − l + 1)〉
= ∂k+l�(zL, zR)

∂kzL∂lzR [zL=zR=1]
. (9)

The relevant relations become rather involved at high
orders. The first few are listed in the Appendix.

One sees that, generally, the result depends on two functions
(φ and φC) and one parameter (p+ or p−). The resulting
relations involve not only the observed moments but also the
moments of the distributions characterizing the asymmetric
sources. Thus, if p+ �= p− (i.e., if the sources are indeed
asymmetric), one can—from the measured Fkl and Fk+l—
obtain information about f̄k+l characterizing the distributions
of particles from asymmetric sources.

If there are only asymmetric sources we have obviously
f̄k+l = fk+l , so that all quantities entering the relations (6) can
be measured. In other words, in this case, Eq. (6) represents
identities between the measurable quantities that must be
satisfied if the symmetric sources are not present.

The relation for k = l = 1 is of particular interest, because
it allows one to determine the parameter p+ = 1 − p− and
thus to determine the distribution in rapidity of the particles
from a single asymmetric source [15]. This determination
is, of course, valid only if the two-sources idea is satisfied
by data. The other relations can be used to verify this
assumption.
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When only the symmetric source is present, all moments
φi vanish and we obtain fkl = fk+l , implying

Fkl = Fk+l , (10)

a really strong constraint. Naturally, an identical result is
obtained when p+ = p−, that is, when the asymmetric sources
become symmetric.

IV. NUCLEUS-NUCLEUS COLLISIONS

Investigation of forward-backward correlations in nucleus-
nucleus collisions may be of particular interest, because it
allows one to verify to what extent the asymmetric components
survive the period of thermalization and hydrodynamical
expansion that are believed to determine the outcome of the
collision.

To apply our analysis to this case, one has to take into
account that the number of sources may fluctuate, depend-
ing on the number of collisions and/or wounded nucleons
[17,18,21,22]. Denoting the number of left (right) movers by
wL (wR) and the number of symmetric sources by wC , we
obtain for the generating function of the joint distribution in �L

and �R

�w(zL, zR)

=
∑

wL,wR,wC

W (wL,wR,wC)�(zL, zR; wL,wR,wC), (11)

where W (wL,wR,wC) is the probability distribution of
the number of sources and �(zL, zR; wL,wR,wC) is given
by Eq. (4). The generating function of the distribution
in one of the intervals, say �L, is �w(z) = �w(zL = z,

zR = 1).
Fluctuations in the number of sources imply that the

generating function �w(zL, zR) is no longer a product of
the functions describing the sources.2 Therefore relations
between cumulants become rather involved. It turns out that
somewhat simpler relations are obtained for the factorial
moments. For symmetric processes, where W (wL,wR,wC) =
W (wR,wL,wC), the simplest ones read

F2 − F11 = ε2〈L2 − L1R1〉;
F3 − F12 = ε2{〈L3 − L2R1〉 + 〈C1[L2 − L1R1]〉};
F4 − F22 = ε2{〈L4 − L2R2〉 + 2〈C1[L3 − L2R1]〉

+ 〈C2[R2 − L1R1]〉}; (12)

F4 − F13 = ε2{(1 − p+p−)〈L4〉 − ε2〈L3R1〉
− 3p+p−〈L2R2〉} + 3

2ε2〈C1[L3 − L2R1]〉
+ 3

4ε2〈C2[L2 − L1R1]〉

2Needless to say that, if there are no correlations between numbers
of sources, that is, if the probability W (wL,wR, wC) is a product of
three factors, the situation reduces to the one described in the previous
section.

where 〈· · ·〉 denotes the average over the number of sources
and

Li = di{[φ(z)]wL}
dzi

[z=1]
, Ri = di{[φ(z)]wR }

dzi
[z=1]

,

(13)

Ci = di{[φC(z)]wC }
dzi

[z=1]

are moments of the distribution in �L + �R produced by
left, right, and symmetric sources, respectively. They cannot
be directly measured, so Eq. (12) can be used to obtain
information about them. Such analysis faces, however, a
difficulty: One can see that the right-hand side of Eq. (12)
depends not only on the structure of the sources but also on
the correlation between the number of various sources. To
disentangle these two effects it is necessary to study processes
with various nuclei and at various centralities [17].

If the symmetric sources are absent, Eq. (12) simplifies to

F2 − F11 = ε2[〈L2〉 − 〈L1R1〉];
F3 − F12 = ε2[〈L3〉 − 〈L2R1〉];
F4 − F22 = ε2[〈L4〉 − 〈L2R2〉]; (14)

F4 − F13 = ε2[(1 − p+p−)〈L4〉 − ε2〈L3R1〉
− 3p+p−〈L2R2〉].

Finally, if only symmetric sources are present we return to
the simple relation, Eq. (10).

V. THREE INTERVALS

Fluctuations of the number of sources in nucleus-nucleus
collisions are difficult to control because even precise de-
termination of centrality of the collision is not sufficient to
guarantee a fixed number of sources [17,18,21,22]. To improve
this, the STAR Collaboration measured correlations in three
intervals [20]. Apart from the intervals �L and �R , one adds
the third interval �C , located centrally around yc.m. = 0 and
not overlapping with �L and �R . The correlations between �L

and �R are measured under the constraint that a fixed number
of particles, nC , was found in �C . Particle multiplicity in �C

is obviously related to the number of sources and therefore
one may expect it to be helpful in estimating this number on
an event-by-event basis.

The extensive general discussion of this data is given in
Ref. [22]. These data are also analyzed in Refs. [17] and [21]
within specific models.

We would like to add three comments.

(i) The relations derived in previous sections remain
intact if one adds the condition that a certain number
of particles is observed in the central interval �C .
This should be clear from the derivation: replacing
the probabilities in Eqs. (1) and (2) by conditional
probabilities (fixing the number of particles in �C) does
not change at all our argument.

(ii) When symmetric and asymmetric sources are present,
restricting nC has only a limited effect on the reduction
of fluctuations of the number of sources. This can be
seen by considering the distribution of particles in �C .
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The relevant generating function is

�C(zC) = [φ(1 − pC + pCzC)]wL+wR

× [φC(1 − qC + qCzC)]wC , (15)

where pC is the probability that a particle from an
asymmetric source lands in �C and qC is the probability
that a particle from a symmetric source lands there.

One can see from Eq. (15) that the particle dis-
tribution in �C does not depend on the difference
w− = wL − wR and thus fluctuations of w− are not
restricted by Eq. (15). Moreover, Eq. (15) implies that
the distribution of nC depends on both w+ = wL + wR

and wC . Because the forward-backward correlations
induced by fluctuations of asymmetric sources are,
generally, weaker than those induced by the symmetric
ones, it is important to separate the two contributions.
We conclude that although measurements at a fixed
nC may be helpful, probably some additional model
assumptions are necessary to disentangle this problem.
Let us also note that in Refs. [21,22] only the symmetric
sources are discussed and therefore this aspect of the
problem does not appear.

(iii) Using the methods of Secs. III and IV, relations can also
be derived for the joint moments of the distribution in
the three intervals. The only difference is that one has
to consider the generating function of three variables.

VI. SUMMARY AND COMMENTS

A systematic, model-independent method of studying the
forward-backward correlations in particle production is devel-
oped. It is shown that it provides a useful tool for determining
the structure of the sources of particles created in high-energy
cllisions. In particular, it may be used to uncover left-right
asymmetric components present in these processes and to
study their properties. This point is of interest because, as
explained in the Introduction, various mechanisms of particle
production differ in their predictions for the presence and/or
intensity of such asymmetric sources both in (p-p) and A-A
collisions.

The existing data [23] show reasonable agreement with
the idea that just two asymmetric sources dominate the
observed correlations in p-p collisions [4,10,16]. A similar
conclusion was obtained recently in the analysis of the Au-Au
collisions [24], where data could also be explained without any
symmetric contribution being present [18]. This seems not to
be the case [22] for the more restrictive STAR data [20].3

These conclusions have, of course, important consequences
for selecting the possible mechanisms of particle production.

As is indicated in Sec. V, the analysis of the heavy-ion
data may require additional information about the correlation
between the various particle sources. Even in this complicated
situation the method proposed here can, however, clearly dis-
tinguish whether symmetric or asymmetric sources dominate
the process in question.

3See, however, Refs. [17,21].

New data from the LHC [1–3] show that the multiplicity
in the central rapidity region increases with energy much
faster than expected from simple extrapolations of the trends
observed at lower energies. One possible explanation is that,
as predicted in some models [10], a new symmetric source
of particles may be excited at these high energies. Studying
the forward-backward correlations using methods developed
in the present article should be helpful in verification of this
idea and, possibly, in identification of this new component, as
well as in investigation of its properties.

A question that may be studied by the methods proposed
in this article is the comparison of the forward-backward
correlations in p-p and heavy-ion collisions. Such comparative
studies at energies available at the LHC would allow one
to obtain information about the longitudinal dynamics of
quark-gluon plasma, a problem that is barely touched by the
existing analyses. Forward-backward correlations are created
at the very early stage of the collision (see, e.g., Refs. [22])
and, apparently, survive the evolution of the system. It remains,
however, an interesting question to what extent they are
distorted during this evolution.

Finally, let us emphasize that our approach is not restricted
to rapidity distributions: it can be used to study correlations
in other variables as well. One interesting possibility is to
repeat the standard analysis in rapidity, restricting, however,
the azimuthal angle (keeping of course forward-backward
symmetry). This may provide useful information on corre-
lations in the directed flow.

Another attractive possibility is to consider correlations
in tranverse momentum at a fixed and/or opposite rapidity.
Because the pt distribution in a minimum bias sample is now
becoming accessible in a rather broad range [1–3], the full
potential of the method can be explored. Such investigation
may help in disentangling the jet structure in the low and
medium pt regions.
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APPENDIX

Some explicit relations between cumulants and factorial
moments (for symmetric collisions) are listed below:

f1 = F1; f11 = F11 − F 2
1 ;

f21 = F21 − 2F11F1 − F2F1 + 2F 3
1 ;

f22 = F22 − 4F21F1 − 2F 2
11 − F 2

2 + 4[F2 + 2F11]F 2
1 − 6F 4

1 ;

f31 = F31 − 3F21f1 − F3F1 − 3F11F2

+ 6[F11 + F2]F 2
1 − 6F 4

1 ;

f2 = F2 − F 2
1 ; f3 = F3 − 3F2F1 + 2F 3

1 ;

f4 = F4 − 4F3F1 − 3F 2
2 + 12F2F

2
1 − 6F 4

1 . (A1)
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