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Azimuthal anisotropy: Transition from hydrodynamic flow to jet suppression
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Measured second and fourth azimuthal anisotropy coefficients v2,4(Npart, pT ) are scaled with the initial
eccentricity ε2,4(Npart) of the collision zone and studied as a function of the number of participants Npart and the
transverse momenta pT . Scaling violations are observed for pT � 3 GeV/c, consistent with a p2

T dependence
of viscous corrections and a linear increase of the relaxation time with pT . These empirical viscous corrections
to flow and the thermal distribution function at freeze-out constrain estimates of the specific viscosity and the
freeze-out temperature for two different models for the initial collision geometry. The apparent viscous corrections
exhibit a sharp maximum for pT � 3 GeV/c, suggesting a breakdown of the hydrodynamic ansatz and the onset
of a change from flow-driven to suppression-driven anisotropy.
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A central objective of the experimental program at the
Relativistic Heavy Ion Collider (RHIC) is to delineate the
thermodynamic and transport properties of the hot and dense
matter produced in energetic heavy-ion collisions. This matter
can equilibrate to form a hot plasma of quarks and gluons
(QGP) [1], which rapidly expands, cools, and then hadronizes
to produce the observed particles. The hydrodynamic-like
expansion of the QGP, as well as its interactions with hard
scattered partons, results in the anisotropic emission of hadrons
relative to the reaction plane. At midrapidity, the magnitude of
this momentum anisotropy is characterized by the even-order
Fourier coefficients, vn = 〈ein(�φ)〉, n = 2, 4, . . . , where �φ

is the azimuth of an emitted hadron about the reaction plane
and brackets denote averaging over particles and events.

The coefficients for hadrons with low transverse momenta
(pT � 2 GeV/c) can be understood in terms of flow or partonic
interactions, which drive pressure gradients in an initial
“almond-shaped” collision zone produced in noncentral colli-
sions [2–5]. For higher transverse momenta (pT � 5 GeV/c),
the coefficients can be attributed to jet quenching [6]—the
process by which hard scattered partons interact and lose
energy in the hot and dense QGP prior to fragmenting into
hadrons. This energy loss manifests as a suppression of hadron
yields [7], which depends on the average distance that partons
propagate through the QGP. Thus, v2,4 stem from the fact that
partons that traverse the QGP medium in a direction parallel
(perpendicular) to the reaction plane result in less (more)
suppression due to shorter (longer) parton propagation lengths
[8–10]. This path-length dependence is exemplified in the
recently observed scaling patterns for hadron suppression
[11,12]. The transition from flow-driven to suppression-driven
anisotropy is still poorly understood, and it remains a challenge
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to find a single consistent theoretical framework that gives an
explanation of v2,4 measurements over the full pT range.

The magnitude of v2,4 as well as their detailed dependence
on pT and collision centrality (or number of participants Npart)
give invaluable insights on the thermodynamic and transport
coefficients of the QGP. In particular, flow measurements
[v2(pT ) and v2(Npart)] have been used to estimate the specific
shear viscosity (i.e., the ratio of shear viscosity η to entropy
density s of the plasma) via comparisons to viscous relativistic
hydrodynamic calculations [13–17]. The reliability of these
η

s
estimates is influenced not only by the uncertainties in

the initial conditions for hydrodynamic evolution but also by
ambiguities in the departure from equilibrium on the freeze-out
surface. For a viscous fluid, this distribution (f ) is of the form

dN

dypT dpT dφ
∼ f0 + δf ≡ f0

(
1 + C

(
pT

Tf

)2−α )
, (1)

where f0 is the equilibrium distribution, Tf is the freeze-out
temperature, C ≈ η/(3τsTf ), and α ranges between 0 and 1
[18,19]; τ is the time scale of the expansion. The factor
δf , which results from a finite shear viscosity, is known to
dominate the calculated viscous corrections to v2(pT ) for
pT � 1 GeV/c [19]. However, its momentum dependence and
associated relaxation time τR(p) is not known a priori, and it
is unclear whether it is proportional to p2

T (α = 0 and τR ∝ p)
as has been generally assumed in hydrodynamic calculations
[13–17,19]. The freeze-out temperature and the pT for which
large viscous corrections render a breakdown of viscous
hydrodynamics are also not well established experimentally.

The influence of viscous corrections on the eccentricity-
scaled anisotropy coefficient v2(Npart,pT )

ε2(Npart)
is illustrated in

Figs. 1(a) and 1(b) where the results of hydrodynamic
simulations (with the code of Dusling and Teaney [19]) are
shown for η

s
= 0 and 0.2, respectively. Figure 1(b) shows

that viscous effects reduce v2(Npart, pT ) and break the scale
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FIG. 1. Comparison of v2/ε2 vs Npart for several pT selec-
tions, obtained from perfect fluid (a) and viscous hydrodynamic
(b) simulations [19] of Au + Au collisions.

invariance of ideal hydrodynamics evidenced in Fig. 1(a); that
is, there are deviations away from the essentially flat Npart

dependence expected for ideal hydrodynamic scaling. These
deviations from eccentricity scaling can be used to estimate
and characterize viscous corrections [19–23].

Here, we use the eccentricity-scaled anisotropy coefficients,

v2(Npart, pT )

ε2(Npart)

and
v4(Npart, pT )

ε4(Npart)
,

to extract estimates of the viscous corrections to
v2,4(pT ,Npart). In turn, we use these estimates to explore
the pT dependence of δf and the transition from flow-driven
to suppression-driven anisotropy. We find viscous correction
factors for pT � 3 GeV/c that validate the commonly assumed
p2

T dependence of δf , and give constrained estimates for η

s
and

the freeze-out temperature Tf . For pT � 3 GeV/c, the apparent
viscous corrections signal a breakdown of the hydrodynamic
ansatz.

The v2,4 data employed in our analysis are selected from
the high-precision PHENIX measurements recently reported
for Au + Au collisions at

√
sNN = 200 GeV [24]. These data

show that both v2 and v4 have a strong dependence on pT

and centrality. The large increase in v2,4(pT ) from central to
peripheral events is especially important to our study of viscous
corrections.

Monte Carlo (MC) simulations [25] were used to calculate
the event-averaged geometric quantities used in our analysis.
For each collision, the values for Npart and the number
of binary collisions Ncoll were determined via the Glauber
ansatz [26]. The associated values for the transverse size R̄,
area S, and eccentricities ε2,4 were then evaluated from the
two-dimensional density of sources in the transverse plane

ρs(r⊥) using two principal models: a modified version of
the MC-Glauber approach [26] and the factorized Kharzeev-
Levin-Nardi (MC-KLN) model [27,28].

For each event, we compute an event-shape vector Sn and
the azimuth of rotation 	∗

n for the nth harmonic of the shape
profile [25]:

Snx ≡ Sn cos (n	∗
n ) =

∫
dr⊥ρs(r⊥)ω(r⊥) cos(nφ),

Sny ≡ Sn sin (n	∗
n ) =

∫
dr⊥ρs(r⊥)ω(r⊥) sin(nφ),

	∗
n = 1

n
tan−1

(
Sny

Snx

)
,

where φ is the azimuthal angle of each source and the weight
ω(r⊥) = r⊥2; ε2,4 were calculated as

ε2 = 〈cos 2(φ − 	∗
2 )〉, ε4 = 〈cos 4(φ − 	∗

2 )〉, (2)

where the brackets denote averaging over sources, as well as
events belonging to a particular centrality or impact param-
eter range. For the MC-Glauber calculations, an additional
entropy-density weight was applied reflecting the combination
of spatial coordinates of participating nucleons and binary
collisions [29]:

ρs(r⊥) ∝
[

(1 − α1)

2

dNpart

d2r⊥
+ α1

dNcoll

d2r⊥

]
,

where α1 = 0.14 was constrained by multiplicity measure-
ments as a function of Npart for Au + Au collisions [30].
Note that ε2,4 [cf. Eq. (2)] correspond to v2,4 measurements
in the so-called participant plane [31]; this is analogous to
the measurement of v2,4 with respect to the second-order
event plane as described in Ref. [24]. A correlation between
the principal axes of the quadrupole (	∗

2 ) and hexadecapole
(	∗

4 ) density profiles was also introduced to account for
contributions to v4 from v2 [25]. This correlation has a
significant influence only on ε4 in the most central collisions
[25].

Figures 2 and 3 show eccentricity-scaled values of
v2,4(pT ,Npart) obtained with MC-KLN eccentricities for sev-
eral pT cuts. The low-pT selections are almost flat, that is,
small scaling violations. These violations gradually increase
with pT over the pT range indicated in Fig. 2. That is, the data
points slope upward progressively (from low to high Npart) as
the 〈pT 〉 is increased. Figure 3 shows that this trend reverses
to give scaling violations that decrease with increasing 〈pT 〉,
for 〈pT 〉 � 3 GeV/c. This inversion could be an indication
for the onset of suppression-driven anisotropy as discussed in
what follows. Similar scaling performed with MC-Glauber
eccentricities shows the same trends exhibited in Figs. 2
and 3, albeit with larger scaling violations.

In lieu of detailed model comparisons [32], we estimate
the magnitude of the viscous corrections by parametrizing
the observed scaling violations with a Knudsen number
(K = λ/R̄) ansatz akin to that in Refs. [20,21];

v2k(pT )

ε2k

= vh
2k(pT )

ε2k

{
1

1 + [K∗(pT )/K0]

}k

k = 1, 2, . . . ,

(3)
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FIG. 2. (Color online) Comparison of v2/ε2 vs Npart (a) and
v4/ε4 vs Npart (b) for several pT selections as indicated [24]. The
dashed curves indicate a simultaneous fit to the data in (a) and (b)
(for each pT ) with Eq. (3). The v2,4 data are from Ref. [24].

where K∗(pT ) characterizes the magnitude of the viscous
correction for a given pT , [vh

2,4(pT )]/ε2,4 are the eccentricity-
scaled coefficients expected from ideal hydrodynamics, λ is the
mean-free path, and K0 is a constant estimated to be 0.7 ± 0.03
with the aid of a transport model [33].

For each pT selection, [K∗(pT )]−1 = β(pT ) 1
S

dN
dy

; ( dN
dy

∝
Npart) is evaluated by fitting

v2,4(pT ,Npart)

ε2,4(Npart)

verus Npart with Eq. (3) (cf. curves in Figs. 2 and 3). The
fit parameters β(pT ), so obtained, allow the determination of
K∗(pT ) as a function of Npart. Note that a model uncertainty

FIG. 3. (Color online) v2/ε2 vs Npart for several 〈pT 〉 values as
indicated. The filled circles are the same as in Fig. 2(a). The dashed
curves show fits to the data obtained with Eq. (3). The v2 data are
from Ref. [24].

FIG. 4. (Color online) K∗ vs 〈pT 〉2 (a) and (b), and KR̄ vs Npart

(c) and (d), extracted with MC-KLN (left panels) and MC-Glauber
geometry (right panels). The filled circles in (a) indicate results from
the simultaneous fits shown in Fig. 2. The dashed curves in (a) and
(b) show a fit to the data for 〈pT 〉2 � 10 [GeV/c]2.

in the value of K0 would lead to an accompanying uncertainty
in the magnitude of K∗. However, the consistency of our
procedure with hydrodynamic models has been tested via
fits to v2(Npart,pT )

ε2(Npart)
versus Npart, obtained for specified values

of η

s
[23]. These fits lead to η

s
values that reproduce the input

values to the hydrodynamic simulations.
Figures 4(a) and 4(b) show the values of K∗ versus p2

T ,
extracted for Npart ∼ 351 with MC-KLN and MC-Glauber
geometries respectively (the plots for other values of Npart

show similar trends but with different intercepts). The filled
circles in Fig. 4(a) show results from the simultaneous fits
indicated by the dashed curves in Figs. 2(a) and 2(b). The
squares show results for fits that employ only

v2(pT ,Npart)

ε2(Npart)

data [24]; both are in good agreement.
The K∗ values shown in Figs. 4(a) and 4(b) indicate a

linear dependence on p2
T , for 〈pT 〉2 � 10 [GeV/c]2, that

demonstrates a nonzero viscosity and the p2
T dependence of δf

commonly assumed in hydrodynamic simulations [13–17,19].
In contrast, the data for 10 � 〈pT 〉2 � 40 [GeV/c]2 show a
striking trend inversion. We interpret this as a signal for the
breakdown of the hydrodynamic ansatz when K∗ ∼ 1, as well
as an indication for the onset of suppression-driven anisotropy.
Note that such a scenario would lead to improved eccentricity
scaling for pT � 3 GeV/c because the eccentricity encodes
the variation of the path length relative to the orientation of the
reaction plane, and the suppression of hadron yields has been
found to increase as 1√

pT
for a similar pT range [12].

To obtain estimates for K and Tf for each value of Npart,
we use our observation that K∗(pT ) ∝ p2

T in conjunction with
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the first-order expansion of

v2(pT ) = 〈cos(2�φ)〉pT

≡
∫ π

−π
d�φ cos(2�φ)[ (d3N )/(dy pt dpt d�φ)]∫ π

−π
d�φ [(d3N )/(dy pt dpt d�φ)]

,

to obtain the expression K∗(pT ) = K + B
Tf

(
pT

Tf

)2
; the constant

B was cross-checked via fits to the results from hydrodynamic
simulations. Fits to K∗ versus p2

T were performed with this
fit function. The dashed curve in Fig. 4(a) indicates such a fit
for 〈pT 〉2 � 10 [GeV/c]2; it gives the values K = 0.09 ± 0.01
(from the intercept) and Tf = 162 ± 11 MeV (from the slope).
The same fit to the K∗ values in Fig. 4(b) (extracted with MC-
Glauber eccentricities) gives the values K = 0.17 ± 0.007 and
Tf = 173 ± 11 MeV. These same values of Tf are indicated
by the fits to the data for other Npart values, for both data sets.
However, as to be expected, the extracted K values vary with
Npart. Note again that a model uncertainty in the value of K0

would lead to an accompanying uncertainty in the magnitude
of K and the associated values for λ and η

s
discussed in what

follows. The estimates for Tf are similar to the chemical freeze-
out temperature (Tc ∼ 165 MeV) obtained for a broad range
of collision energies [34].

Figures 4(c) and 4(d) show the product KR̄ verus
Npart, obtained with MC-KLN and MC-Glauber geometry
respectively. Figure 4(c) indicates that the estimated value
λ ∼ 0.17 ± 0.018 fm is essentially independent of Npart.
Figure 4(d) indicates a larger estimate for central collisions
λ ∼ 0.33 ± 0.02 fm and a mild increase as collisions become
more peripheral. While our analysis seems more consistent for

the MC-KLN geometry, the model dependencies apparent in
Fig. 4 highlight the importance of experimental signatures
that can distinguish MC-KLN and MC-Glauber collision
geometries [25].

Estimates for η

s
were obtained via the expression η

s
≈

λT cs ≡ (R̄KT cs), where the sound speed cs = 0.47 ± 0.03 c
was obtained from lattice calculations [35] for the mean
temperature T = 220 ± 20 MeV [36]. This gives the estimates
4π

η

s
= 1.1 ± 0.1 and 4π

η

s
= 2.1 ± 0.2 for the K values

extracted using MC-KLN and MC-Glauber eccentricities
(respectively) in central and midcentral collisions. These
estimates are in agreement with the low value from prior
extractions [13–17,19,21,23,37–39].

In summary, we have used eccentricity-scaled anisotropy
coefficients to extract estimates of the strength and role of the
viscous corrections. These estimates show a quadratic increase
with pT (for pT � 3 GeV/c) that validates a nonzero viscosity
and a relaxation time that grows with pT . The extracted
viscous corrections also constrain the estimates 4π

η

s
∼ 1.1 ±

0.1 (2.1 ± 0.2) and Tf = 162 ± 11 MeV (173 ± 11 MeV) for
MC-KLN (MC-Glauber) collision geometries for a strongly
coupled plasma. The onset of a transition from flow-driven to
suppression-driven anisotropy is signaled by a sharp maximum
of the apparent viscous corrections for pT � 3 GeV/c. These
results provide valuable constraints for input parameters to
more detailed viscous hydrodynamic calculations.
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