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Squeezed K+ K− correlations in high energy heavy ion collisions
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The hot and dense medium formed in high energy heavy ion collisions may modify some hadronic properties.
In particular, if hadron masses are shifted in-medium, it was demonstrated that this could lead to back-to-back
squeezed correlations (BBC) of particle-antiparticle pairs. Although well-established theoretically, the squeezed
correlations have not yet been discovered experimentally. A method has been suggested for the empirical search
of this effect, which was previously illustrated for φφ pairs. We apply here the formalism and the suggested
method to the case of K+K− pairs, since they may be easier to identify experimentally. The time distribution of
the emission process plays a crucial role in the survival of the BBC’s. We analyze the cases where the emission
is supposed to occur suddenly or via a Lorentzian distribution, and compare with the case of a Lévy distribution
in time. Effects of squeezing on the correlation function of identical particles are also analyzed.
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I. INTRODUCTION

Since the beginning of the 1990s, some people started
calling attention to the possible existence of a different type of
correlation, occurring between particles and their antiparticles.
Initially, in 1991, Weiner et al. [1] pointed out the surprise
existence of a new quantum statistical correlation between
π+π−, which would be similar to the π0π0 case (since π0 is its
own antiparticle), but entirely different from the Bose-Einstein
correlations (between π±π±) leading to the Hanbury-Brown–
Twiss (HBT) effect. They related those correlations to the
expectation values of the annihilation (creator) operators,
〈â(†)(k1)â(†)(k2)〉 �= 0, which was then estimated by using
a density matrix containing squeezed states, analogous to
two-particle squeezing in optics. They predicted that such
squeezed correlations would have intensities above unity,
either for charged or neutral pions, i.e., Cs(π+π−) > 1 and
Cs(π0π0) > 1. Later, Sinyukov [2], discussed a similar effect
for π+π− and π0π0 pairs, claiming that they would be due to
inhomogeneities in the system, in opposition to homogeneity
regions in HBT, coming from a hydrodynamical description
of the system evolution.

Other tentative models tried to formulate the problem more
accurately, and it finally happened at the end of that decade, in
a proposition made by Asakawa et al. [3]. In their approach,
these squeezed back-to-back correlations (BBC) of boson-
antiboson pairs resulted from a quantum mechanical unitary
transformation relating in-medium quasiparticles to two-mode
squeezed states of their free counterparts. We discuss it in
some more detail below. Shortly after that, Panda et al. [4]
predicted that a similar BBC between fermion-antifermion
pairs should exist, if the masses of these particles were mod-
ified in-medium. Both the fermionic (fBBC) and the bosonic
(bBBC) back-to-back squeezed correlations are described
by analogous formalisms, being both positive correlations
with unlimited intensity. This last feature contrasts with the
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observed quantum statistical correlations of identical bosons
and identical fermions, whose intensities are limited to vary
between 1 and 2, or 0 and 1, respectively. In the remainder
of this paper, we focus our discussion on the bosonic case
only.

The correlation reflecting the squeezing is quantified in
terms of the ratio of the two-particle distribution by the product
of the single-inclusive distributions, i.e., the spectra of the
particle and of the antiparticle. For the sake of comprehension,
we first briefly discuss the formalism for bosons that are their
own antiparticles, such as φφ or π0π0 pairs. In this case,
the full correlation function, after applying a generalization
of Wick’s theorem for locally equilibrated systems [5,6]
consist of a part reflecting the identity of the particles (HBT),
and another one, reflecting the particle-antiparticle squeezed
correlation (BBC). This can be written as

C2(k1, k2) = N2(k1, k2)

N1(k1)N1(k2)

= 1 + |Gc(1, 2)|2
Gc(1, 1)Gc(2, 2)

+ |Gs(1, 2)|2
Gc(1, 1)Gc(2, 2)

. (1)

The invariant single-particle and two-particle momentum
distributions are given by

Gc(i, i) = ωki

〈
â
†
ki

âki

〉 = ωki

d3N

dki

,

Gc(1, 2) = √
ωk1ωk2

〈
â
†
k1

âk2

〉
,

Gs(1, 2) = √
ωk1ωk2

〈
âk1 âk2

〉
. (2)

In the above equations, 〈...〉 represents thermal averages.
The first term in Eq. (2) corresponds to the spectrum of
each particle, the second is due to the indistinguishability
of identical particles, reflecting their quantum statistics. The
third term, in the absence of in-medium mass shift is in
general identically zero. However, if the particle’s mass is
modified in-medium, it can contribute significantly, triggering
this novel type of particle-antiparticle correlation, yet to
be discovered experimentally. This is achieved by means
of a Bogoliubov-Valatin (BV) transformation, which relates
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the asymptotic creation (annihilation) operators, â
†
k (âk), of

the observed bosons with momentum kµ = (ωk, k), to the
in-medium operators, b̂

†
k (b̂k), corresponding to thermalized

quasiparticles. The BV transformation is given by

âk = ckb̂k + s∗
−kb̂

†
−k; â

†
k = c∗

k b̂
†
k + s−kb̂−k, (3)

being ck = cosh(fk) and sk = sinh(fk); (−k) denotes an
opposite sign in the spacial components of the momenta. For
conciseness, we keep here the short-hand notation introduced
in Ref. [3]. The coefficient

fi,j (x) = 1

2
log

[
K

µ

i,j (x) uµ(x)

K∗ν
i,j (x) uν(x)

]
, (4)

is the squeezing parameter, where K
µ

i,j (x) = 1
2 (kµ

i + k
µ

j ) is the
average of the momenta of each particle, and uµ is the flow
velocity of the system. The BV transformation between the
operators is equivalent to a squeezing operation, from which
the name of the resulting correlation is derived.

In case of charged mesons, such as π± or K±, the terms
in Eq. (1) would act independently, i.e., either the first and
the second terms together would lead to the HBT effect (for
π±π± or K±K± pairs), and the first and the last terms, to the
BBC effect (for π+π− or K+K− pairs).

The in-medium modified mass, m∗, was originally [3]
related quadratically to the asymptotic mass, m, i.e., m2

∗(|k|) =
m2 − δM2(|k|), where the shifting in the mass, δM(|k|),
could depend on the momenta of the particles. Nevertheless,
adopting the same simplified assumption as in a few previous
studies [7–16], we also consider here a constant mass-shift,
homogeneously distributed all over the system, and related
linearly to the asymptotic mass by m∗ = m ± δM .

II. RESULTS FOR K+ K− PAIRS

Initial studies of the problem were performed for a static,
infinite medium [3,4], later extended to a finite-size system,
radially expanding with moderate flow [7]. For simplicity,
a nonrelativistic approach was considered, assuming flow-
independent squeezing parameter. The expansion of the system
was described by the emission function from the nonrelativistic
hydrodynamical parametrization of Ref. [9], later shown to be a
nonrelativistic hydrodynamical solution. In Fig. 1 we illustrate
these assumptions with a simple sketch. The flow velocity
during the system expansion was considered as v = 〈u〉r/R.
The values 〈u〉 = 0 and 〈u〉 = 0.5 are used in the present work.
Within the hypotheses described above, analytical results were
obtained for the squeezed correlation function [7] of K+K−
pairs [first and third terms in Eq. (1)], as

Cs(k1, k2) = 1 + (E1 + E2 )2

4E1E2

|c0 |2|s0 |2
∣∣∣∣R3e− R2

2 (k1+k2)2

+ 2n∗
0R

3
∗ exp

[
− (k1 − k2)2

8m∗T

]
exp

[
− im〈u〉R

2m∗T∗
(k1 + k2)2

]

× exp

[
− (k1 + k2)2

8m∗T∗

]
exp

[
−R2

∗
2

(k1 + k2)2

]∣∣∣∣
2

FIG. 1. Sketch illustrating the cross-sectional area of the
Gaussian profile (∼e−r/(2R)2

) of the system expanding with radial
flow.

× {[|s0 |2R3 + n∗
0R

3
∗(|c0 |2 + |s0)|2) exp

(−k2
1

/
(2m∗T∗)

)]
[|s0 |2R3 + n∗

0R
3
∗(|c0 |2 + |s0)|2) exp

(−k2
2

/
(2m∗T∗)

)]}−1
.

(5)

The medium-modified radius and temperature in Eq. (5) are
written, respectively, as R∗ = R

√
T/T∗ and T∗ = T + m2〈u〉2

m∗
,

as introduced in Ref. [7].
As done in the case of φφ correlations [15], it is instructive

to analyze the behavior of the correlation function for exactly
back-to-back particle-antiparticle pairs, i.e., pairs with exactly
opposite momenta, as a function of the shifted mass parameter,
m∗, and of the absolute value of their momenta. Therefore, we
investigate the behavior of Cs(k,−k,m∗) as a function of m∗
and |k|. This is obtained by imposing the idealized limit of
k1 = −k2 = k in Eq. (5). Consequently, a few simplifications
occur at once in that equation, i.e., k1 − k2 = 2k and k1 +
k2 ≡ 0.

Another essential assumption is underlying the above result.
The solution in Eq. (5) follows when an instantaneous process
is considered for the particles’ emission. We adopt throughout
the paper h̄ = c = 1. In the case of instantaneous emission,
the time factor is given by

|e−i(E1+E2)τ0 |2 = 1, (6)

which results from the Fourier transform of an emission
distribution described by a δ function. Nevertheless, it is not
expected that it this corresponds to a realistic situation. An
emission lasting for a finite time interval seems more appro-
priate. Naturally, a priori it is not known which functional
form better describes the particle emission process. In what
follows, we consider two other types of distribution. One of
them is a Lorentzian form,

|F (�t)|2 = [1 + (ω1 + ω2)2�t2]−1, (7)

where ωi = √
k2

i + m2. The Lorentzian emission distribution
in Eq. (7) was suggested in Ref. [3] and adopted in previous
studies [4,7,8,11–16]. Either of the factors in Eq. (6) or (7)
should multiply the second term in Eq. (5). As discussed in
Ref. [3], in the adiabatic limit, �t → ∞, the time factor in
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FIG. 2. (Color online) C(k, −k) × m∗ × |k| comparing the instantaneous and the Lorentzian distributions for both the static case, 〈u〉 = 0,
and for an expanding system with radial flow parameter 〈u〉 = 0.5.

Eq. (7) completely suppresses the back-to-back correlation
(BBC). On the contrary, in the instantaneous approximation,
either from Eq. (6) or in the limit �t → 0 of Eq. (7), the
result returns to the form written in Eq. (5), fully preserving
the strength of the BBC.

The third type of particle emission that we consider here is
a symmetric, α-stable Lévy distribution, i.e.,

|F (�t)|2 = exp{−[�t(ω1 + ω2)]α}. (8)

This functional form was used in the analysis made by the
PHENIX Collaboration [18] to fit two- and three-particle Bose-
Einstein correlation functions. According to that analysis,
depending on the region investigated of the particles’ trans-
verse momentum or transverse mass, a good confidence level
was obtained in the fit for different values of α. They found
α ∼ 1 for 0.2 < mT < 0.3 GeV or α = 1.35 for 0.2 < pT <

2.0 GeV/c. Therefore, we investigate here the time emission
factor of Eq. (8) for these two values of the distribution index,
α. The Lévy distribution in Eq. (8) should also multiply the
second term in Eq. (5). We will see in what follows that the
reduction effect of this distribution on the squeezed correlation
function is even more dramatic than the effect of the Lorentzian
in Eq. (7).

We show in Fig. 2 results comparing the time emission
distributions of Eqs. (6) and (7). The freeze-out temperature
(T = 177 MeV) and radial flow (〈u〉 ≈ 0.5) parameters were

suggested by experimental fits of kaon data obtained by the
PHENIX experiment [19].

Comparing parts (a) and (b) in the top panel of Fig. 2 with
parts (c) and (d) in the bottom, we see that the strength of the
BBC, C(k,−k) × m∗ × |k|, decreases almost three orders of
magnitude due the Lorentzian time factor, as compared to the
instantaneous emission. However, the resulting signal is still
strong enough to allow for its experimental search. Another
interesting outcome of the calculation is shown in the left panel
in Fig. 2 [(a) and (c)] as compared to the right panel [(b) and
(d)]. In this case, we see the effect of the expansion of the
system on the squeezed correlation function. The growth of
the squeezed correlation for increasing values of |k| is faster
in the static case as compared to when 〈u〉 = 0.5, especially
at high values of |k|. Nevertheless, the presence of flow seems
to enhance the intensity of Cs(k,−k,m∗) in the whole region
of the (m∗, |k|) plane investigated, mainly in the lower |k|
region. Naturally, at m∗ = mK± ∼ 494 MeV, the squeezing
disappears, i.e., Cs(k,−k,m∗ = mK±) ≡ 1.

In the case of the Lévy distribution, the essential features of
finite emission interval as compared to the sudden freeze-out
are similar to the ones discussed with regard to Fig. 2. The
same is valid when comparing expanding systems with the
static case, for which 〈u〉 = 0. Therefore, we show only results
for 〈u〉 = 0.5 in Fig. 3. We compare C(k,−k) × m∗ × |k|
for α = 1 and α = 1.35, considering that the duration of the
emission could last either �t = 1 fm/c or �t = 2 fm/c. We
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FIG. 3. (Color online) C(k, −k) × m∗ × |k| for the symmetric, α-stable Lévy distribution with parameters α = 1.0 and α = 1.35.

see that, even for a short-lived system, with �t = 1 fm/c and
α = 1, the reduction of the squeezed correlation intensity due
to the Lévy distribution is even more dramatic than that due
to the Lorentzian time emission. For α = 1.35, that strength
is driven to values probably unmeasurable in a first tentative
search. For �t = 2 fm/c, the situation is considerably worse,
even if α = 1. Finally, combining �t = 2 fm/c with α = 1.35
reduced the signal basically to unity, the first nonzero decimal
digit being too small for the precision of the axis scale, if we
tried to plot C(k,−k) as in the other parts of Fig. 3. That is why
in Fig. 3(a) we plot C(k,−k) − 1. We see that the resulting
squeezed correlation function acquires values too small to be
measured by this method. Therefore, if nature favors the Lévy
distribution and if the emission lasts a short period, i.e., �t =
1 fm/c, then the predicted strength of C(k,−k) × m∗ × |k|
from Fig. 3 makes it still possible to search for the signal,
if α = 1. However, if α = 1.35, even if the emission lasts
for this short period, it would basically wash the effect out.
For illustrating the procedure to search for the BBC’s, and
supposing that nature is kind enough to let us envisage the
squeezing effect also for hadron-antihadron pairs, we restrict
our discussion, from now on, to the Lorentzian type of
distribution.

The properties shown in Figs. 2 and 3 were important
for understanding the expected behavior of the squeezed
correlation function for different values of the shifted mass,
m∗, and back-to-back momenta of the pair, k1 = −k2 = k.
This approach, however, focuses the study on the behavior
of the maximum value of Cs(k,−k,m∗). In other words, if

we make an analogy to the HBT effect between identical
particles, this corresponds to investigate the behavior of the
correlation function’s intercept. Nevertheless, it is not efficient
for the purpose of searching for the BBC experimentally, since
the modified mass of particles is not an observable quantity,
existing only inside the hot and dense medium. Besides,
the measurement of particle-antiparticle pairs with exactly
back-to-back momenta has zero probability of happening in
practice. It would be more realistic to look for distinct values
of the momenta of the particles, k1 and k2, and combine
in an appropriate manner. Therefore, following previous
knowledge of identical particle correlations (HBT), the first
natural tentative method would be to measure the squeezed
correlation function in terms of the momenta of the particles
combined as their average, K12 = 1

2 (k1 + k2), and their
relative momenta, q12 = (k1 − k2) [12–15]. However, this
proposition considers nonrelativistic momenta and therefore
has its application constrained to this limit. For a relativistic
treatment, Nagy [12] proposed to construct a momentum
variable defined as Q

µ

back = (ω1 − ω2, k1 + k2) = (q0, 2K).
In fact, it is preferable to redefine this variable as Q2

bbc =
−(Qµ

back)2 = 4(ω1ω2 − KµKµ), whose nonrelativistic limit is
Q2

bbc → (2K12)2, returning to the average momentum variable
proposed above. Although not invariant, the advantage of
constructing Q2

bbc as indicated is that the squeezed correlation
function would have its maximum around the zero of this
variable, keeping a close analogy to the HBT procedures and
to its nonrelativistic counterpart. In the remainder of this paper,
we attain our study to the nonrelativistic limit, where the
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FIG. 4. (Color online) Behavior of the squeezed correlation function in the (K12, q12) plane, fixing the modified mass to m∗ = 350 MeV.

analytical results of the model under discussion, written in
Eq. (5) and related ones, are safely applicable.

The analogy with the HBT method is not completely
transferred to the study of the BBC effect. In HBT experimental
analyses a common practice is to replace the product of the two
spectra by mixed events, since these are the reference sample
not containing statistically correlated pairs. However, we see
that the second line in Eq. (5), representing the product
of the particle and the antiparticle spectra in BBC, does contain
the squeezing factor fi,j as well. Therefore, the mixed events
technique would not be an appropriate reference sample in
constructing the BBC correlation function.

Once defined the choice of plotting variables as K12 and q12,
we can proceed to study the squeezed correlation function.
For emphasizing the characteristics to be searched for, we
focus the study to values of the shifted mass corresponding
to the two maxima located more or less symmetrically below
and above the kaon asymptotic mass, m = mK± ∼ 494 MeV.
They correspond to m∗ = 350 MeV and m∗ = 650 MeV,
respectively. We then calculate the squeezed correlation for
K+K− pairs using Eq. (5). From it, it is easily envisaged that
we should replace k1 + k2 = 2K12 and k1 − k2 = q12 in the
numerator, at the same time as replacing k1 = K12 + q12/2
and k2 = K12 − q12/2 in the denominator. The result of this
calculation is shown in Figs. 4 and 5. In both cases we
can observe similar behavior of the squeezed correlation

functions. The difference resides mainly in the low q12 region,
where Cs(K12, q12,m∗) reaches much higher intensities for
m∗ = 650 MeV than for m∗ = 350, including for its intercept
at K12 = 0. In both cases we see that the presence of
flow enhances the strength of Cs(K12, q12,m∗), potentially
facilitating its detection in an experimental search of the effect.

In all the investigation and results discussed above,
the mass-shifting was considered homogeneously distributed
over the entire squeezing region, whose size was fixed to
R = 7 fm, the radius of the cross-sectional area depicted in
Fig. 1. The squeezed correlation function is actually sensitive
to that size. In fact, this is reflected in its inverse width of the
squeezed correlation functions plotted in terms of the average
momentum, 2K12. In Ref. [15] we illustrate this sensitivity by
considering two values for the radii, R = 7 fm and R = 3 fm.
The resulting squeezed correlation function is shown to be
broader for smaller systems than for larger ones.

III. RESULTS FOR K± K± PAIRS

Next, we discuss our findings about the effects of in-
medium mass-shift and resulting squeezing on the HBT
correlation function of K±K± pairs. Usual expectations were
that thermalization would wash out any trace of mass-shift in
these type of correlations. However, as it was demonstrated
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FIG. 5. (Color online) Behavior of the squeezed correlation function in the (K12, q12) plane, fixing the modified mass to m∗ = 650 MeV.

analytically in Refs. [3,4], the HBT correlation function also
depends on the squeezing parameter, fi,j (m,m∗).

In fact, this identical particle correlation is obtained by
inputting in Eq. (1) the chaotic amplitude,

Gc(k1, k2) = E1 + E2

2(2π )
3
2

{
|s0 |2R3e− 1

2 R2q2
12 + n∗

0R
3
∗(|c0 |2 + |s0 |2)

× exp

(
− K2

12

2m∗T∗

)
exp

[
−

(
R2

∗
2

+ 1
8m∗T

)
q2

12

]

× exp

[
− im〈u〉R

m∗T∗
K12.q12

]}
, (9)

as well as the expression for the spectrum of each
particle, Gc(ki, ki) = Ei

(2π)
3
2
{|s0|2R3 + n∗

0R
3
∗(|c0|2 + |s0|2)

exp(− k2
i

2m∗T∗
)}. Since it involves the identical kaons in this

case, the third term in Eq. (1) gives no contribution. The
plots corresponding to such results are shown in Fig. 6, for
two values of the average momentum, |K12| = 0.5 GeV/c

and |K12| = 2.0 GeV/c. The plots in the top panel simply
illustrate the behavior of the identical particle correlation
function if no in-medium mass modification occurs. In (a) for
the sudden emission hypothesis, and in (b) for emission with
finite duration (with �t = 2 fm/c). Finite emission intervals
are also described by a Lorentzian distribution similar to that
in Eq. (7) obtained as the Fourier transform of an exponential
distribution in time, but in this case, obtained in terms of the

relative energy, q0 = ω1 − ω2, i.e.,

|F (�t)|2 = [1 + (ω1 − ω2)2�t2]−1, (10)

where ωi =
√

k2
i + m2. The factor in Eq. (10) multiplies the

second term in Eq. (1).
In Fig. 6(a), with �t = 0, no sensitivity to the two values of

|K12| is seen, only the effect of flow is evident. In the absence
of mass-shift and squeezing, the flow broadens the curves, as
expected, since it is well-known that the expansion reduces the
size of the region accessible to interferometry. In part (b), we
see that a finite duration of the emission separates the curves
for each value of |K12|, both in presence and in absence of flow.
This effect is also well known, and comes from the coupling
of the average momentum of the pair to the emission duration,
�t . Therefore, when there is no mass-shift and no squeezing,
the relations describe correctly the expansion effects on the
identical particle correlation function.

When squeezing is present, the flow broadening is seen in
Fig. 6(c) for |K12| = 0.5 GeV/c, but apparently disappears
for |K12| = 2.0 GeV/c. Therefore, it seems that the squeezing
effects tend to oppose those of flow, practically canceling the
broadening of the correlation function due to flow for large
|K12|. Part (d) essentially repeats what is seen in (c), except
for devising a modest effect related to the finite duration of the
emission, which slightly separates the curves corresponding
to the two values of |K12|, when 〈u〉 = 0.
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FIG. 6. Identical particle correlation functions for two values of |K12|, both for sudden emission (�t = 0) and for a Lorentzian distribution
in time, from Eq. (10), with �t = 2 fm/c. (a) and (b) show results in the absence of in-medium mass modification. (c) and (d) consider a
shifted mass of m∗ = 350 MeV .

We remark that we did not include the Coulomb final state
interactions in the above analysis. In the case of K+K− pairs,
even the Gamow factor which overpredicts the strength of the
effect for finite distances would be very small. In general, the
effect of the Coulomb interactions is more pronounced for
small values of |q12|, which corresponds to the region where
the hadron-antihadron squeezing correlation is less favored,
therefore being less significant to this analysis. Also in the
case of K±K± pairs, the squeezing affects the width of the
HBT correlation function and, since the Coulomb effect is
mostly concentrated in the region where |q12| is small [17], it
is not expected to be relevant in this context.

IV. SUMMARY AND CONCLUSIONS

In this work we discuss an effective way to search
for K+K− squeezed correlations in heavy ion collisions,
currently at RHIC, and soon at the LHC. We use suitable
variables introduced previously [8,10–15] to investigate the
expected behavior of the squeezed correlation function in an
experimental search of the effect. This is studied by plotting
Cs(K12, q12,m∗) in terms of the average momentum of the
pair, 2|K12|, and its relative momentum, |q12|. These variables
are combinations of the momenta of the particle and the
antiparticle of each pair, and 2|K12|, is the nonrelativistic limit
of Q2

bbc = 4(ω1ω2 − KµKµ), as discussed previously [12].

We started by investigating the general behavior of
Cs(k,−k,m∗) for exactly back-to-back K+K− pairs, as a
function of both |k| and the in-medium shifted mass, m∗.
This was showing in Fig. 2 comparing the cases of sudden
particle emission and a finite emission interval described by a
Lorentzian distribution. A Lévy distribution was also studied,
with results shown in Fig. 3. We could see the striking reduction
effect of finite emission intervals, even for the Lorentzian
distribution. The Lévy type causes an even more dramatic
suppression of the effect. If this distribution is the one favored
by nature, the hadronic squeezed correlation function could
still be searched for, if the duration of the emission process
is short, not longer than �t � 1 fm/c. For longer emission
time intervals, such suppression would probably destroy the
effect.

For illustrating the procedure to be followed in the experi-
mental search of the hadronic squeezing effect, we suppose that
the emission could be considered either sudden or following
a Lorentzian distribution. We then analyze the behavior of the
particle-antiparticle correlation function, Cs(K12, q12,m∗), in
the (K12, q12) plane. We find that, in the presence of flow,
the signal is expected to be stronger over the momentum
regions shown in the plots, i.e., roughly for 0 � 2|K| �
60–150 MeV/c (depending on the size of the squeezing
region) and 500 � |q| � 2000 MeV/c, suggesting that flow
may enhance the probability of observing the squeezing effect.
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Another important point discovered within this simplified
model and in the nonrelativistic limit considered here is that
the squeezing could distort the HBT correlation function as
well. It tends to oppose to the effects of flow on those curves,
practically neutralizing them for large values of |K12 |.

Finally, it is worth emphasizing that the results shown here
correspond to the signals of the squeezing expected if the
particles have their mass shifted in the hot and dense medium
formed in high energy collisions. If the particle’s properties,
such as its mass, are not modified in the medium, the squeezed
correlation functions would be unity for all values of 2|K|, and
therefore, no signal would be observed. It that is the case, then
the HBT correlation functions would behave as usual, both
in the presence or absence of flow. However, if the particles’
masses are indeed shifted in-medium, the experimental dis-
covery of squeezed particle-antiparticle correlation (and the
distortions pointed out in the HBT correlations) would be an
unequivocal signature of these modifications, by means of
hadronic probes. The values of the modified mass, m∗, adopted
here for illustrating the squeezing effects for K+K− pairs, cor-
respond approximately to the maximum values shown in Fig. 2.
However, if the modified mass turns to be shifted away from
the maximum values considered in the above calculations,
Cs(2K12, q12) would attain smaller intensities than the ones

shown, but the signal could still be high enough to be observed
experimentally. The squeezed correlations are very sensitive to
the form of the emission distribution in time, as shown above.
Instant emissions would fully preserve the signal. Lorentzian
time distributions would drastically reduce it and Lévy-type
distributions would attenuate it more dramatically or even
make the searched signal unmeasurable. Another important
point that needs emphasis is that the squeezed correlation
function should be plotted in the (K12, q12) plane. If plotted
as function of K12 only, this means that all the variations in
each bin of q12 are averaged out, as they are projected in the
K12 axis. This could enlarge the error bars and decrease the
signal substantially, depending on the region of q12 selected for
the plot. Therefore, the experimental search for the squeezed
hadronic correlations should aim at good statistics of the events
for enhancing the chances of its discovery.
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