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Spinodal phase separation in relativistic nuclear collisions
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The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics
for the purpose of elucidating the prospects for this mechanism to cause a phase separation to occur during
a relativistic nuclear collision. The present study includes not only viscosity but also heat conduction (whose
effect on the growth rates is of comparable magnitude but opposite), as well as a gradient term in the local
pressure, and the corresponding dispersion relation for collective modes in bulk matter is derived from relativistic
fluid dynamics. A suitable two-phase equation of state is obtained by interpolation between a hadronic gas and
a quark-gluon plasma, while the transport coefficients are approximated by simple parametrizations that are
suitable at any degree of net baryon density. We calculate the degree of spinodal amplification occurring along
specific dynamical phase trajectories characteristic of nuclear collision at various energies. The results bring
out the important fact that the prospects for spinodal phase separation to occur can be greatly enhanced by
careful tuning of the collision energy to ensure that the thermodynamic conditions associated with the maximum
compression lie inside the region of spinodal instability.
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I. INTRODUCTION

It is expected that the confined and deconfined phases of
strongly interacting matter may coexist at net baryon densities
above a certain critical value, and significant experimental
efforts are underway to search for evidence of the associated
first-order phase transition and its critical end point: A
systematic beam-energy scan is currently being performed
at the Relativistic Heavy Ion Collider (RHIC) at BNL to
look for the critical point [1]; the CBM experiment at the
Facility for Antiproton and Ion Research (FAIR) at GSI will
study baryon-dense matter and search for the phase transition
[2]; and the proposed Nuclotron-based Ion Collider Facility
(NICA) at JINR aims at exploring the mixed phase [3].

These studies are rather challenging, not only because it
is inherently difficult to extract the properties of equilibrium
bulk matter from collision experiments, but also because there
is currently no suitable transport model available for guiding
these efforts. As a result, there is currently an urgent need
for identifying experimentally observable signals of the phase
structure.

The present paper focuses on the possibility that the
mechanism of spinodal phase decomposition may have effects
that could be exploited as signals of the phase transition.
Spinodal decomposition is a well-known generic phenomenon
associated with first-order phase transitions that has been
studied in a variety of substances and also found industrial
application [4]. Furthermore, nuclear spinodal fragmentation
[5] was observed in nuclear collisions at intermediate energies
[6] several years ago. A preliminary study [7] found grounds
for guarded optimism that spinodal separation between the
confined and deconfined phases could in fact occur in
relativistic collisions and we have therefore undertaken the
present more refined analysis.

While that earlier study [7] employed a somewhat
schematic equation of state based on a generalized classical
gas, the present uses a more realistic equation of state obtained

by interpolating between a hadron gas and a quark-gluon
plasma. An advantage of this procedure is that it automatically
incorporates the increase in the number of degrees of freedom
in the dense (deconfined) phase, a peculiar but important
characteristic of strongly interacting matter. Building on the
developments in Ref. [7], we take account of finite-range
effects by including a gradient term in the equation of
state. This refinement is essential for obtaining a physically
meaningful description because it ensures both that there is an
interface tension between the two coexisting phases and that
the spinodal growth rates subside at large wave numbers.

We again carry out our studies within the framework of
fluid dynamics, because this type of transport description has
the distinct advantage that the complicated and still poorly
understood microstructure of the system enters only via the
equation of state and the transport coefficients. A general
discussion of the fluid-dynamical description of first-order
phase transitions was given recently in Ref. [8].

Although the dispersion equation in [7] was derived with
both shear and bulk viscosity included, the actual calculations
were done for ideal fluid dynamics. In the present study, the
dynamical calculations include not only viscosity but also heat
conductivity, which proves to be as important as viscosity
while affecting the spinodal growth rates oppositely, as we
demonstrate quantitatively. The associated cubic dispersion
equation is derived directly from relativistic fluid dynamics.
The medium dependence of the transport coefficients is
expressed in terms of the local values of the enthalpy density
and the particle spacing, an approximation that applies not
only in the baryon-poor regime but also in the baryon-dense
media of relevance to the phase transition. The strength of
the transport coefficients for arbitrary density and temperature
can thus be related to the values obtained from analyses of the
RHIC data.

We seek to construct plausible dynamical phase trajectories
by invoking results from earlier calculations with various
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transport models, and we examine in particular the crucial
importance of using a collision energy for which the maximum
compression occurs inside the spinodal phase region. Once the
phase trajectory of the collision system has been specified, we
may integrate the spinodal growth rate along the dynamical
history and thus calculate the resulting degree of amplification
as a function of the wave number of the density perturbation.
We do that for a range of dissipation strengths that bracket
those expected from the analysis of the RHIC data.

The present, more refined, studies suggest that spinodal
phase decomposition may indeed be triggered during nuclear
collisions within a certain (likely relatively narrow) optimal
energy range. This expectation is rather insensitive to the still
poorly known strength of the transport coefficients. Such a
spinodal phase separation would result in an assembly of
plasma drops embedded in a hadron gas, and our present
analysis permits us to estimate the typical drop size.

There is some similarity between the spinodal instabilities
studied here, for which the baryon density plays the role of the
order parameter, and those associated with the chiral order
parameter. (Dynamical studies of this latter mechanism in
expanding matter have been carried out within the linear σ

model both with [9] and without [10] explicit quark degrees of
freedom.) However, the associated dispersion relations differ
qualitatively in the limit of long wave lengths: Whereas the
growth rate for the unstable pion modes tend to a constant, the
density instabilities grow in proportion to the wave number, as
occurs in fluid dynamics.

The presentation is organized as follows. We first discuss
the expected thermodynamic phase structure of strongly inter-
acting matter within the framework of the specific equation of
state that we have constructed. We then turn to dissipative fluid
dynamics within which we derive the dispersion equation for
the collective modes in bulk matter. Subsequently we develop
expressions for the transport coefficients in baryon-rich matter
and use those in calculations of the spinodal growth rates.
Finally, we obtain quantitative results for the degree of spinodal
amplification experienced by the bulk of the collision system
as it evolves along various plausible phase trajectories. The
construction of the equation of state and the associated spline
procedure are described in appendices.

II. THERMODYNAMIC PHASE STRUCTURE

To make quantitative studies, we need to employ a specific
equation of state that is plausibly realistic and, in particular,
exhibits the expected phase structure.

Although significant progress has been made in under-
standing the thermodynamic properties of the confined and
deconfined phases separately, our current understanding of
the phase coexistence region is not yet on firm ground. We
therefore employ a conceptually simple approximate equation
of state in which the region of phase transformation is
described by means of a suitable interpolation between an
idealized hadron gas and an idealized quark-gluon plasma.
The details of this construction are described in Appendix A,
while the resulting phase structure is shown in Fig. 1.
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FIG. 1. (Color online) The (ρ, T ) phase diagram for bulk matter
showing the phase coexistence boundary (outer solid), the isothermal
spinodal where vT = 0 (dashed), and the isentropic spinodal where
vs = 0 (inner solid), together with the critical point (for details, see
Appendix A). The dispersion relation shown in Fig. 2 was calculated
at the square and the results shown in Fig. 3 were obtained along the
two straight lines.

For the present study, it is convenient to work in the
canonical representation where the thermodynamic state of
the system is characterized by the temperature T and the (net)
baryon density ρ = nB − nB̄ . (In the phase region of primary
interest, the temperature is relatively low and the chemical
potential relatively high, so the equilibrium population of
antibaryons is relatively insignificant, nB̄ � nB .) The key
thermodynamic function is then the free-energy density,
s fT (ρ), from which the other quantities may be obtained,

Chemical potential : µT (ρ) = ∂ρfT (ρ), (1)

Pressure : pT (ρ) = ρ∂ρfT (ρ) − fT (ρ), (2)

Entropydensity : σT (ρ) = −∂T fT (ρ), (3)

Energydensity : εT (ρ) = fT (ρ) − T ∂T fT (ρ) .(4)

We may also express the isothermal sound speed vT ,

v2
T ≡ ρ

hT

(
∂p

∂ρ

)
T

= ρ

hT

∂ρpT (ρ) = ρ2

hT

∂2
ρfT (ρ), (5)

where hT (ρ) = pT (ρ) + εT (ρ) is the enthalpy density, as well
as the isentropic sound speed vs ,

v2
s ≡ ρ

hT

(
∂p

∂ρ

)
s

= v2
T + T

hT

1

cv

(∂T pT (ρ))2 � v2
T , (6)

where the specific heat is cv ≡ ∂T εT (ρ) = T ∂T σT (ρ).
Different manifestations of the system that have the same

values of temperature, chemical potential, and pressure are
in mutual thermodynamic equilibrium and may thus coexist.
As Fig. 1 shows, such phase coexistence occurs for temper-
atures below the critical value, T < Tc ≈ 142.5 MeV. The
corresponding density values, ρT

1 and ρT
2 , are traced out (outer

solid curve). Inside this boundary, it is thermodynamically
favorable for uniform matter to separate into the two coexisting
phases. However, in the part of the phase coexistence region
that is close to the boundary, small deviations from uniformity
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are thermodynamically unfavorable and here the system is
mechanically metastable, as signalled by the fact that v2

T > 0 in
this phase region. Furthermore, finite fluctuations of sufficient
magnitude may act as nucleation seeds that are amplified into
droplets or bubbles (in the low- or high-density metastable
region, respectively), a phenomenon that has been studied for
strongly interacting matter at low or vanishing density [11].

The situation changes radically at the spinodal boundary
where the isothermal sound speed vanishes, vT = 0 (the
dashed curve in Fig. 1): Inside this boundary even infinitesimal
deviations from uniformity are thermodynamically favorable
and bulk matter is thus mechanically unstable. As a con-
sequence, small density fluctuations may be amplified and
thereby cause the system to undergo a spontaneous phase
separation. The phase region of spinodal instability extends
in temperature all the way from zero up to Tc.

Finally, Fig. 1 also shows the boundary where the isentropic
sound speed vanishes, vs = 0. Inside this smaller phase region,
the spinodal amplification process can occur without any
entropy production. This special region does not extend all the
way up to Tc and it narrows considerably as the temperature
approaches its upper bound.

The equation of state applies to idealized uniform matter.
However, since we are interested in following the evolution
of density disturbances, it is essential to include finite-range
effects. Indeed, the physical coexistence between two different
phases along a common interface could not be realized without
taking proper account of the density gradients, nor could the
associated interface tension be obtained. We shall therefore
augment the bulk thermodynamics with a gradient term as
proposed in Ref. [7] (see Sec. III C1), which then extends
the validity of the equation of state to nonuniform systems.
In particular, it is possible to describe the diffuse interface
between two coexisting phases and the associated tension.
Furthermore, as we shall see, the gradient term is essential for
obtaining a physically reasonable dispersion relation because
it stabilizes disturbances having a small spatial scale.

III. DISSIPATIVE FLUID DYNAMICS

We wish to employ dissipative fluid dynamics for our
dynamical studies. Fluid dynamics is convenient because
the specific microscopic structure of the matter under con-
sideration enters only via the equation of state and a few
transport coefficients. On the other hand, the treatment relies on
the assumption of approximate local equilibrium which may
generally be questionable in nuclear collisions. Fortunately,
our applications are to collisions of relatively modest energies
and, moreover, to the later stages in the evolution. Thus, the
conditions for applicability should be reasonably favorable.

We base our treatment on the relativistic formulation by
Muronga [12]. The four-velocity of the local flow is uµ =
(γ, γ v) and the symmetric tensor �µν ≡ gµν − uµuν projects
onto the three-space orthogonal to uµ, �µνuν = 0.

The space-time derivative decomposes, ∂µ = uµD + ∇µ,
where the convective time derivative is D ≡ uµ∂µ = γ [∂t +
v · ∇] while the gradient is ∇µ ≡ �µν∂ν .

The equations of motion simplify when expressed in a
specific reference frame. For the present study, it is convenient
to use the Eckart frame, which is defined in terms of
the charge flow and is usually employed in nonrelativistic
scenarios. Then, because the local charge flow, V µ, vanishes by
definition, the charge four-current density is Nµ = ρuµ, where
ρ is the charge density in the local flow frame. (However, it
may generally be preferable to use the Landau frame because
it is defined in terms of the energy flow and is thus meaningful
also for chargeless fluids and fluids with several conserved
charges for which there is no unique generalization of the
Eckart frame.)

A. Small disturbances

We consider the early evolution of small deviations from
uniformity. We generally assume that these are planar and har-
monic, ρ(r, t) = ρ0 + ρk exp(ikx − iωt) with δ ≡ |ρk|/ρ0 �
1, and similarly for the other quantities. We may then ignore
terms of order O(δ2) and higher. It follows that the associated
flow velocities are small, v � 1 because O(v) = O(δ), and
thus we have γ ≡ [1 − v2]−1/2 = 1 + O(δ2) ≈ 1.

Generally, the energy flow is given by Wµ ≡ qµ + hV µ =
qµ, where qµ is the heat flow and h = p + ε the enthalpy
density. Because the local charge flow V µ vanishes when we
use the Eckart frame (see above text), the energy flow equals
the heat flow, Wµ = qµ, and isO(δ). Hence,O(Wu) = O(δ2),
and the energy-momentum tensor simplifies to

T µν = εuµuν − p�µν + πµν − ��µν. (7)

Here, ε = uµT µνuν is the energy density in the local flow
frame and p + � = − 1

3�µνT
µν is the sum of the local

isotropic pressure p and the pressure induced by the bulk
viscosity which enters through the bulk pressure,

� = −ζ∇µuµ ≈ −ζ∇iv
i = −ζ∂iv

i = −ζ∇ · v. (8)

Furthermore, the heat flow is qµ = uνT
νλ�

µ
λ , while the shear

viscosity enters via the stress tensor,

πµν = η
[
�µ

σ �ν
τ + �µ

τ �ν
σ − 2

3�µν�στ

]∇σ uτ (9)

≈ η
[
�

µ

i �ν
j + �

µ

j �ν
i − 2

3�µν�ij

]∇ ivj , (10)

where we have used that only the spatial components of ∇σ

contribute to leading order in δ and, moreover, any derivatives
of u0 ≈ 1 can be ignored so only the spatial components ui ≈
vi contribute. Furthermore, because �0

i = vi , which is O(δ),
only the spatial elements �i

j ≈ δij contribute. Hence, only
the 3 × 3 spatial part π is nonvanishing. It has the following
elements,

πij ≈ −η
[
∂iv

j + ∂jv
i − 2

3δij ∂kv
k
]
. (11)

Thus, for small deviations from uniformity, the spatial part
T of the energy-momentum tensor is given by

T ij ≈ δijp − η
[
∂iv

j + ∂jv
i − 2

3δij ∂
kvk

] − ζ δij∇ · v. (12)

If the spatial variation of the viscosity coefficients η (shear)
and ζ (bulk) may be ignored, we have

∇ · T ≈ ∇p − η�v − [
1
3η + ζ

]∇(∇ · v). (13)
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The gradient simplifies further in a semi-infinite geometry
(where the only spatial variation is in the x direction),

∇ · T � ∂xTxx ≈ ∂xp − [
4
3η + ζ

]
∂2
x v. (14)

Thus, only the effective viscosity ξ ≡ 4
3η + ζ enters. It follows

that a uniform stretching, v(x) ∼ x, is dissipation free. We
also wish to point out that the shear viscosity contributes even
though the flow has no shear.

It is interesting to note that the above result reflects a general
feature of isotropic expansions in N dimensions. To see this,
assume that ρ(r) = ρ(r) and v(r) = v(r)r̂ . The viscous term
in the Euler equation may then be evaluated by use of spherical
coordinates,

η�v +
[

1

3
η + ζ

]
∇(∇ · v) = ξ r̂ ∂r

1

rN−1
∂rr

N−1v. (15)

Thus, it is always the combination ξ ≡ 4
3η + ζ that enters.

Furthermore, it follows that a Hubble-type expansion, v(r) ∼
r , is dissipation free in any dimension.

B. Equations of motion

The fluid-dynamic equations of motion reflect the conser-
vation of (baryon) charge, momentum, and energy. We are
interested in the dynamics of small deviations from uniformity
in a semi-infinite configuration and we focus on harmonic
disturbances,

ρ(r, t) = ρ0 + δρ(x, t)
.= ρ0 + ρk eikx−iωt , (16)

ε(r, t) = ε0 + δε(x, t)
.= ε0 + εk eikx−iωt , (17)

p(r, t) = p0 + δp(x, t)
.= p0 + pk eikx−iωt , (18)

and similarly for the other dynamical variables.
The conservation of charge is ensured by the continuity

equation, ∂µNµ .= 0, which here becomes

C : ∂tρ
.= −ρ0∂xv ⇒ ωρk

.= ρ0kvk. (19)

It serves to eliminate the flow velocity, vk = ωρk/(ρ0k). The
momentum equation simplifies considerably for the present
scenario of small disturbances,

M : h0∂tv
.= −∂x[p − ζ∂xv] − ∂xπxx − ∂tq, (20)

where h0 = p0 + ε0 is the enthalpy density of the uniform
system and the heat flow is q = (q, 0, 0) (see below). The
equation for energy conservation is similarly simplified,

E : ∂tε
.= −h0∂xv − ∂xq. (21)

By combining these latter two equations, (20) and (21), one
obtains the sound equation,

∂tE − ∂xM : ∂2
t ε

.= ∂2
x�[p − ζ∂xv] + ∂2

xπxx, (22)

which amounts to ω2εk
.= k2pk − iξ (ω/ρ0)k2ρk where we

recall that ξ ≡ 4
3η + ζ [see Eq. (14)].

C. Dispersion equation

When heat conductivity is ignored (κ = 0), the energy
density tracks the charge density, as follows immediately

from the energy equation, ρ0εk
.= h0ρk . Furthermore, in the

absence of a gradient term in the equation of state (see later),
we have pk = pεεk + pρρk with pε ≡ ∂εp0(ε, ρ) and pρ ≡
∂ρp0(ε, ρ) where p0(ε, ρ) is the microcanonical equation of
state. Since the isentropic sound speed vs is given by v2

s =
pε + (ρ0/h0)pρ , we obtain the familiar viscous dispersion
equation, ω2 = v2

s k
2 − iξ (ω/h0)k2 [7].

To obtain the dispersion equation with heat conductivity
included, we must invoke the form of the heat current,

q ≈ −κ[∂xT + T0∂tv] : qk = −iκ

[
kTk − T0

ρ0

ω2

k
ρk

]
.

(23)

Insertion of this expression into the energy equation (21) yields
a relationship between ρk , εk , and Tk ,

εk = h0

ρ0
ρk + k

ω
qk ≈ h0

ρ0
ρk − iκ

k2

ω
Tk, (24)

where the term ∼κρk has been ignored because if is O(κ) in
comparison with (h0/ρ0)ρk . Thermodynamics enables us to
express δε in terms of δT and δρ,

εk =
(

∂ε

∂T

)
ρ

Tk +
(

∂ε

∂ρ

)
T

ρk = cvTk − σερ

σεε

ρk, (25)

where σεε ≡ ∂2
ε σ0(ε, ρ) and σερ ≡ ∂ε∂ρσ0(ε, ρ) are second

derivatives of the entropy density σ0(ε, ρ). We have also
used (∂ε/∂T )ρ = cv = −1/T σεε, the heat capacity at constant
density. Using, furthermore,

h0σεε + ρ0σρε = −
(

∂p

∂ε

)
ρ

, (26)

we may then obtain Tk from the energy equation (21),

Tk ≈ 1

1 + iκk2/ωcv

T0

ρ0

(
∂p

∂ε

)
ρ

ρk. (27)

The canonical equation of state pT (ρ) allows us to express
the pressure variation in terms of the variations in temperature
and density,

pk =
(

∂p

∂T

)
ρ

Tk +
(

∂p

∂ρ

)
T

ρk =
(

∂p

∂ε

)
ρ

cvTk + h0

ρ0
v2

T ρk,

(28)

where vT is the isothermal sound speed [see Eq. (5)].
With these preparations, the dispersion equation can then

be obtained by substituting the relations (25), (27), and (28)
into the sound equation and using the relationship v2

s − v2
T =

(T/h)(∂p/∂T )ρ(∂p/∂ε)ρ ,

ω2 .= v2
T k2 − iξ

ω

h0
k2 + v2

s − v2
T

1 + iκk2/ωcv

k2, (29)

retaining heat conduction terms only up to O(κ). This is
recognized as the dispersion equation given in Ref. [13].

1. Gradient correction

As noted above (end of Sec. II), it is essential to take account
of finite-range effects, without which the spinodal growth rate
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would become ever larger as the wave number is increased
[14]. Following Ref. [7], we introduce a gradient correction
in the equation of state. To leading order in the disturbance
amplitudes, the effect of the gradient term on the local pressure
is given by

p(r) ≈ p0(ε(r), ρ(r)) − Cρ0∇2ρ(r), (30)

where p0(ε, ρ) is the microcanonical equation of state, (i.e.,
the pressure in uniform matter having the specified energy and
charge densities). The pressure amplitude is then modified
accordingly,

pk pk + Cρ0k
2ρk. (31)

Hence, we should augment the ρk term in Eq. (28),

h0

ρ0
v2

T ρk

[
h0

ρ0
v2

T + Cρ0k
2

]
ρk. (32)

The full dispersion equation is then

ω2 .= v2
T k2 + C

ρ2
0

h0
k4 − iξ

ω

h0
k2 + v2

s − v2
T

1 + iκk2/ωcv

k2, (33)

that is, the gradient term ∼Ck4 is simply added, just as when
there is no heat conductivity [7].

2. Solution of the dispersion equation

When heat conductivity is included, κ > 0, the dispersion
equation is of third order and, consequently, there are three
eigenvalues for each wave vector k, as one would generally
expect since the energy density ε is now no longer tied to
the baryon density ρ. This equation has one purely imaginary
solution, ω0

k = iγ 0
k , and a pair of generally complex solutions,

ω±
k , which are either both also imaginary, ω±

k = iγ ±
k , or have

the form ω±
k = ∓εk + iγk . In the latter case it is easy to see

that γ k < 0 in the normal region where v2
T > 0.

The two frequencies
◦

ω±
k obtained for ideal (i.e. non-

dissipative) fluid dynamics are either purely real (outside
the isentropic spinodal phase region where v2

s > 0) or purely
imaginary (inside the isentropic spinodal region where v2

s <

0). Thus, in ideal fluid dynamics, the region of spinodal
instability is bounded by the isentropic spinodal, vs(ρ, T ) =
0. The introduction of viscosity adds a negative imaginary
amount to the frequency. We then have ω±

k ≈ ◦
ωk − i

2λvisck
2 to

first order in ξ ≡ 4
3η + ζ , where we have introduced the char-

acteristic viscous length λvisc(ρ, T ) ≡ ξ (ρ, T )/h0(ρ, T )c. But
the inclusion of viscosity does not change the region of
instability. In contrast, the inclusion of heat conductivity
expands the region of instability from the isentropic spinodal to
the isothermal spinodal, vT (ρ, T ) = 0, and generally increases
the spinodal growth rates.

For small distortions of uniform matter at given density and
temperature, the dispersion relation yields the eigenfrequen-
cies wk in terms of the equation of state pT (ρ), the strength
of the gradient term C, and the transport coefficients η(ρ, T ),
ζ (ρ, T ), and κ(ρ, T ). We describe below what we adopt for
these key functions.

IV. TRANSPORT COEFFICIENTS

The deviation of the dynamical evolution from that of
an ideal fluid is governed by three transport coefficients:
the shear viscosity η and the bulk viscosity ζ (which here
enter only through the effective viscosity ξ ≡ 4

3η + ζ ) as
well as the heat conductivity κ . Neither their magnitudes
nor their dependencies on the environment (through ρ and
T ) are very well known. We shall therefore employ simple
parametrizations of their functional form and introduce one
adjustable overall strength parameter for each one, thus
enabling us to conveniently explore a range of physical
scenarios.

A. Viscosity

Using string theory methods, Kovtun et al. [15] made
general arguments that the shear viscosity η, in any relativistic
quantum field theory at finite temperature and zero chemical
potential, has a lower bound, η � h̄σ/4π , where σ is the
associated entropy density. It might therefore seem natural to
use η = η0 h̄σ/4π , (i.e., simply scale the minimum value by
the factor η0 � 1). However, it has been argued [16] that values
near the minimum should be expected only in the vicinity of
the phase transformation. The use of a constant factor η0 could
therefore be regarded only as a rough approximation and a
range of η0 values should be explored.

The entropy density σ , while appropriate in the context of
ultrarelativistic nuclear collisions where the medium has a high
temperature and a very small net baryon density, is not suitable
in the present context where the focus is on matter at high
baryon density and relatively modest temperature [18]. A more
appropriate quantity, suitable in both limits, is the enthalpy
density h(ρ, T ) ≡ p + ε [18]. When the net baron density ρ

vanishes it becomes h = T σ , whereas h/c2 approaches the
mass density at high baryon density and low temperature,
h ≈ mc2n 
 T σ , where n is density of particles and m is
their mass. (For cold nuclear matter we have n ≈ ρ, since the
pions and antinucleons have negligible populations, and hence
m = mN .)

Furthermore, one would expect the viscosity to be pro-
portional to the interparticle spacing d ≡ 1/n1/3 [18], which
provides a convenient measure of the mean free path in a
dense fluid. When the plasma has no net baryon density, d is
inversely proportional to the temperature T , h̄c/T = 4πc0d.
The conversion constant c0 is given by

c0 ≡ 1

4π

[(
gg + 3

2
gq

)
ζ (3)

π2

] 1
3

≈ 0.12779. (34)

Therefore, based on these considerations, we shall make the
following ansatz,

η(ρ, T )
.= η0

c0

c
d(ρ, T ) h(ρ, T ), η0 � 1, (35)

which amounts to η = η0h̄σ/4π in the baryon-free plasma,
whereas it becomes η ≈ η0c0mcnd in the nonrelativistic gas.
This latter expression is similar to the familiar expression from
classical transport theory for the shear viscosity coefficient in

034902-5



JØRGEN RANDRUP PHYSICAL REVIEW C 82, 034902 (2010)

a dilute one-component gas, η ≈ 1
3mv̄n�, where v̄ is the mean

particle speed and � is its mean free path.
Because the bulk viscosity ζ is generally expected to be

significantly smaller than the shear viscosity η, we shall take
the effective viscosity to be ξ ≡ 4

3η + ζ ≈ 4
3η. It is convenient

to introduce the associated characteristic length which is
proportional to the interparticle spacing,

λvisc(ρ, T ) ≡ 1

c

ξ (ρ, T )

h(ρ, T )/c2
= 4

3
η0 c0 d(ρ, T ). (36)

It should be noted, though, that the dependence of η and ζ on
the environment may differ qualitatively. Thus it was found
that the bulk viscosity associated with chiral restoration in
baryon-free matter exhibits a singularity at the critical point
[17]; it would obviously be valuable to extend that analysis to
the scenario considered here: the confinement transformation
in baryon-rich matter away from the critical point.

B. Heat conductivity

The thermal conductivity is fundamentally related to the
viscosity because it derives from the same microscopic
transport processes. In a dilute classical gas it can be expressed
as κ ≈ 1

3 v̄�cv , where v̄ is the mean particle speed and
cv ≡ ∂T εT (ρ) is the heat capacity (equal to 3

2n for a dilute
classical gas). Because p̄ = mv̄ and h ≈ mc2n, we see that
κ/η ≈ cv/(h/c2). We therefore make the following ansatz,

κ(ρ, T )
.= κ0 c0 c d(ρ, T ) cv(ρ, T ), κ0 � 1, (37)

with c0 as given in Eq. (34) and assuming that the overall
strength factor κ0 should be at least unity. Although the relation
κ/η ≈ cv/(h/c2) would suggest that the two normalization
constants should be similar, κ0 ≈ η0, we prefer to leave them
separately adjustable to make it possible to explore the effects
of the two distinct types of dissipation. The characteristic
length scale associated with heat conduction is, then,

λheat(ρ, T ) ≡ 1

c

κ(ρ, T )

cv(ρ, T )
= κ0 c0 d(ρ, T ). (38)

Although the approximate expressions for the transport
coefficients [Eqs. (35) and (37)] should not be expected to
be accurate, they will serve well for our present purpose of
exploring the effect of the dissipative mechanisms on the
spinodal decomposition, because they enable us to easily
control the overall dissipative effects.

C. Growth rates

The spinodal isothermal and isentropic boundaries deter-
mined by vT = 0 and vs = 0, respectively, pertain to the
thermodynamic limit of very long wave lengths, k → 0. When
the wave number k is increased, the region of instability
steadily shrinks as the gradient term gives an ever larger
contribution to the pressure. Thus, at a given temperature T , the
lower spinodal boundary density ρA(k; T ) increases steadily
with k, while the upper spinodal boundary density ρB(k; T )
decreases steadily. For a fixed value of k, a contour plot of the
growth rate γk in the (ρ, T ) phase plane therefore exhibits a
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FIG. 2. (Color online) The growth rate γk(ρ, T ), as a function
of the wave number k, calculated with finite-range fluid dynamics
at ρ = 6.5 ρs and T = 70 MeV for four different combinations of
dissipation: no dissipation (η0 =0, κ0 =0); minimal viscosity but
no heat conduction (η0 =1, κ0 =0); no viscosity but minimal heat
conduction (η0 =0, κ0 =1); both minimal viscosity and minimal heat
conduction (η0 =1, κ0 =1).

ridge between those two boundaries. The height of the ridge
decreases steadily as T is increased, first rather gently due to
the dominance of the fermions at low temperatures. The local
value of the maximum wave number for which instabilities
exist, kmax(ρ, T ), will have a similar appearance.

We now illustrate, in Fig. 2, the resulting dispersion
relations for thermodynamic scenarios relevant to the present
study. Selecting a phase point in the central region of the
phase coexistence region where both the isothermal and the
isentropic sound velocities are imaginary, ρ = 6.5ρs and
T = 70 MeV (see Fig. 1), we consider the growth rate γ as a
function of the wave number k of the density undulation being
amplified. The nondissipative treatment with ideal finite-range
fluid dynamics provides a convenient reference result. It yields
a fastest growth time of about t0 ≈ 1.38 fm/c which occurs
for wave numbers near k0 ≈ 2.0 fm−1, corresponding to an
optimal wave length of �0 = 2π/k0 ≈ 3.14 fm.

Relative to this reference, the inclusion of viscosity slows
the growth but does not change the domain of instability which
is still delineated by the vanishing of the isentropic sound speed
vs . We see that the inclusion of a minimal amount of viscosity
(η0 = 1) leads to a significant reduction in γ and also shifts
the optimal length scale toward larger values.

On the other hand, relative to the ideal scenario, the inclu-
sion of heat conductivity enlarges the domain of instability,
the boundary being now determined by the vanishing of the
isothermal sound speed vT . Thus, generally, the inclusion of
heat conductivity increases the growth rates, particularly at the
high end of the unstable k range.

While the inclusion of both minimal viscosity and minimal
heat conduction necessarily enlarges the unstable k range, it
does somewhat reduce the fastest growth rates. However, it
hardly affects the scale of the fastest-growing modes, kmax.
As the strengths of the dissipative terms are further increased,
the growth rate γk decreases steadily and, at the same time,
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the maximum in the dispersion relation moves gradually
downward in k.

These features are present throughout the unstable region
of the (ρ, T ) phase plane. To obtain an impression of how
the growth rates change with ρ and T , we show in Fig. 3 the
fastest growth rate γ0 as we move away from the phase point
explored in Fig. 2, either at constant T [Fig. 3(a)] or constant ρ
[Fig. 3(b)], as indicated in Fig. 1. In these illustrations we show
the ideal scenario where no dissipation is present (η0, κ0 = 0),
the scenario with minimal dissipation (η0, κ0 = 1), and a
scenario with five times stronger dissipation (η0, κ0 = 5), thus
covering the range suggested by the RHIC data [19–21];
the currently favored estimate is η0 ≈ 1–3. Because, as noted
above, the heat conductivity is fundamentally related to the
shear viscosity, it should be expected that their strengths vary
in approximate unison; the effect of varying their relative
strengths may be judged from the results shown in Fig. 2.

As expected from the discussion in the beginning of this
section, the fastest growth at a given temperature occurs about
midway between the corresponding spinodal boundaries.
Furthermore, the temperature generally reduces the growth
rates, though only weakly at small T . The curves in the
Fig. 3(b) do not exhibit a monotonic decrease because the
selected path along a constant density does not follow the
ridgeline: the maxima in the curves shown in the top panel
shift steadily toward smaller densities as T is increased, as
would be expected from the general appearance of the phase
diagram [see Fig. 1].
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FIG. 3. (Color online) The maximum growth rate γ0 (c/fm)
shown at various compressions for fixed T = 70 MeV (a) and at
various temperatures for fixed compression ρ/ρs = 6.5 (b), for three
different assumptions about the dissipation, namely no dissipation:
(η0, κ0) = (0, 0); minimal dissipation: (1, 1), and strong dissipation:
(5, 5). The open square corresponds to the phase point at which the
dispersion relation shown in Fig. 2 was obtained (using minimal
dissipation).

Finally, we note that a fivefold increase in the dissipation
above the minimal value, that is, changing (η0, κ0) from (1, 1)
to (5, 5), leads to a reduction in the growth rates γk by only
about a factor of two.

V. DYNAMICAL EVOLUTION

After the above preparations, we are now in a position
to address the dynamical evolution of the unstable collective
modes in the spinodal region of the phase diagram.

A. Dynamical phase trajectories

We first specify dynamical phase trajectories, [ρ(t), T (t)],
that are representative of the bulk matter in the collision zone,
making use of the results presented in Ref. [22]. In that work,
a number of different dynamical models were used to extract
the time evolution of the net baryon density, ρ(t), and the
energy density, ε(t), in the center of a head-on gold-gold
collision for the range of collision energies anticipated at
FAIR. The resulting dynamical trajectories in the (ρ, ε) phase
plane were remarkably independent of the specific model,
in large part probably because of the robust nature of the
mechanical densities which are subject to conservation laws,
in contrast to the corresponding thermodynamical variables
(µ, T ). Nevertheless, there were significant variations in
the detailed behavior. This is illustrated in Fig. 4, which
shows density evolutions ρ(t) obtained with the three-fluid
model [23] and ultrarelativistic quantum molecular dynamics
(UrQMD) [24] at beam kinetic energies of 5 and 10 GeV/A.
(Note that these beams are bombarded onto stationary targets,
as will be done at FAIR; the same collision energies can
be obtained in a collider configuration by using total beam
energies of ≈1.8 and ≈2.4 GeV/A, respectively.) We utilize
these results to construct the dynamical phase trajectories
considered. [We emphasize that although we do consider the
resulting trajectories as being plausible, we do not mean to
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FIG. 4. (Color online) The time evolution of the net baryon
density, ρ(t), at the center of a head-on gold-gold collision for
bombarding energies of 5 and 10 GeV/A, as calculated with the
three-fluid [23] and the UrQMD [24] models (from Ref. [22]).
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FIG. 5. (Color online) Dynamical phase trajectories based on the
three-fluid and UrQMD density evolutions (shown in Fig. 4) obtained
for 5 GeV/A in Ref. [22]; the associated time-dependent growth
rates γk(t) are illustrated in Fig. 6. The symbols along the trajectories
are equidistant in time with �t = 1 fm/c, whereas the open dots
on the left indicate the freezeout locations for bombarding energies
of E = 1, . . . , 10 GeV/A obtained from fits to experimental data
as discussed in Ref. [25].

endorse either one of these specific models. Indeed, essentially
identical evolutions could have been generated by a number
of existing models by suitable tuning of the bombarding
energy. In particular, a trajectory very similar to the one
based on calculations with the three-fluid model at 5 GeV/A

could likely have been obtained with the UrQMD model at
a somewhat lower collision energy (but such calculations are
not presently available).]

As expected, the degree of amplification achieved depends
strongly on the length of time spent in the phase region of
spinodal instability. To elucidate this key feature, we consider
in some detail the phase trajectories depicted in Fig. 5. The
density evolutions ρ(t) are those calculated with the two
models for 5GeV/A, while the temperature evolutions T (t)
are (somewhat arbitrarily) prescribed with an eye toward the
freeze-out conditions extracted from data [25]. The essential
difference between these two trajectories is that UrQMD yields
compressions that reach all the way into the deconfined phase
region, whereas the maximum compression achieved with
the three-fluid model lies inside the unstable region. Such
a situation would be obtained with UrQMD as well at a
somewhat lower collision energy (3–4 GeV/A).

When the turning point of the phase trajectory lies inside the
unstable region, the modes are exposed to the spinodal amplifi-
cation for a longer time and, consequently, the resulting degree
of amplification will be maximized. This key fact is illustrated
in Fig. 6. For the penetrating (UrQMD) trajectory, the modes
are exposed to amplification only during the two relatively
brief periods when the phase point is traversing the spinodal
region (and the amplification gained during the compressional
traverse is largely lost during the high-density stage due to
the equilibration process so only the amplification received
during the expansion traverse is relevant). By contrast, the
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FIG. 6. (Color online) The spinodal growth rate γk(t) =
Re[ωk(t)] for modes with k = 2 fm−1, calculated with minimal
dissipation along the two dynamical (ρ, T ) phase trajectories shown
in Fig. 5.

more optimal (three-fluid) trajectory provides amplification
for a sustained period of time, thus making a phase separation
more likely to occur.

Although it is yet difficult to make specific predictions about
the optimal collision energy, it seems evident that such an
energy range exists, because the location of the (ρ, T ) phase
point associated with the maximum compression (the turning
point) moves steadily downward as the collision energy is
lowered. The experimentally known freeze-out temperatures
(indicated on the left in Fig. 5) provide a lower bound on
the phase region that could be accessed by nuclear collisions.
The turning point is therefore likely to traverse the unstable
phase region at fairly high temperatures where it is relatively
narrow. Consequently, the optimal range of collision energy is
most likely not so wide. Because of this generic expectation,
we shall take the above phase trajectories as being reasonably
representative of what may happen in the bulk region of an
actual collision.

B. Dissipative collective dynamics

As the bulk of the evolving system traverses the unstable
phase region, its density fluctuations may be amplified. To
make quantitative estimates of this effect, we employ the
method developed in Ref. [26] for the evolution of collective
modes subject to a dissipative coupling to the environment
[i.e., to the (many more) noncollective modes in the system].

The treatment considers an ensemble ofN macroscopically
similar systems {n} that have all been prepared with the same
average density ρ0 relative to which individual perturbations
are introduced,

ρ(n)(r) = ρ0 + δρ(n)(r) = ρ0 +
∑
k �=0

ρ
(n)
k eik·r . (39)

Generally, such as during the expansion stage of a nuclear
collision, the bulk density is time dependent. We shall
assume that the effect of this overall evolution may be
taken into account approximately by using the corresponding
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time-dependent transport coefficients in the formulas below.
We should then think of the mode index k as a mode number
K rather than a wave number, because the expansion primarily
stretches the modes without introducing much mode mixing
[27]. In this way we may obtain the spatial size of the resulting
fluctuations by scaling the initial wave length with the linear
expansion factor, [ρ0(ti)/ρ0(tf )]D/3, where D is the effective
dimensionality of the expansion.

The primary object of study is the associated spatial
correlation function, σ (r12) = ≺ δρ(r1) δρ(r2)∗ �, where

≺ δρ(r1) δρ(r2)∗ � ≡ 1

N
∑

n

δρ(n)(r1) δρ(n)(r2)∗ (40)

is the ensemble average and r12 ≡ r1 − r2. The Fourier
transform of σ (r) provides a convenient measure of the degree
of density fluctuation at a given scale because it is the ensemble
average of |ρk|2,

σ 2
k = ≺ |ρk|2 � =

∫
dr
V

e−ik·rσ (r). (41)

We are generally interested in the evolution of the collective
modes in the system. Adopting the treatment of Ref. [26], we
assume that the amplitude ρk of a given collective mode k is
governed by an equation of motion having the form,

d

dt
ρk(t) = −iωk(t)ρk(t) + Bk(t). (42)

The complex eigenfrequencies ωk = εk + iγk are determined
by the dispersion equation derived above, while the Brownian
term Bk describes the residual coupling between the collective
mode and the reservoir (i.e., the noncollective modes of the
system). It is fluctuating in nature and is assumed to be
Markovian,

≺ Bk(t) Bk′(t ′)∗ � = 2Dkk′(t) δ(t − t ′). (43)

The equal-time correlation coefficient for two collective
modes, σkk′(t) ≡ ≺ ρk(t)ρk′(t)∗ �, is then given by [26],

σkk′ (t) = σkk′(ti) e−iωkk′ t + 2
∫ t

ti

dt ′ Dkk′(t ′) eiωkk′ (t ′−t), (44)

if ωkk′ ≡ ωk − ω∗
k′ is constant. It is readily seen that it satisfies

the following differential equation,

d

dt
σkk′(t) = −iωkk′(t)σkk′ (t) + 2Dkk′(t), (45)

which was dubbed the “Lalime equation” in Ref. [26].
For our present studies, we are particularly interested in the

time evolution of the diagonal components of the covariance
matrix, σkk =σ 2

k , which are equal to the fluctuation coefficients
introduced in Eq. (41). Then

σ 2
k (t) =

[
σ 2

k (ti) +
∫ t

ti

2Dk(t ′) e−2�k(t ′)dt ′
]

e2�k(t), (46)

where Dk ≡ Dkk and we have introduced the following
amplification coefficient,

�k(t) ≡
∫ t

ti

Im[ωk(t ′)] dt ′ =
∫ t

ti

γk(t ′) dt ′. (47)

If the environment is stationary, then γk and Dk remain
constant in time, so �k(t) = γk(t − ti), and we obtain a simple
exponential time evolution,

σ 2
k (t) = Dk

γk
[e2γ k(t−ti ) − 1] + σ 2

k (ti) e2γ k(t−ti ). (48)

When γk is negative, as is normally the case, the mode is stable
and relaxes exponentially toward its equilibrium value σ̃ 2

k ,
σ 2

k (t) → −Dk/γk, the associated relaxation time being tk =
1/γk. More generally, within the stable regime, σ 2

k (t) will seek
to relax toward its instantaneous equilibrium value σ̃ 2

k (t) =
−Dk(t)/γk(t), in accordance with the Einstein relation. In the
opposite case, when γk is positive, the mode is unstable and
the fluctuations exhibit an exponential growth, with both the
original mode fluctuations σ 2

k (ti) and the noise Dk/γk being
amplified.

The diffusion coefficients Dk represent the coupling of
the collective modes to the residual system. They thus play
two important roles in the dynamical evolution of the density
fluctuations. In the stable regime (as mentioned above) the
coupling determines the relaxation times tk for the relaxation
of the fluctuation coefficients σ 2

k toward their appropriate
equilibrium values σ̃ 2

k , whereas in the unstable regime it
continually produces additional fluctuations that are also
amplified. Thus, even in the absence of initial fluctuations,
the coupling of the collective mode to the residual system will
continually create fluctuations that will subsequently become
amplified or damped, as governed by the Lalime equation (45).
In particular, the diffusion coefficients enable the stable modes
to continually adjust their fluctuations as the equilibrium
variances evolve.

C. Onset of phase separation

The amplification coefficient �k defined in Eq. (47) is ob-
tained by integrating γk ≡ Im(ωk) over the entire time interval
considered. When there is no dissipation, ω2

k is always real so
γk vanishes outside the unstable region. But in the presence
of dissipation, γk is negative outside the unstable region,
and increasingly so the stronger the dissipation. As a result,
the local relaxation time is reduced, which in turn ensures
that the fluctuations remain close to their equilibrium value
until shortly before the trajectory enters the unstable region.
However, by the same token, any amplification acquired while
the trajectory is inside the unstable region is correspondingly
quickly lost after the trajectory has reentered the normal region
and again equilibrates. In fact, the dissipative length tends to
be larger at late times, due to the increased particle spacing in
the more dilute system, thus shortening the relaxation time.

Our present study aims to clarify the prospects for the
spinodal amplification to become sufficiently large to cause
a phase-separating clumping of the system. Because our
treatment is perturbative, it is only valid as long as the
fluctuations remain relatively small. The occurrence of large
fluctuations in the calculation should then be taken as a signal
that clumping is likely. It should be recalled that the bulk of the
system is thermodynamically unstable so even a modest degree
of fluctuation may cause a catastrophic breakup. The prospects
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FIG. 7. (Color online) As a function of the wave number k is
shown the amplification factor Gk [see Eq. (49)] resulting from
motion along the three-fluid phase trajectory displayed in Fig. 5 for
various degrees of dissipation (indicated by the values of η0 and κ0).
Also shown is the result for the UrQMD trajectory in Fig. 5 using
minimal dissipation [i.e., (η0, κ0) = (1, 1)].

for this to occur are enhanced by the fact that fluctuations
created in the mechanically unstable (spinodal) region may
become further amplified during the traverse of the adjacent
metastable region, just as impurities introduced in this region
may trigger condensation.

Thus, the key question is how much amplification may
occur during the unstable era. To elucidate this issue in a
quantitative manner, we extract the following amplification
factor,

Gk ≡ exp

(∫
>

γk(t )dt

)
, (49)

where the integral is only over those times during which the
mode is unstable, γk > 0.

Figure 7 shows values of Gk obtained for the entire range of
wave numbers, as obtained with various degrees of dissipation.
Although we concentrate on the phase trajectory that reaches
its maximum compression inside the spinodal region (the one
based on the three-fluid model results for 5 GeV/A), we also
show the result of a more penetrating trajectory to bring out the
importance of tuning the collision energy for optimal effect.

In addition to the result of ideal fluid dynamics, we show re-
sults for various degrees of dissipation, ranging from minimal
[i.e., (η0, κ0) = (1, 1)] to five times that. Although viscosity
generally slows the evolution, thus also suppressing the
growth of instabilities, heat conductivity generally increases
the growth rate. The combined effect of introducing small
amounts of dissipation then tends to enhance the amplification.
Thus, the resulting degree of nonuniformity is fairly robust
against moderate changes in the dissipation strength and,
consequently, our conclusions do not appear to be sensitive
to the specific parametrizations of the transport coefficients.

The results displayed in Fig. 7 bring out the characteristic
feature of spinodal instability, namely that the amplification
mechanism favors certain length scales. We note that the

two-point correlation coefficient σ 2
k is proportional to G2

k and
thus exhibits a stronger peaking. More generally, because the
N -point correlation is proportional to GN

k , the spinodal effect
manifests itself progressively stronger in the higher-order
correlations.

We see that Gk is peaked around k0 ≈ 1.6–1.3 fm−1,
depending on the degree of dissipation, which corresponds to
wave lengths �0 = 2π/k0 ≈ 3.9–4.8 fm. If, at a temperature
of 80–100 MeV, a uniform system situated at the lower edge
of the spinodal region (hence having a density ρ0 ≈ 5ρs)
transforms itself into plasma drops embedded in a hadron gas,
with each subsystem having the corresponding coexistence
density, ρ1(T ) ≈ 4ρs and ρ2(T ) ≈ 8ρs , then we may expect
the drop radius to be Rdrop ≈ 1

2�0[(ρ0 − ρ1)/(ρ2 − ρ0)]1/3 ≈
1.2–1.5 fm. Each such drop would then have a baryon number
of 10–18. Since this is only a relatively small fraction of
the collision system one would expect that several such
drops would be formed during the phase separation. On the
other hand, a drop of such a size is sufficiently large to be
regarded as a macroscopic source that will undergo statistical
hadronization.

VI. CONCLUDING REMARKS

In the exploration of the phase diagram of strongly inter-
acting matter by means of nuclear collisions, the mechanism
of spinodal phase decomposition might give rise to unique
signals of the first-order phase transition. For the planning of
possible experimental campaigns to search for spinodal phase
separation, it is useful to have estimates of which bombarding
energies are expected to be optimal for producing the effect.
The analysis presented above suggests that these bombarding
energies lie at the lower end of the anticipated FAIR range. It
is also well within the energy region proposed for NICA but
appears to be too low for experiments at RHIC to be feasible.

However, when making a quantitative prediction of the
optimal collision energy range, it should be kept in mind that
the calculated dynamical phase trajectories [22], on the basis
of which we made our estimates, extracted the conditions right
at the center of the collision zone. Therefore, they most likely
provide an upper limit on the compression and it must be
expected that the average compression and excitation over
an extended volume will be smaller than those shown in
Figs. 4 and 5. Consequently, the optimal bombarding energy
is probably somewhat higher than what the above idealized
analysis would suggest. For example, it may well be that the
5 GeV/A UrQMD simulation, whose maximum compression
overshoots the spinodal region, would be quite suitable for
spinodal clumping because the average degree of compression
over an extended region favors phase separation.

It should also be recognized that the spinodal phase region is
surrounded by a thermodynamically metastable region through
which the phase trajectory has to pass after the spinodal mech-
anism has acted. During this traverse, sufficiently significant
deviations from uniformity will be further amplified and phase
separation is thus more likely to occur than suggested by
just the perturbative treatment employed here. In fact, the
spinodal amplification of the preexisting fluctuations may be
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regarded as merely providing seeds for a subsequent nonlinear
breakup evolution in the metastable region. (For a study of the
nucleation mechanism, see Ref. [11].)

We note the analogy with the search for spinodal fragmenta-
tion [5] as a signal of the nuclear liquid-gas phase transition [6].
The collision energy had to be carefully adjusted to producing
the phenomenon: a too-high energy would yield an explosive
vaporization, whereas a too-low energy would cause the two
nuclei to fuse (and subsequently deexcite by light-particle
emission). But in the optimal energy range, the bulk of the
combined system would first compress (to 2–3 times normal)
and then start to expand; however, the expansion would tend
to stall, leaving the system in a dilute (and nearly spherical)
configuration for a sufficient length of time (several times the
typical growth time) to cause the most unstable modes to grow
dominant, thereby leading the system toward a breakup into
nearly equal-sized intermediate-mass fragments. Our present
analysis suggests that collisions at suitably tuned relativistic
energies would also cause the bulk of the system to spend
several growth times inside the unstable phase region and thus
enable the spinodal formation of plasma drops.

In the liquid-gas case the production of equal-size nuclear
fragments in each event provided a simple and unambiguous
signal of the spinodal breakup mechanism and thus for the
existence of a first-order transition. The confinement transition
is inherently more difficult to investigate experimentally
because any plasma drops that may have been formed will
ultimately hadronize and are thus harder to identify. Neverthe-
less, the transient existence of such spatially separated blobs of
deconfined matter may be revealed by careful examination of
suitable multiparticle correlations. Although some relatively
schematic studies have already been made for the purpose of
identifying such observables [28–30] there is a need for much
more refined studies. We hope that the present investigation,
which suggests that spinodal phase separation might indeed
occur, will provide an incentive for such endeavors.
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APPENDIX A: EQUATION OF STATE

The present study requires an equation of state of strongly
interacting matter that displays the expected phase structure.
Although significant progress has been made in understanding
the thermodynamical properties of each of the phases sep-
arately, our current understanding of the phase coexistence
region is not yet on firm ground. We therefore employ a
conceptually simple approximate equation of state that will
suffice for our present explorations.

For this purpose, we approximate the confined phase
by an ideal gas of nucleons and pions augmented by a

density-dependent interaction energy, while the deconfined
phase is taken as an ideal gas of quarks and gluons with their
interactions described by a bag constant. The desired phase
structure is then generated by suitable interpolation between
these two pure phases.

1. Confined phase

The confined phase is approximated as an ideal gas of pions,
nucleons, and antinucleons, plus an interaction term. The total
hadronic pressure is, thus,

pH = pπ + pN + pN̄ + pw, (A1)

where the contribution from the ideal pion gas is

pπ (T ) = −gπT

∫ ∞

mπ

pεdε

2π2
ln[1 − e−βε] , (A2)

with gπ = 3 and mπ = 140 MeV, while the nucleons and
antinucleons contribute

pN (T ,µ0) = gN

∫ ∞

mN

pεdε

2π2
ln[1 + e−β(ε−µ0)], (A3)

pN̄ (T ,µ0) = gN

∫ ∞

mN

pεdε

2π2
ln[1 + e−β(ε+µ0)], (A4)

respectively, with gN = 2 × 2 = 4 and mN = 940 MeV. The
net baryon density ρH = ρN − ρN̄ then follows,

ρH = ∂pH

∂µ0
= gN

∫ ∞

mN

pεdε

2π2

sinh βµ0

cosh βµ0 + cosh βε
, (A5)

and the entropy density is σH = ∂pH/∂T . Finally, the
contribution from the interaction energy density w(ρ) is
pw(ρ) = ρ∂ρw(ρ) − w(ρ) and the parameter µ0 is related to
the chemical potential µ by µ = µ0 + ∂ρw.

The interaction energy density w(ρ) has the form,

w(ρ) =
[
−A

(
ρ

ρs

)α

+ B

(
ρ

ρs

)β
]

ρ, (A6)

where we use α = 1 and β = 2. The strength coefficients
A and B are then adjusted so that nuclear matter saturates
at ρs =0.153 fm−3 and the associated compression modulus
is K ≡ 9(ρ2∂2

ρe0(ρ))s = KN + Kw = 300 MeV, where KN =
− 6

5EF ≈ −43 MeV is the contribution from the Fermi motion
of the nucleons (which is negative). The binding energy of
nuclear matter is then also roughly reproduced. The resulting
equation of state for nuclear matter is shown in Fig. 8.

2. Deconfined phase

The deconfined phase is taken as an ideal gas of massless
gluons and light quarks with a standard bag constant,

pQ = pg + pq + pq̄ − B, (A7)

where pg = gg(π2/90)T 4 with gg = 2 × 8 = 16 is the gluon
pressure while the quarks and antiquarks contribute

pq + pq̄ = gq

[
7π2

360
T 4 + 1

12
µ2

qT
2 + 1

24π2
µ4

q

]
, (A8)
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FIG. 8. (Color online) The equation of state, pT (ρ), for the (ρ, T )
region relevant for ordinary nuclear matter: the dependence of the
pressure on the compression for specified T (shown in MeV).

with gq = 2 × 3 × 2 = 12 and µq = 1
3µ. The net baryon

density in the plasma is then

ρQ = ∂pQ

∂µ
= 2

9
µT 2 + 2

81π2
µ3, (A9)

while the entropy density is

σQ = ∂pQ

∂T
= 74

45
π2T 3 + 2

9
µ2T . (A10)

For the bag constant we use B = 300 MeV/fm3.

3. Interpolation

At zero temperature and zero chemical potential, the
pressure of the nucleon gas vanishes whereas that of the
quark gas is equal to −B. The confined phase is then
the thermodynamically favored one. However, as the chemical
potential is raised, the plasma pressure increases faster than
the hadronic pressure, so the two curves, pH (T = 0, µ) and
pQ(T = 0, µ), cross at a certain value of µ, above which the
deconfined phase is favored, as illustrated in Fig. 9. This phase
crossing procedure can be repeated for any temperature up to
Tmax and the resulting crossing points are included in Fig. 9.
The corresponding coexistence densities are shown in Fig. 10.

For the discussion of phase coexistence, it is convenient to
work in the canonical representation where the temperature
is specified. Then, the condition of phase coexistence (i.e.,
same temperature, chemical potential, and pressure at two
different densities ρ1 and ρ2) amounts to the condition that
fT (ρ), the free-energy density as a function of density, have
common tangents. This is readily seen because µT (ρ) =
∂ρfT (ρ) implies that the two chemical potentials are then
equal, µ1 = µ2, and because the tangent at ρi is given
by ti(ρ) = fi(ρ) + (ρ − ρi)f ′

i (ρ) the fact that t1(ρ) = t2(ρ)
immediately implies p1 = p2.

Figure 11 shows f H
T =0(ρ) and f

Q
T =0(ρ). The former curve

starts at zero but grows more rapidly than the latter, which
starts at B, so the two curves cross and, furthermore, because
they both have positive curvature, a common tangent exists.
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FIG. 9. (Color online) Phase crossing: The pressures in the two
idealized phases are shown as functions of the chemical potential
µ for T = 0; the systems are in mutual thermodynamic equilibrium
at the µ value for which the two curves cross. The crossing points
obtained by the same procedure for T > 0 are connected by the solid
curve, which terminates at Tmax ≈ 156.4 MeV.

Because of this generic feature, it is expected that cold matter
exhibits a first-order phase transition when compressed.

Although the simple gas models employed presumably pro-
vide reasonable (though still somewhat idealized) descriptions
of the two individual phases well away from the coexistence
region, neither one is suitable in the phase-coexistence region.
To describe the transition region, we represent the free-energy
density there by a fifth-order polynomial f̃T (ρ) that matches
the values of f H

T , ∂ρf
H
T , and ∂2

ρf H
T at a density ρ̃H

T � ρH
T

and the values of f
Q
T , ∂ρf

Q
T , and ∂2

ρf
Q
T at a density ρ̃

Q
T � ρ

Q
T ,

where ρH
T and ρ

Q
T are those densities at which the two idealized

curves f H
T (ρ) and f

Q
T (ρ) have a common tangent. For lower

densities, ρ � ρ̃H
T , we use the idealized hadron gas, f H

T (ρ),
and at higher energies, ρ � ρ̃

Q
T , we use the idealized plasma,

f
Q
T (ρ).
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FIG. 10. (Color online) Phase crossing: For the range of tem-
peratures where the two idealized phases coexists, 0 � T � Tmax ≈
156.4 MeV, the associated coexistence densities are shown (dashed
curves). The solid curves show the corresponding coexistence
densities for the spline-based equation of state.
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FIG. 11. (Color online) The free-energy density at zero tempera-
ture, fT =0(ρ), as a function of the degree of compression ρ/ρc. The
two individual phases f H

0 (ρ) and f
Q

0 (ρ) are shown together with
the connection between them, f̃0(ρ), obtained by splining between
the two open squares located at ρ̃H

0 and ρ̃
Q

0 . The resulting coexistence
points (solid circles) are located at ρ1 and ρ2; they are connected by
the associated common tangent (the Maxwell line). The spinodal
boundary densities ρA and ρB are indicated by the open circles.

When the lower matching density ρ̃H
T is chosen sufficiently

close to ρH
T and the higher matching density ρ̃

Q
T is chosen

sufficiently close to ρ
Q
T then the resulting spline function f̃T (ρ)

also has a common tangent and so the system has a first-
order transition at the particular temperature T . The associated
densities [where the common tangent touches f̃T (ρ)] are then
the coexistence densities, ρ1 and ρ2, at that temperature.

This spline procedure is illustrated in Fig. 11 for T = 0 and
the corresponding pressure is shown in Fig. 12. By suitable
adjustment of the matching densities ρ̃H

T and ρ̃
Q
T , it is thus
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FIG. 12. (Color online) The pressure at zero temperature,
pT =0(ρ), as a function of the degree of compression ρ/ρc, correspond-
ing to the free-energy density shown in Fig. 11. The two individual
phases are shown together with the connection between them obtained
by splining between the two open squares. The resulting coexistence
points (open circles) are connected by the associated Maxwell line.
The spinodal boundaries are situated at the two extrema (open circles).

possible to design an equation of state having the desired phase
structure, namely a first-order phase transition that becomes
ever weaker as the temperature is raised and terminates in
a critical point at a finite density ρc. The resulting phase
coexistence boundaries, (ρ1, T ) and (ρ2, T ), are shown in
Fig. 10, the full phase diagram having already been shown in
Fig. 1.

APPENDIX B: SPLINE METHOD

We describe here a convenient spline method that enables
us to match values and derivatives at two points.

We seek a polynomial expression for the function f (x)
[here the free-energy density fT (ρ)] that matches the specified
values a0 ≡ f (x = a) and b0 ≡ f (x = b) as well as the asso-
ciated derivatives up to any order n, ai ≡ f (i)

a ≡ (dif/dxi)x=a

and bi ≡ f
(i)
b ≡ (dif/dxi)x=b, i = 1, . . . , n.

If fn−1(x) denotes the spline approximation that matches
derivatives up to the (n − 1)th order (which is a polynomial of
order 2n − 1), then we may obtain the approximation for the
next order n by writing

fn(x) = fn−1(x) + (b − x)n(x − a)n
(b − x)αn + (x − a)βn

b − a
.

(B1)

Because the factor (b − x)n(x − a)n and its derivatives up
to order n − 1 vanish at a and b, it follows that fn(x)
satisfies the matching conditions up to order n − 1 [i.e.,
f (i)

n (a) = f
(i)
n−1(a) = ai and f (i)

n (b) = f
(i)
n−1(b) = bi for i < n].

The only remaining task is thus to determine the two
coefficients αn and βn which can be done by matching also
the nth derivative at a and b, namely f (n)

a

.= an and f
(n)
b

.= bn.
It is elementary to show that they are given by the following
expressions,

αn = an − f
(n)
n−1(a)

n!(b − a)n
, βn = bn − f

(n)
n−1(b)

n!(a − b)n
. (B2)

It is possible to also determine the derivatives of the spline
function by iteration. In particular, the derivatives at the two
matching points are given by

f (n)
ν (a) = f

(n)
ν−1(a) + n! ν!(−)n−ν

(n − ν)! (2ν − n + 1)!
× [(ν + 1)αν − (n − ν)βν], (B3)

f (n)
ν (b) = f

(n)
ν−1(b) + n! ν!(−)ν

(n − ν)! (2ν − n + 1)!
× [(ν + 1)βν − (n − ν)αν], (B4)

where the first terms are present only for n < 2ν, whereas the
second terms are present only for ν � n � 2ν + 1. We note
that

f (2n+1)
n (a) = (2n + 1)!(−)n[βn − αn] = f (2n+1)

n (b), (B5)

consistent with the fact that the highest nonzero derivative is a
constant.

The above expressions can be used iteratively to determine
the spline polynomial fn(x) for any order n � 0 as well as all
of its 2n + 1 derivatives.
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