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Ab initio many-body calculations of nucleon scattering on 4He, 7Li, 7Be, 12C, and 16O
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We combine a recently developed ab initio many-body approach capable of describing simultaneously both
bound and scattering states, the ab initio no-core shell model/resonating-group method (NCSM/RGM), with
an importance-truncation scheme for the cluster eigenstate basis and demonstrate its applicability to nuclei
with mass numbers as high as 17. By using soft similarity renormalization-group-evolved chiral nucleon-nucleon
interactions, we first calculate nucleon-4He phase shifts, cross sections, and analyzing powers. Next, we investigate
nucleon scattering on 7Li, 7Be, 12C, and 16O in coupled-channel NCSM/RGM calculations that include low-lying
excited states of these nuclei. We check the convergence of phase shifts with the basis size and study A = 8,
13, and 17 bound and unbound states. Our calculations predict low-lying resonances in 8Li and 8B that have not
been experimentally clearly identified yet. We are able to reproduce reasonably well the structure of the A = 13
low-lying states. However, we find that A = 17 states cannot be described without an improved treatment of 16O
one-particle-one-hole excitations and α clustering.
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I. INTRODUCTION

Nuclei are quantum many-body systems with both bound
and unbound states. A realistic ab initio description of light
nuclei with predictive power must have the capability to
describe both classes of states within a unified framework.
Over the past decade, significant progress has been made
in our understanding of the properties of the bound states
of light nuclei starting from realistic nucleon-nucleon (NN )
interactions, see, for example, Ref. [1] and references therein,
and more recently also from NN plus three-nucleon (NNN )
interactions [2–4]. The solution of the nuclear many-body
problem becomes more complex when scattering or nuclear
reactions are considered. For A = 3 and 4 nucleon systems,
the Faddeev [5] and Faddeev-Yakubovsky [6] as well as
the hyperspherical harmonics [7] or the Alt, Grassberger,
and Sandhas [8] methods are applicable and successful.
However, ab initio calculations for unbound states and
scattering processes that involve more than four nucleons
in total are quite challenging. The first ab initio many-body
neutron-4He scattering calculations were performed within the
Green’s Function Monte Carlo (GFMC) method by using the
Argonne NN potential and the Illinois NNN interaction [9].
Also, resonances in He isotopes were investigated within the
coupled-cluster method by using the Gamow basis [10].

In a new development, we have recently combined the
ab initio no-core shell model (NCSM) [11] and the resonating-
group method (RGM) [12–17], into a new many-body ap-
proach [18,19] (ab initio NCSM/RGM) capable of treating
bound and scattering states of light nuclei in a unified formal-
ism by starting from fundamental internucleon interactions.
The NCSM is an ab initio approach to the microscopic
calculation of ground and low-lying excited states of light
nuclei with realistic two- and, in general, three-nucleon forces.
The RGM is a microscopic cluster technique based on the
use of A-nucleon Hamiltonians, with fully antisymmetric
many-body wave functions built by assuming that the nucleons

are grouped into clusters. Although most of its applications are
based on the use of binary-cluster wave functions, the RGM
can be formulated for three (and, in principle, even more)
clusters in relative motion [13]. The use of the harmonic-
oscillator (HO) basis in the NCSM results in an incorrect
description of the wave-function asymptotic and a lack of
coupling to the continuum. By combining the NCSM with the
RGM, we complement the ability of the RGM to deal with
scattering and reactions with the use of realistic interactions
and a consistent ab initio description of the nucleon clusters,
achieved via the NCSM. Presently, the NCSM/RGM approach
has been formulated for processes that only involve binary-
cluster systems. However, extensions of the approach to
include three-body cluster channels are feasible also in view
of recent developments on the treatment of both three-body
bound and continuum states (see, e.g., Refs. [20–24]). As
described in detail in Refs. [18,19], the ab initio NCSM/RGM
approach has already been applied to study the n-3H, n-4He,
n-10Be, and p-3,4He scattering processes, and to address the
parity inversion of the 11Be ground state by using realistic
NN potentials. In those papers, we demonstrated convergence
of the approach with increasing basis size in the case of the
A = 4 and A = 5 scatterings. The n-10Be calculations were,
on the other hand, performed only in a limited basis because
of the computational complexity of the NCSM calculations of
the 10Be eigenstates.

It is the purpose of the present paper to expand the
applicability of the NCSM/RGM beyond the lightest nuclei
by using sufficiently large Nh̄� HO excitations to guarantee
convergence of the calculation with the HO-basis expansion
of both the cluster wave functions and the localized RGM
integration kernels. The use of large Nh̄� values is now
feasible because of the recent introduction of the importance-
truncated (IT) NCSM scheme [25,26]. It turns out that many
of the basis states used in the NCSM calculations are irrelevant
for the description of any particular eigenstate (e.g., the ground
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state or a set of low-lying states). Therefore, if one were able
to identify the important basis states beforehand, one could
reduce the dimension of the matrix eigenvalue problem without
losing predictive power. This can be performed by using an IT
scheme based on many-body perturbation theory [25].

We make use of the IT NCSM wave functions for the
cluster eigenstates, in particular, the eigenstates of the target
nucleus of the binary nucleon-nucleus system and calculate
the one- and two-body densities that are then used to obtain
the NCSM/RGM integration kernels. We benchmark the IT
approach in basis sizes accessible by the full calculation and
apply it within still larger basis sizes until convergence is
reached for target nuclei as heavy as 12C or 16O. In this
paper, we employ a similarity-renormalization-group-(SRG-)
[27–29] evolved chiral N3LO NN potential [30] (SRG-N3LO)
that is soft enough to allow us reach convergence within about
14–16h̄� HO excitations in the basis expansion.

In Sec. II, we briefly overview the NCSM/RGM formalism
and present, for the first time, the IT-NCSM scheme that
includes both ground and low-lying excited states in the set of
reference states. Next, we present scattering calculation results
for the n-4He and p-4He systems in Sec. III. In particular, we
compare the calculated phase shifts to an R-matrix analysis
of experimental data and, further, calculated differential cross
sections and analyzing powers in the energy range 6–19 MeV
to the corresponding experimental data. Neutron elastic and
inelastic scatterings on 7Li and proton elastic and inelastic
scatterings on 7Be are investigated in Sec. IV. We present
phase shifts, cross sections, and scattering lengths. We predict
resonances in 8Li and 8Be that have not been clearly identified
in experiments yet. In Sec. V, we discuss nucleon-12C results
for both bound and unbound states of 13C and 13N, obtained
by including two 12C bound states, the ground and the first 2+
states, in the NCSM/RGM coupled-channel calculations. In
Sec. VI, we present results for the nucleon-16O system. In the
NCSM/RGM coupled-channel calculations, we take the 16O
ground state and up to the lowest three 16O negative-parity
states into account. Conclusions are given in Sec. VII.

II. FORMALISM

A. NCSM/RGM

The ab inito NCSM/RGM approach was introduced in
Ref. [18] with details of the formalism given in Ref. [19].
Here, we give a brief overview of the main points.

In the present paper, we limit ourselves to a two-cluster
RGM, which is based on binary-cluster channel states of total
angular momentum J , parity π , and isospin T ,

∣∣�Jπ T
νr

〉 = [(∣∣A − aα1I
π1
1 T1

〉∣∣aα2I
π2
2 T2

〉)(sT )

×Y�(r̂A−a,a)
](Jπ T ) δ(r − rA−a,a)

rrA−a,a

. (1)

In the preceding expression, |A − aα1I
π1
1 T1〉 and |aα2I

π2
2 T2〉

are the internal (antisymmetric) wave functions of the first and
second clusters, which contain A − a and a nucleons (a < A),
respectively. They are characterized by angular momentum
quantum numbers I1 and I2 coupled together to form channel

spin s. For their parity, isospin, and additional quantum
numbers, we use the notations πi , Ti , and αi , respectively, with
i = 1, 2. The cluster centers of mass (c.m.s) are separated by
the relative coordinate,

�rA−a,a = rA−a,a r̂A−a,a = 1

A − a

A−a∑
i=1

�ri − 1

a

A∑
j=A−a+1

�rj , (2)

where {�ri, i = 1, 2, . . . , A} are the A single-particle co-
ordinates. The channel states of Eq. (1) have relative
angular momentum �. It is convenient to group all rele-
vant quantum numbers into a cumulative index ν = {A −
aα1I

π1
1 T1; aα2I

π2
2 T2; s�}.

The former basis states can be used to expand the many-
body wave function according to

|�Jπ T 〉 =
∑

ν

∫
dr r2 gJπ T

ν (r)

r
Âν

∣∣�Jπ T
νr

〉
. (3)

As the basis states, Eq. (1), are not antisymmetric under
the exchange of nucleons that belong to different clusters,
to preserve the Pauli principle, one has to introduce the
appropriate intercluster antisymmetrizer, schematically Âν =√

(A−a)!a!
A!

∑
P (−)pP , where the sum runs over all possible

permutations P that can be carried out among nucleons
that pertain to different clusters, and p is the number of
interchanges that characterizes them. The coefficients of the
expansion Eq. (3) are the relative-motion wave functions
gJπ T

ν (r), which represent the only unknowns of the problem.
To determine them, one has to solve the nonlocal integrodif-
ferential coupled-channel equations,

∑
ν

∫
dr r2[HJπ T

ν ′ν (r ′, r) − EN Jπ T
ν ′ν (r ′, r)

]gJπ T
ν (r)

r
= 0,

(4)

where the two integration kernels, the Hamiltonian kernel,

HJπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′

∣∣Âν ′H Âν

∣∣�Jπ T
νr

〉
, (5)

and the norm kernel,

N Jπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′

∣∣Âν ′Âν

∣∣�Jπ T
νr

〉
, (6)

contain all the nuclear structure and antisymmetrization
properties of the problem. In particular, the nonlocality of the
kernels is a direct consequence of the exchanges of nucleons
between the clusters. We have used the notation E and H to
denote the total energy in the c.m. frame, and the intrinsic
A-nucleon microscopic Hamiltonian, respectively.

The formalism presented earlier is combined with the ab
initio NCSM in two steps: First, we note that the Hamiltonian
can be written as

H = Trel(r) + Vrel + V̄C(r) + H(A−a) + H(a), (7)

where H(A−a) and H(a) are the (A − a)- and a-nucleon intrinsic
Hamiltonians, respectively, Trel(r) is the relative kinetic energy
and Vrel is the sum of all interactions between nucleons,
which belong to different clusters after subtraction of the
average Coulomb interaction between them, explicitly singled
out in the term V̄C(r) = Z1νZ2νe

2/r (Z1ν and Z2ν are the
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charge numbers of the clusters in channel ν). We use identical
realistic potentials in both the cluster’s Hamiltonians and
the intercluster interaction Vrel. Accordingly, |A − aα1I

π1
1 T1〉

and |aα2I
π2
2 T2〉 are obtained by diagonalizing H(A−a) and

H(a), respectively, in the model space spanned by the NCSM
Nmaxh̄� HO basis. Note that, in the present paper, we use
soft SRG-evolved NN potentials. Therefore, there is no need
to derive any further effective interaction tailored to the
model-space truncation as with these soft interactions our
calculations converge in the model spaces we are able to reach.

Second, we replace the δ functions in the localized parts
of the Hamiltonian Eq. (5) and the norm Eq. (6) kernels with
their representation in the HO model space. We use identical
HO frequency as for the cluster eigenstate wave functions
and a consistent model-space size (Nmax). We emphasize that
this replacement is only performed for the localized parts of
the kernels. The diagonal parts that come from the identity
operator in the antisymmetrizers, the kinetic term, and the
average Coulomb potential are treated exactly.

In this paper, we apply the NCSM/RGM formalism in
the single-nucleon projectile basis [i.e., for binary-cluster
channel states Eq. (1) with a = 1 (with channel index ν =
{A − 1α1I

π1
1 T1; 1 1

2
1
2 ; s�})]. As an illustration, let us discuss

the norm kernel that is rather simple in this basis in more
detail:

N Jπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′

∣∣1 −
A−1∑
i=1

P̂iA

∣∣�Jπ T
νr

〉
(8)

= δν ′ν
δ(r ′ − r)

r ′r
− (A − 1)

∑
n′n

Rn′�′(r ′)Rn�(r)

× 〈
�Jπ T

ν ′n′
∣∣P̂A−1,A

∣∣�Jπ T
νn

〉
. (9)

We can easily recognize a direct term in which the initial
and final states are identical [corresponding to diagram (a)
of Fig. 1], and a many-body correction due to the exchange
part of the intercluster antisymmetrizer [corresponding to
diagram (b) of Fig. 1]. We note that, in calculating the matrix
elements of the exchange operator P̂A−1,A, we replaced the δ

function of Eq. (1) with its representation in the HO model
space as previously discussed. This is appropriate as the
transposition P̂A−1,A operator, which acts on the target wave
function in the short-to-medium range. On the contrary, the δ

function, which comes from the identity, is treated exactly. The
presence of the intercluster antisymmetrizer also affects the
Hamiltonian kernel, and, in particular, the matrix elements of
the interaction. For an NN potential, one obtains a direct term,
which involves the interaction and exchange of two nucleons
only [see diagrams (c) and (d) of Fig. 1], and an exchange term,
which involves three nucleons. Diagram (e) of Fig. 1 describes
this latter term in which the last nucleon is exchanged with
one of the nucleons of the first cluster and interacts with yet
another nucleon. For more details on the integration kernels
in the single-nucleon projectile basis, we refer the readers to
Ref. [19].

By being translationally invariant quantities, the norm and
Hamiltonian kernels can be naturally derived by working
within the NCSM Jacobi-coordinate basis. However, by

(a) (b)

ν, r

ν , r

1

1

2

2

A-2

A-2

A-1

A-1

A

A

· · ·

· · ·

· · ·· · ·

(c) (d) (e)

· · ·· · · · · ·

FIG. 1. (Color online) Diagrammatic representation of: (a) direct
and (b) exchange components of the norm kernel; (c) and (d) direct
and (e) exchange components of the potential kernel. The group
of circled black lines represents the target cluster, a state of A − 1
nucleons. The separate red line represents the projectile, a single
nucleon. Bottom and upper parts of the diagram represent initial and
final states, respectively.

introducing Slater-determinant (SD) channel states of the type,
∣∣�Jπ T

νn

〉
SD = [

(|A − aα1I1T1〉SD|aα2I2T2〉)(sT )

×Y�

(
R̂(a)

c.m.

)](Jπ T )
Rn�

(
R(a)

c.m.

)
, (10)

in which the eigenstates of the (A − a)-nucleon fragment
are obtained in the SD basis (while the second cluster is
still an NCSM Jacobi-coordinate eigenstate), it can easily be
demonstrated that translationally invariant matrix elements can
be extracted from those calculated in the SD basis of Eq. (10)
by inverting the following expression:

SD
〈
�Jπ T

ν ′n′
∣∣Ôt.i.

∣∣�Jπ T
νn

〉
SD

=
∑

n′
r �

′
r ,nr �r ,Jr

〈
�

Jπr
r T

ν ′
r n

′
r

∣∣Ôt.i.

∣∣�Jπr
r T

νrnr

〉

×
∑
NL

�̂�̂′Ĵ 2
r (−1)(s+�−s ′−�′)

{
s �r Jr

L J �

}{
s ′ �′

r Jr

L J �′

}

×〈nr�rNL�|00n��〉a/(A−a)〈n′
r�

′
rNL�|00n′�′�′〉a/(A−a).

(11)

Here, Ôt.i. represents any scalar and parity-conserving
translational-invariant operator (Ôt.i. = Â, ÂH Â, etc.) and
〈nr�rNL�|00n��〉a/(A−a) are generalized HO brackets for two
particles with the mass ratio a/(A − a). We exploited both
Jacobi-coordinate and SD channel states to verify our results.
The use of the SD basis is computationally advantageous and
allows us to explore reactions that involve p-shell nuclei,
as done in the present paper. To calculate the parts of the
integration kernels depicted in Figs. 1(b)–1(d), all information
that we need from the SD-basis calculation are one-body
densities of the target eigenstates. For the (e) part of the
integration kernel in Fig. 1, we need two-body densities of
the target eigenstates obtained in the SD basis.
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Because of the presence of the norm kernel N Jπ T
ν ′ν (r ′, r),

Eq. (4) does not represent a system of multichan-
nel Schrödinger equations, and gJπ T

ν (r) do not represent
Schrödinger wave functions. The short-range nonorthogonal-
ity, induced by the nonidentical permutations in the intercluster
antisymmetrizers, can be removed by introducing normalized
Schrödinger wave functions,

χJπ T
ν (r)

r
=

∑
γ

∫
dy y2N 1/2

νγ (r, y)
gJπ T

γ (y)

y
, (12)

where N 1/2 is the square root of the norm kernel and by
applying the inverse-square root of the norm kernel N−1/2 to
both left- and right-hand sides of the square brackets in Eq. (4).
This procedure, explained in more detail in Ref. [19], leads to
a system of multichannel Schrödinger equations,

[
T̂rel(r) + V̄C(r) − (

E − E
I

π1
1 T1

α1 − E
I

π2
2 T2

α2

)]χJπ T
ν (r)

r

+
∑
ν ′

∫
dr ′ r ′2WJπ T

νν ′ (r, r ′)
χJπT

ν ′ (r ′)
r ′ = 0, (13)

where E
I

πi
i Ti

αi
is the energy eigenvalue of the ith cluster (i =

1, 2), and WJπ T
ν ′ν (r ′, r) is the overall nonlocal potential between

the two clusters, which depends on the channel of relative
motion, while it does not depend on the energy. These are the
equations that we finally solve to obtain both our scattering
and our bound-state results.

B. IT-NCSM with excited states

The primary limitation for the range of applicability of
the NCSM in terms of particle number A and model-spaces
size Nmax results from the factorial growth of the dimension
of the Nmaxh̄� space. Except for light isotopes, it is hardly
possible to obtain a converged result by using a bare Hamil-
tonian within the Nmaxh̄� spaces that are computationally
tractable.

At this point, the IT offers a solution. The IT in connection
with the NCSM was introduced in Ref. [25] and was discussed
in detail in Ref. [26]. In the following, we summarize a few
key features of the IT-NCSM and generalize the approach to
the simultaneous description of excited states.

The motivation for the IT results from the observation that
the expansion of any particular eigenstate of the Hamiltonian
in a full m-scheme NCSM space typically contains a large
number of basis states with extremely small or vanishing
amplitudes. The amplitudes define an adaptive truncation
criterion, which takes the properties of the Hamiltonian and the
structure of the eigenstate under consideration into account.
If those amplitudes were known—at least approximately—
before actually solving the eigenvalue problem, one could
reduce the model space to the most relevant basis states by
imposing a threshold on the amplitude. The amplitude of
a particular basis state |�ν〉 in the expansion of a specific
eigenstate can be estimated by using first-order multiconfigu-
rational perturbation theory. To set up a perturbation series, we
need an initial approximation of the target state, the so-called
reference state |�ref〉. In practice, this reference state will be

a superposition of basis states |�µ〉 ∈ Mref from a reference
space Mref :

|�ref〉 =
∑

µ∈Mref

C(ref)
µ |�µ〉. (14)

The reference state and the amplitudes C(ref)
µ are typically

extracted from a previous NCSM calculation. Based on |�ref〉
as the unperturbed state, we can evaluate the first-order
perturbative correction to the target state, which results from
basis states |�ν〉 /∈ Mref . Their first-order amplitude defines
the so-called importance measure,

κν = −〈�ν |H |�ref〉
εν − εref

= −
∑

µ∈Mref

C(ref)
µ

〈�ν |H |�µ〉
εν − εref

. (15)

The energy denominator εν − εref in a Møller-Plesset-type
partitioning is simply given by the unperturbed HO excitation
energy of the basis state |�ν〉 (see Ref. [26] for details).

By imposing an importance threshold κmin, we construct an
IT model space by including all basis states with importance
measure |κν | � κmin. Since the importance measure is zero
for all basis states that differ from all of the states in Mref

by more than a two-particle-two-hole excitation, we have
to embed the construction of the IT space into an iterative
update cycle. After constructing the IT space and solving the
eigenvalue problem in that space, we obtain an improved
approximation for the target state that defines a reference
state for the next iteration. To accelerate the evaluation of
the importance measure Eq. (15), we typically do not use the
complete eigenstate as the new reference state, but project
it onto a reference space spanned by the basis states with
|Cν | � Cmin, where Cν are the coefficients that result from the
solution of the eigenvalue problem. The second threshold Cmin

will be chosen sufficiently small so as not to affect the results
for a given κmin threshold.

Simple iterative update schemes can be devised for any
type of full model spaces, as discussed in Refs. [26,31].
Specifically for the Nmaxh̄� space of the NCSM, however,
there is an efficient sequential update scheme, which leads
to the IT-NCSM(seq) approach. It is based on the fact that
all states of an (Nmax + 2)h̄� space can be generated from the
basis states of an Nmaxh̄� space by using two-particle-two-hole
excitations at most. Thus, a single importance update, which
starts from a reference state in an Nmaxh̄� space gives access to
all relevant states in an (Nmax + 2)h̄� space. By making use of
this property, in the IT-NCSM(seq) we start with a full NCSM
calculation in, for example, 2h̄� and use this eigenstate after
applying the Cmin threshold as a reference state for constructing
the IT 4h̄� space. After solving the eigenvalue problem for this
IT 4h̄� space, we use the resulting eigenstate as a reference
state to construct the 6h̄� space, and so on. Thus, only one
importance update is required for each value of Nmax, which
makes this scheme very efficient computationally. Moreover,
in the limit of vanishing thresholds, (κmin, Cmin) → 0, this
scheme recovers the full Nmaxh̄� space at each step of the
sequence [i.e., the IT-NCSM(seq) would recover the full
NCSM result].

Based on this limiting property, we can obtain a numerical
approximation for the full NCSM result by extrapolating the
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IT-NCSM(seq) observables obtained for a set of different
importance thresholds κmin (and, in principle, also Cmin) to
κmin → 0. Through this extrapolation, the contribution of
discarded basis states (i.e., those with importance measures
|κν | below the smallest threshold considered) is effectively
recovered. Because the control parameter κmin is tied to the
physical structure of the eigenstate, we observe a smooth
threshold dependence for all observables, which allows for
a robust threshold extrapolation. In the case of the energy,
we can improve the quality of the extrapolation further by
considering a perturbative second-order estimate for the energy
of the excluded basis states. While setting up the IT space, all
second-order energy contributions,

ξν = −|〈�ν |H |�ref〉|2
εν − εref

(16)

for the discarded states with |κν | < κmin are summed up to
provide a correction �excl(κmin) to the energy eigenvalue. By
construction, this correction goes to zero in the limit κmin → 0.
We use this additional information for a constrained simulta-
neous extrapolation of the energy-to-vanishing threshold with
and without perturbative correction for the excluded states as
described in detail in Ref. [26].

The whole concept can be generalized for the description of
excited states. For the present application in connection with
the NCSM/RGM, we aim at an IT model space that is equally
well suited for the description of the lowest M eigenstates of
the Hamiltonian for given parity and total angular momentum
projection. Instead of using a single reference state, we employ
different reference states |�(m)

ref 〉, with m = 1, . . . , M , for each
of the M target states. For each reference state, we define a
separate importance measure κ (m)

ν following Eq. (15). A basis
state |�ν〉 is included in the IT space if at least one of the
importance measures |κ (m)

ν | is above the threshold κmin (i.e., if
it is relevant for the description of at least one of the M target
states, it will be included). Because the different eigenstates
are typically dominated by different basis states, the dimension
of the IT space grows linearly with M .

In the IT-NCSM(seq) scheme, we start with a full NCSM
calculation in 2h̄� and use the lowest M eigenstates as
initial reference states |�(m)

ref 〉. Based on the corresponding
importance measures κ (m)

ν , the IT 4h̄� space is constructed,
and the lowest M eigenvectors in this space serve as new
reference states (after application of the Cmin threshold) for the
construction of the 6h̄� space, and so on. From a sequence of
IT-NCSM(seq) calculations, we obtain a set of M eigenvectors
for each value of Nmax, which can be used to evaluate other
observables.

By default, we compute the expectation values of �J 2

and �T 2 as well as the expectation values of Hint and Hc.m..
Indeed, since we use an IT space in the m scheme without
explicit angular momentum projection, the eigenstates are
not guaranteed to have good angular momentum and isospin.
Therefore, we monitor the expectation values of �J 2 and �T 2

and find values, which typically differ by less than 10−3 from
the exact quantum numbers. As in the full NCSM, we separate
spurious c.m. excitations from the physical spectrum by adding
a Lawson term βHc.m. to the translationally invariant intrinsic

Hamiltonian Hint (with the typical choice β = 10). At the
same time, the use of this modified Hamiltonian provides a
diagnostic for potential c.m. contaminations of the intrinsic
states induced by the IT. As discussed in Refs. [26,32],
the independence of the intrinsic energies 〈Hint〉 on β and
the smallness of 〈Hc.m.〉 demonstrate that the IT-NCSM(seq)
solutions are free of c.m. contaminations.

Eventually, the wave functions obtained in the IT-
NCSM(seq) together with the threshold extrapolated intrinsic
energies form the input for the NCSM/RGM calculations
discussed in the following.

III. NUCLEON-4He SCATTERING

The purpose of the nucleon-4He calculations presented in
this paper is twofold. First, we want to check the predictive
power of the SRG-evolved chiral interaction in the A = 5
system, where a lot of experimental scattering data exist and
where our calculations can easily be converged with respect to
the size of the basis expansion. Second, we want to benchmark
the IT scheme with the full-space calculations all the way up
to very large Nmaxh̄� spaces.

The first ab initio A = 5 scattering calculations were
reported in Ref. [9]. The n-α low-lying Jπ = 3/2− and 1/2−
P -wave resonances as well as the 1/2+ S-wave nonresonant
scattering below 5-MeV c.m. energy were obtained by using
the AV18 NN potential with and without the three-nucleon
force, chosen to be either the Urbana IX or the Illinois-2 model.
The results of these GFMC calculations revealed sensitivity to
the internucleon interaction, and, in particular, to the strength
of the spin-orbit force.

Soon after, the development of the ab initio NCSM/RGM
approach allowed us to calculate both n- and (for the first time)
p-α scattering phase shifts for energies up to the inelastic
threshold [18,19], by using several realistic NN potentials,
which include the chiral N3LO [30], the Vlow k [33], and the
charge-dependent (CD)-Bonn [34] NN potentials. Nucleon-α
scattering provides one of the best-case scenarios for the
application of the NCSM/RGM approach. This process is
characterized by a single open channel up to the d + 3H
threshold, which is fairly high in energy. In addition, the
low-lying resonances of the 4He nucleus are narrow enough
to be reasonably reproduced by diagonalizing the four-body
Hamiltonian in the NCSM model space. In the present paper,
we include the first excited state of 4He, the 0+0 state, as a
closed channel in our NCSM/RGM basis space.

A. Convergence with the size of the HO-basis expansion

We performed extensive nucleon-4He calculations with
the SRG-N3LO NN potential with � = 2.02 fm−1 to check
convergence of our NCSM/RGM calculations. In Fig. 2, we
present n-4He phase-shift results for the S and P waves
obtained by using an HO-basis expansion up to Nmax = 17
for for the localized parts of the NCSM/RGM integration
kernels and for the 4He ground and the first excited 0+0
wave functions (since these states have positive parity, the
Nmax − 1 expansion is, in fact, used for the 4He eigenstates).
As seen in the figure, the phase-shift convergence is excellent.
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PETR NAVRÁTIL, ROBERT ROTH, AND SOFIA QUAGLIONI PHYSICAL REVIEW C 82, 034609 (2010)

0

30

60

90

120

0

20

40

60

0 2 4 6 8 10
-90

-60

-30

0
9
11
13
15
17

SRG-N3LO

Ekin [MeV]

Nmaxδ
[d

e
g
] n + α(g.s., 0+)

h̄Ω = 20 MeV

2P 3/2

2P 1/2

2S1/2

FIG. 2. (Color online) Dependence of the n-4He phase shifts on
the size of the HO-basis expansion of the 4He wave functions and
the localized parts of the integration kernels. The 4He ground state
and the first 0+0 excited states were included. The SRG-N3LO NN

potential with � = 2.02 fm−1 and the HO frequency h̄� = 20 MeV
were used.

In particular, the Nmax = 17 and the Nmax = 15 curves lie on
top of each other. The convergence rate demonstrated here is
quite similar to that obtained by using the Vlow k NN potential
in our earlier study (compare the present Fig. 2 to the left panel
of Fig. 13 in Ref. [19]).

B. Benchmark of IT calculations

As shown in Sec. III A, for the A = 5 system, we are
able to reach complete convergence with 4He wave functions
obtained within full nontruncated NCSM calculations. We
can, therefore, test the performance of the IT-NCSM scheme
in this system all the way up to very large Nmax values
and see how well the IT-NCSM scheme reproduces the
completely converged results. It should be noted that for
heavier A = 8, 13 and A = 17 systems investigated later, full
nontruncated NCSM calculations for the A = 7 (A = 12, 16)
target nuclei are feasible only up to Nmax = 10 (Nmax = 8).
It is, therefore, desirable and important to benchmark the
IT-NCSM calculations in a lighter system, such as A = 5 in
Nmax > 10 calculations.

In Fig. 3, we compare n-4He phase shifts calculated within
the NCSM/RGM with 4He wave functions obtained in a full
Nmax = 16 NCSM calculation and those obtained by using
4He wave functions obtained within an Nmax = 16 IT-NCSM
calculation. The agreement of the two sets of phase shifts
is excellent. It should be noted that the dimension of the full
Nmax = 16 4He NCSM basis is 6 344 119. The dimension of the
IT-NCSM basis used here to calculate the 4He wave functions
was just 992 578, more than a factor of 6 smaller. Truncation
parameters κmin = 10−5 and Cmin = 2 × 10−4 were used.
The ground-state energy from the full NCSM calculation
is −28.224 MeV. The κmin → 0 extrapolated ground-state
energy from the IT-NCSM calculation is −28.217(5) MeV
with a difference from the full result less than 10 keV. The
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FIG. 3. (Color online) Calculated n-4He S- and P -wave phase
shifts. Results obtained with 4He wave functions from full NCSM
(solid lines) and IT-NCSM (dashed lines) calculations are compared.
The SRG-N3LO NN potential with � = 2.02 fm−1, the Nmax = 17
basis space, and the HO frequency h̄� = 20 MeV were used. See
text for details on the IT-NCSM calculation.

0+0 excitation energy obtained in the full NCSM calculation
was 21.58 MeV. The corresponding extrapolated IT-NCSM
result was 21.4(1) MeV. The slightly lower accuracy of the
excited-state reproduction in the IT-NCSM calculation is
manifested in a very small deviation of the S-wave phase shift
at energies above 12 MeV (less than 1◦ at 16 MeV). It should
be noted that the excited 0+0 state is not bound for small
Nmax. Consequently, it is challenging to reproduce the excited
state as well as the ground state in a sequential IT calculation.
It should also be pointed out that unlike for the energies, no
phase-shift extrapolation was performed. The needed one- and
two-body densities were calculated from the wave functions
obtained in the IT-NCSM calculation with the truncation
parameters described previously. The excellent agreement of
the full and the IT-NCSM phase shifts demonstrates that no
extrapolation was actually necessary. Obviously, we can check
the dependence of observables, such as phase shifts on the κmin

and Cmin and can perform an extrapolation for vanishing values
of these parameters if needed.

C. Comparison with experimental data

Our calculated n-4He and p-4He phase shifts are compared
to those obtained from an R-matrix analysis of N -4He
experimental data [35] in Fig. 4. The agreement is quite
reasonable for the S wave, D wave, and 2P1/2 wave. The 2P3/2

resonance is positioned at higher energy in the calculation, and
the corresponding phase shifts are underestimated with respect
to the R-matrix results, although the disagreement becomes
less and less pronounced starting at about 8 MeV. While the
inclusion of negative-parity excited states of the α particle
would likely increase the 2P3/2 phase shifts [18,19] somewhat,
the observed difference is largely caused by a reduction in
spin-orbit strength caused by the neglect of the three-nucleon
interaction in our calculations. The importance of the three-
nucleon force in reproducing the R matrix 2P3/2 phase shifts
was demonstrated in the GFMC n-4He calculations of Ref. [9].
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Overall, the present results obtained with the SRG-N3LO NN

interaction agree better with the experiment than our earlier
calculations [18,19] with the Vlow k , N3LO, and CD-Bonn
NN potentials. The only exception is the S-wave phase shift,
which is best described by using the CD-Bonn NN potential.
The larger spin-orbit strength of the employed SRG-N3LO
potential with respect to N3LO itself is likely responsible for
the improved agreement.

As our calculated phase shifts agree with the experimental
ones reasonably well above the c.m. energy of 8 MeV, we
expect a similar behavior for cross section and analyzing power
in that energy range. This is indeed the case as shown in Fig. 5,
where the calculated differential cross section and analyzing
power are compared to experimental data from Karlsruhe [36]
with polarized neutrons of En = 17-MeV laboratory energy.
For the cross-sectional experimental data, see also references
in Ref. [36]. The cross section is reproduced remarkably
well at all angles, and the analyzing power is in reasonable
agreement with the data, particularly at backward angles. The
same quality of agreement can be found for all energies far
from the low-lying resonances, as shown in the right panel of
Fig. 5 for the analyzing power at En = 15 and 19 MeV.

A better display of the dependence of our calculated cross
section and analyzing power upon the incident nucleon energy
is provided by Fig. 6, where the p-4He results for these
observables are compared to the data of Ref. [37] at the proton
laboratory energies of Ep = 5.95, 7.89, 9.89, and 11.99 MeV.
As expected from the behavior of the phase shifts described
earlier, for energies relatively close to the resonance region, we
find a rather poor agreement with the experiment, particularly
noticeable in the analyzing power overall and in the cross
section at backward angles. However, starting at about 10 MeV,
the agreement improves substantially, and data are once again
reproduced in a quite satisfactory way at higher energies, as
shown in Fig. 7, where the NCSM/RGM p-4He results are
compared to various experimental data sets [37–40] in the
energy range Ep ∼ 12–17 MeV.
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TABLE I. Calculated ground-state energies of 3H, 4He, 7Li,
and 7Be obtained by using the SRG-N3LO NN potential with
� = 2.02 fm−1 compared to experimental values.

Eg.s. (MeV) 3H 4He 7Li 7Be

Calc. −8.32 −28.22 −39.4(2) −37.8(2)
Expt. −8.48 −28.30 −39.24 −37.60

IV. NEUTRON-7Li AND PROTON-7Be SCATTERING

The 7Be(p, γ )8B capture reaction plays a very important
role in nuclear astrophysics as it serves as an input for under-
standing the solar neutrino flux [41]. While the experimental
determination of the neutrino flux from 8B has an accuracy of
about 9% [42], the theoretical predictions have uncertainties
on the order of 20% [43,44]. The theoretical neutrino flux
depends on the 7Be(p, γ )8B S factor. Significant experimental
and theoretical effort has been devoted to studying this
reaction. The S-factor extrapolation to astrophysically relevant
energies depends, among other things, on the scattering
lengths of the proton scattering on 7Be. Experimental de-
termination of these lengths was performed recently [45]
with precision on the order of 30%. The proton-7Be elastic
scattering was also investigated in Ref. [46]. To benchmark
the theoretical calculations used for S-factor extrapolations,
an investigation of the mirror capture reaction 7Li(n, γ )8Li,
as well as the n + 7Li scattering is important. For example,
the n + 7Li scattering lengths are known with a higher
accuracy [47].

The first applications of the NCSM approach to the
description of the 7Be(p, γ )8B capture reaction [48] required
a phenomenological correction of the asymptotic behavior
of the overlap functions and, further, the scattering p + 7Be
wave function was calculated from a phenomenological
potential model. The present investigation within the ab
initio NCSM/RGM approach paves the way for a complete
first-principles calculation of this capture reaction. Here, we
limit ourselves to scattering calculations and postpone the
capture reaction calculations to a forthcoming paper.

Our current limit on the unrestricted NCSM calculations
for 7Li and 7Be is Nmax = 10. To improve the convergence of
our scattering calculations, we utilize wave functions obtained
within the IT-NCSM. In that scheme, we are able to reach
Nmax = 18 model spaces and calculate both ground as well as
low-lying excited states. This is demonstrated in Fig. 8. With
the SRG-N3LO NN potential with � = 2.02 fm−1 employed
in the present paper, we already reach convergence around
Nmax = 12–14. Also, as seen in the figure, the agreement
between the unrestricted NCSM and the IT-NCSM is perfect
up to the highest accessible unrestricted space Nmax = 10.
Our calculated ground-state energies of 3H, 4He, 7Li, and
7Be obtained with the SRG-N3LO NN potential with � =
2.02 fm−1 are summarized in Table I.

A. n-7Li

The NCSM/RGM coupled-channel calculations performed
for the A = 8 system include the 7Li (7Be) ground state,
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FIG. 8. (Color online) 7Li ground-state and the 1/2− and 7/2−

excited-state energy dependences on the model-space size Nmax,
obtained within the IT-NCSM (solid lines), by using the SRG-
N3LO NN potential with � = 2.02 fm−1. The HO frequency h̄� =
20 MeV was employed. The full-space NCSM results are shown by
dashed lines.

the first excited 1/2− state as well as the second excited
7/2− state. It is essential to include the 7/2− state to
reproduce the low-lying 3+ resonance in 8Li and 8B. By
using these three states, we are able to reach model spaces
up to Nmax = 12, which is sufficient concerning the HO-basis
expansion convergence as can be judged from Fig. 8. The
coupled-channel calculation described previously gives two
bound states for the n-7Li system, a 2+, which corresponds
to the experimentally observed 8Li ground state, bound by
2.03 MeV [49], and a 1+, which corresponds to the 8Li first
excited state at Ex = 0.98 MeV, bound by 1.05 MeV [49]. The
calculated states are bound by 1.16 and 0.17 MeV, respectively
(i.e., less than in the experiment). This is, in part, because
of the fact that higher excited states of 7Li were omitted. In
Fig. 9, we present our results for the diagonal P -wave phase
shifts of the n + 7Li elastic scattering as well as the elastic
7Li(n,n)7Li and inelastic 7Li(n,n′)7Li(1/2−) cross sections.
At low energies, we can identify four resonances, two of which
can be associated with the experimentally known 8Li states: 3+
at Ex = 2.255 MeV and 1+ at Ex = 3.21 MeV [49]. The other
two resonances, 0+ and 2+ are not present in the 8Li evaluation
of Ref. [49]. They do appear in many theoretical calculations,
which include the GFMC [3], NCSM [48], and recoil-corrected
continuum shell model (RCCSM) [51]. The 0+ resonance
also appears in the Generator Coordinate Method (GCM)
calculations of Ref. [52]. Contributions of different resonances
to the cross sections can be deduced from Fig. 9. The elastic
cross section is dominated by the 3+ resonance with some
contributions from the 2+ resonance at higher energy. The
inelastic cross section shows a peak just above the threshold
caused by the 0+ resonance and also a contribution from the 1+
resonance. The appearance of a 0+ peak just above threshold of
the 7Li(n,n′)7Li(1/2−) reaction was also discussed in Ref. [51]
(see Fig. 10 in that paper). The data of Ref. [50] seem to
be inconclusive concerning a 0+ state close to the threshold,
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FIG. 9. (Color online) P -wave diagonal phase shifts of the n-7Li
elastic scattering (top panel), elastic 7Li(n,n)7Li cross section (middle
panel), and inelastic 7Li(n,n′)7Li(1/2−) cross section (bottom panel).
The NCSM/RGM calculations that included the 7Li ground state
and the 1/2− and 7/2− excited states were performed by using the
SRG-N3LO NN potential with � = 2.02 fm−1. Wave functions from
IT-NCSM calculations in the Nmax = 12 basis and the HO frequency
of h̄� = 20 MeV were employed. Experimental data are from Ref.
[50].

see the bottom panel of Fig. 9. It is known, however, that
the position of the 0+ state is sensitive to the strength of the
spin-orbit interaction [3,48,51]. The three-nucleon interaction,

which would increase the strength of the spin-orbit force, was
not included in our present calculations. Consequently, our
predicted 0+ state energy may be underestimated. We note
that no fit to the experimental threshold was performed in the
present NCSM/RGM calculations. Still, as seen in the bottom
panel of Fig. 9, the calculated inelastic cross section is very
close to the experimental data just above the threshold.

B. p-7Be

In the mirror system p-7Be, we do not find a bound state in
the same type of coupled-channel NCSM/RGM calculation as
described earlier for n-7Li. As seen in the top and middle parts
of Fig. 10, the lowest 2+ resonance, which corresponds to the
8B ground state lies at about 200 keV above the threshold. In
the experiment, 8B is bound by 137 keV [49]. Our calculated
lowest 1+ resonance appears at about 1 MeV. It corresponds
to the experimental 8B 1+ state at Ex = 0.77 MeV (0.63 MeV
above the p-7Be threshold). This resonance dominates the
inelastic cross section as seen in the bottom part of Fig. 10.
The higher-lying resonances follow similar patterns as those
found in n-7Li (Fig. 9). Again, we find 0+ and 2+ resonances
not included in the recent 8B evaluation [49]. We note
that experimental efforts are now under way to find these
resonances [46,53]. In particular, the very recent Ref. [54] does
claim observation of the low-lying 0+ and 2+ resonances based
on the R-matrix analysis of the p-7Be scattering experiment
performed in the energy range between 1.6 and 2.8 MeV in the
c.m. Their suggested 0+ resonance at 1.9 MeV is quite close
to our calculated 0+ energy in the present paper. We further
note that our calculated 1+

2 states in 8Li and 8B appear at
significantly higher energies than the corresponding 1+

2 states
obtained within the microscopic cluster model in Ref. [55].

The middle panel of Fig. 10 once again demonstrates the
good accuracy of the IT calculations for a high Nh̄� Nmax =
10 model space. The IT calculation reduced the 7Be basis from
43.6 to 11.9 × 106 in the present case.

The elastic p-7Be scattering was measured at 148◦ and
was analyzed by the R-matrix approach [46]. Cross-sectional
calculations within the RCCSM at that angle were then
published in Ref. [56] and also in Ref. [51]. Furthermore,
elastic and inelastic cross sections at this angle were analyzed
within the time-dependent approach to the continuum shell
model [57]. Our elastic and inelastic differential cross section
results at 148◦ are presented in Fig. 11. In the elastic cross
section, the first 1+ state is visible and beyond the minimum
of the cross section, we can see the dominant peak caused by
the 3+ state. At higher energies, the 2+ state contributes as
well. The inelastic cross section at 148◦ has a similar shape
as the reaction cross section shown in Fig. 10. The first 1+
state peak dominates at low energy with contributions from
the 0+ and the second 1+ at higher energies. Our findings
are in line with the RCCSM results. However, we remind
the reader that there is no fitting in our calculations, all
results are predictions based on the SRG-N3LO NN potential.
Because of this, the positions of our calculated resonances
(e.g., 1+, 3+) do not exactly reproduce the experiment. We
do not include the experimental data in the figure as they
would be shifted compared to the calculated peaks. There
are at least two reasons why our predictions do not match

034609-10



Ab INITIO MANY-BODY CALCULATIONS OF . . . PHYSICAL REVIEW C 82, 034609 (2010)

0 1 2 3 4 5 6
E

kin
[MeV]

-60

-30

0

30

60

90

120

150

δ 
[d

eg
]

0
+
 l=1

1
+
 s=1 l=1

2
+

s=2 l=1
3

+
 l=1

p+
7
Be (g.s.+1/2

-
+7/2

-
)

1
+

0
+

3
+

2
+

0 1 2 3 4 5 6
E

kin
[MeV]

-60

-30

0

30

60

90

120

150

δ  
[d

eg
]

1
+
 s=2 l=1

2
+

s=1 l=1

p+
7
Be (g.s.+1/2

-
+7/2

-
)

1
+

2
+

0 1 2 3 4 5 6
E

kin
 [MeV] 

0

0.05

0.1

0.15

0.2

0.25

σ
 [

b]

7
Be (p, p′) 

7
Be(1/2

-
)

FIG. 10. (Color online) P -wave diagonal phase shifts of the
p-7Be elastic scattering (top and middle panels) and inelastic
7Be(p, p′)7Be(1/2−) cross section (bottom panel). The NCSM/RGM
calculations that included the 7Be ground state and the 1/2− and 7/2−

excited states were performed by using the SRG-N3LO NN potential
with � = 2.02 fm−1. Wave functions from IT-NCSM calculations in
the Nmax = 12 basis and the HO frequency of h̄� = 20 MeV were
employed. In the middle panel, the full-space NCSM (solid lines)
and the IT-NCSM (dashed lines) results in the Nmax = 10 basis are
compared.

the experimental resonances accurately. First, our nuclear
Hamiltonian is incomplete (e.g., no three-nucleon interaction
is included). Second, we omitted higher resonances of 7Li and
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FIG. 11. (Color online) Elastic 7Be(p, p)7Be (top panel) and
inelastic 7Be(p, p′)7Be(1/2−) (bottom panel) differential cross sec-
tions at �c.m. = 148◦ calculated within the NCSM/RGM with the
SRG-N3LO NN potential with � = 2.02 fm−1.

7Be because of numerical reasons. Most likely, the omitted
resonances would produce some shifts in the calculated
peaks.

To address the issue of convergence of our results with
the number of included excited states of 7Be (or 7Li), we
performed smaller-space calculations with up to four excited
states of 7Be. It can be anticipated that the impact of excited
states depends on the investigated energy range and the spin
and parity of the partial wave. This is demonstrated in Fig. 12.
In the top panel, we repeat our Nmax = 12 results for the 0+ and
1+ P waves from Fig. 10 compared to calculations with just the
ground state and the ground state plus the lowest 1/2− state.
Clearly, the impact of the 7/2− state is minimal. We confirmed
in small-space Nmax = 6 calculations that the impact of the
third and fourth excited states of 7Be (and 7Li), both of which
are 5/2− states, on these partial waves is minimal as well. It is
a different situation for the 2+ and the 3+ partial waves as seen
in the middle and bottom panels of Fig. 12. Even the 2+ ground
state is shifted to a lower energy by the 7/2− state (close to
zero in the presented Nmax = 6 calculation, invisible in the
figure), and the 8B becomes weakly bound once the 5/2−
states are included (this does not necessarily mean that the
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FIG. 12. (Color online) Dependence of the P -wave diagonal
phase shifts of the p-7Be elastic scattering on the number of
included excited states of 7Be. The Nmax = 12 basis (top panel)
and Nmax = 6 basis (middle and bottom panels) were used with the
SRG-N3LO NN potential with � = 2.02 fm−1 and the HO frequency
of h̄� = 20 MeV.

converged, or large-space Nmax = 12 calculation will produce
a bound state with the 5/2− states included). The 2+ and 3+
resonances do not appear until the 7/2− state is included, and
their position is shifted because of the 5/2− states by about
1 MeV for the 2+ and 0.5 MeV for the 3+, respectively. After
the shifts, their positions are much closer to their experimental
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FIG. 13. (Color online) S-wave phase shifts of the n + 7Li
(solid lines) and the p + 7Be (dashed lines) elastic scattering. The
calculations as described in Figs. 9 and 10.

excitation energies of 2.28 MeV (3+) and 2.55 MeV (2+) from
Ref. [54].

Both the inclusion of the three-nucleon interaction and the
addition of more excited states of the target will be addressed
in the future. The effect of higher excited states of 7Be (7Li) can
be, in fact, most efficiently included by coupling the presently
used NCSM/RGM basis with the 8B (8Li) NCSM eigenstates
as outlined in Ref. [58]. Still, our current results contain
the bulk of the physics behind the investigated scattering
processes.

C. S-wave scattering lengths of n-7Li and p-7Be

In Fig. 13, we present our calculated n-7Li and p-7Be
S-wave phase shifts. We do not find any evidence for a 2−
resonance advocated in Ref. [46] and discussed in Ref. [59].
The corresponding scattering lengths together with the exper-
imental values are given in Table II. With the exception of
the p-7Be a01, which has a large experimental uncertainty, our
calculated scattering lengths do agree with experimental data
as to their signs, however, there are differences in the absolute
values. Again, as discussed before, the results presented here
serve only as a first step toward the ab initio investigation
of the n-7Li and p-7Be reactions. Prospects for a realistic
calculation of the 7Be(p, γ )8B capture are excellent. Here, we
found the 8B unbound by only 200 keV. It is quite possible
that 8B will become bound (with the NN potential employed
here: SRG-N3LO with � = 2.02 fm−1) by including more
excited states of 7Be in the coupled-channel NCSM/RGM

TABLE II. The n-7Li and the p-7Be S-wave scattering lengths.
Theoretical values correspond to calculations as described in Figs. 9
and 10. Experimental values are from Refs. [45,47].

(fm) 7Li 7Be

Calc. Expt. Calc. Expt.

a01 +1.23 +0.87(7) −1.2 25(9)
a02 −0.61 −3.63(5) −10.2 −7(3)
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FIG. 14. (Color online) Ground-state and the first excited 2+ state
energy dependence on the model-space size Nmax for 12C, obtained
within the IT-NCSM, by using the SRG-N3LO NN potential with
� = 2.66 fm−1. The HO frequency h̄� = 24 MeV was employed.
The calculation is variational. No NCSM effective interaction
was used. The full NCSM results were obtained with the code
ANTOINE [61].

calculations. See also the discussion at the end of Sec. IV B.
Even if the 8B would not be bound or, most likely, the
threshold energy will not agree with the experiment, we
have the possibility to explore a variation of the SRG NN

potential evolution parameter � and to tune this parameter
to fit the experimental threshold. We note that, for any �,
the SRG-evolved NN potential will describe all two-nucleon
properties as accurately as the original starting NN potential,
here, the chiral N3LO potential of Ref. [30]. It should be noted
that, by adding the three-nucleon interaction, omitted in the
present calculations because of computational reasons, the
need for a fine-tuning should be significantly reduced (i.e.,
the results should become � independent).

V. NUCLEON-12C SCATTERING

For nucleon scattering calculations on 12C or heavier targets
within the NCSM/RGM, the use of the IT becomes essential.
For 12C, the full-space NCSM calculations are currently
limited to Nmax = 8 (although successful runs were already
performed for Nmax = 10 on the biggest supercomputers with
the latest version of the code MFD [60]). This is insufficient
for reaching or approaching convergence of the 12C NCSM
calculations as seen from Fig. 14 and even more so for
the NCSM/RGM scattering calculations. The IT calculations,
on the other hand, are feasible up to Nmax = 18, where
convergence is reached for both the ground state as well as
the excited states. Our 12C calculations are performed with
the SRG-N3LO NN potential with the evolution parameter
� = 2.66 fm−1, a higher value (i.e., shorter evolution, less
soft) than that used for the lighter nuclei. The use of a
small � results in large overbinding of heavier nuclei and
a significant underestimation of their radii. As seen in Fig. 14,
our converged 12C binding energy is about 84.5(8) MeV,

TABLE III. Calculated ground-state energies of 3H, 4He, 12C,
and 16O obtained by using the SRG-N3LO NN potential with � =
2.66 fm−1 compared to experimental values.

Eg.s. (MeV) 3H 4He 12C 16O

Calc. −8.18 −27.26 −84.5(8) −139.0(8)
Expt. −8.48 −28.30 −92.16 −127.62]

smaller than the experimental value of 92 MeV and, further,
the agreement of the full-space and IT results is perfect all
the way up to Nmax = 8. Our calculated ground-state energies
of 3H, 4He, 12C, and 16O obtained with the SRG-N3LO NN

potential with � = 2.66 fm−1 are summarized in Table III.

A. p-12C

Our low-energy p-12C phase-shift results are shown in
Fig. 15. The comparison of the Nmax = 16 and Nmax = 14
results demonstrates good convergence with respect to the
HO-basis expansion. The 12C ground state and the first 2+
state were included in the coupled-channels NCSM/RGM
equations. We note that we also performed a phase-shift
comparison of the full-space and the IT calculations up to
Nmax = 6 and found a similarly perfect agreement as presented
in Fig. 3 for n-4He. In the present p-12C calculations, we found
a single bound state 1/2− at −2.98 MeV, which corresponds to
the 13N ground state, bound experimentally by 1.94 MeV [62].
The lowest resonance in our calculation is 3/2−, barely visible
at 0.25 MeV above threshold. In the experiment, this resonance
is at 1.56 MeV. Our calculated 1/2+ resonance appears at about
1.5 MeV above threshold (in the experiment at 0.42 MeV above
threshold) and the 5/2+ resonance at about 4.9 MeV (in the
experiment at 2.61 MeV).
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FIG. 15. (Color online) The p-12C eigenphase shifts calculated
within the NCSM/RGM by using the SRG-N3LO NN potential
with � = 2.66 fm−1 and the HO frequency h̄� = 24 MeV. Full
lines (dotted lines) correspond to results obtained in the Nmax = 16
(Nmax = 14) model space. The ground state and the first excited 2+

state of 12C were included. The 12C wave functions were obtained
within the IT-NCSM.
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PETR NAVRÁTIL, ROBERT ROTH, AND SOFIA QUAGLIONI PHYSICAL REVIEW C 82, 034609 (2010)

0 0.5 1 1.5 2 2.5 3
E

kin
 [MeV]

-120

-90

-60

-30

0

30

60

90

δ 
[d

eg
]

1/2
-

1/2
+

3/2
-

3/2
+

5/2
-

5/2
+

n+
12

C (g.s.+2
+
)

FIG. 16. (Color online) The n-12C phase shifts calculated within
the NCSM/RGM by using the SRG-N3LO NN potential with � =
2.66 fm−1. The HO frequency h̄� = 24 MeV and the model-spaces
size of Nmax = 16 were used. The ground state and the first excited
2+ state of 12C were included. The 12C wave functions were obtained
within the IT-NCSM.

B. n-12C

In the mirror system n-12C, our NCSM/RGM calculations
produce three bound states: 1/2− at −5.34 MeV, which
corresponds to the 13C ground state experimentally bound
by 4.95 MeV with respect to the n-12C threshold, 3/2−
bound by 2.23 MeV (experimentally bound by 1.26 MeV),
and 1/2+ bound by just 0.03 MeV (experimentally bound by
1.86 MeV). In the experiment, there is also a 5/2+ state bound
by 1.09 MeV. Our present NCSM/RGM calculations, which
include the lowest 0+ and the lowest 2+ 12C states do not
produce any bound 5/2+ state.

Our low-energy n-12C diagonal phase shifts are shown in
Fig. 16. The 5/2+ resonance is found at 2.8 MeV (experi-
mentally at 1.92 MeV with respect to the n-12C threshold).
The steep drop of the 1/2+ phase shift is caused by the
presence of the very weakly bound 1/2+ state. Similarly,
we note that, as in the case of 11Be, discussed in Ref. [18],
we observe a significant decrease of the 1/2+ state energy
in the n-12C NCSM/RGM calculation when compared to the
standard NCSM calculation for 13C. We were able to make
these comparisons in model spaces up to Nmax = 6 where we
found this drop to be about 3 MeV.

Analyzing powers were measured for proton and neutron
scattering on 12C [63–65], and scattering experiments on a
polarized proton target are under way [66]. In Fig. 17, we
present our calculated analyzing power below and above the
energy of the 5/2+ resonance. We note that our calculated 5/2+
resonance appears at 2.8 MeV in the c.m. (experimentally
at 1.92 MeV). Below the resonance, the analyzing power
is positive at �c.m. < 90◦ and negative at �c.m. > 90◦. At
energies above the resonance, the analyzing power reverses
its sign. Similar observations were made in calculations
performed within the multichannel algebraic scattering theory
[67,68]. See, in particular, Fig. 5 of Ref. [68].

Our calculated 13N and 13C bound-state levels and reso-
nances are more spread than the experimental ones. This is a
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FIG. 17. (Color online) The analyzing power for n-12C elastic
scattering below and above the calculated 5/2+ resonance. Energies
are in the c.m. The calculation as described in Fig. 16.

consequence of an underestimation of the 12C radius found to
be 2.05 fm with the SRG-N3LO NN potential. To remedy this,
one would have to calculate three-nucleon interaction terms
induced because of the SRG evolution. This can be performed
as described in Ref. [69]. However, we still need to develop
the NCSM/RGM formalism further to handle three-nucleon
interactions in the scattering calculations.

VI. NUCLEON-16O SCATTERING

The calculation of nucleon scattering on 16O is the most
challenging among the systems we investigate in this paper.
The α clustering plays an important role in the structure of 16O,
in particular, for the first excited 0+ state that is known to be
almost impossible to reproduce in NCSM or coupled-cluster
calculations. Our present calculations do not include the α

clustering yet.
As in the case of 12C, we rely on the IT-NCSM calculations

for obtaining the 16O wave functions as the full-Nmax NCSM
calculations are possible only up to Nmax = 8. In Fig. 18, we
show the ground-state convergence within the IT-NCSM and
a comparison to the full-space results. Again, up to the largest
accessible model space, the agreement between the IT and the
full-space calculations is perfect.

A. n-16O

It is straightforward to converge nucleon-16O scattering cal-
culations within the NCSM/RGM by using the HO expansion
up to Nmax = 18. Our calculated n-16O phase shifts are shown
in Fig. 19, and the HO-basis expansion convergence is checked
for the S and D waves in Fig. 20. These calculations only
included the 16O ground state. We find two bound states, 1/2+
at −0.88 MeV and 5/2+ at −0.41 MeV with respect to the
n-16O threshold. In experiment, the 17O ground state is 5/2+,
bound by 4.14 MeV, and the 1/2+ state is the first excited
state bound by 3.27 MeV. There are also two additional bound
states: 1/2− and 3/2−. Those are unbound in our calculations.

Clearly, it is insufficient to consider only the ground
state of 16O in the coupled-channel NCSM/RGM scattering
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FIG. 18. (Color online) Ground-state energy dependence on the
model-space size Nmax for 16O, obtained within the IT-NCSM
by using the SRG-N3LO NN potential with � = 2.66 fm−1. The
HO frequency h̄� = 24 MeV was employed. The calculation is
variational. No NCSM effective interaction was used. The full NCSM
results were obtained with the code ANTOINE [61].

calculations. Therefore, in addition, we include the three
lowest 16O negative-parity states: 3−, 1−, and 2−. Because
of computational limitations, in this case, we used HO-basis
expansion up to Nmax=13. By comparing Fig. 21 to Fig. 19,
the 1p-1h negative-parity excited states of 16O generate
negative-parity resonances in 17O. These resonances do appear,
however, at much higher energy than in the experiment. The
reason for this is the fact that our calculated 16O 1p-1h
states have excitation energy that is too large. In particular,
our calculated 3− excited state has an excitation energy of
15.99 MeV, while experimentally, it lies at just 6.13 MeV. One
reason for the discrepancy is the softness of the SRG-N3LO
NN potential we use that results in an overall overbinding of
the 16O ground state and in an underestimation of its radius.
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FIG. 19. (Color online) The n-16O phase shifts calculated within
the NCSM/RGM by using the SRG-N3LO NN potential with � =
2.66 fm−1 and the HO frequency h̄� = 24 MeV in the Nmax = 18
model space. The ground state of 16O was included. The 16O wave
functions were obtained within the IT-NCSM.
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FIG. 20. (Color online) Basis size dependence of the n-16O phase
shifts calculated within the NCSM/RGM by using the SRG-N3LO
NN potential with � = 2.66 fm−1. The HO frequency of h̄� =
24 MeV was used. The J π = 1/2+(3/2+) channel is shown in the top
(bottom) panels. Model-space sizes up to Nmax = 18 were considered.
The ground state of 16O was included. The 16O wave functions were
obtained within the IT-NCSM.

Another aspect is the challenging problem of the IT-NCSM
extrapolations of the independent positive- and negative-parity
state calculations. The uncertainties of the relative excitation
energies are higher than in same-parity calculations. On the
positive side, our calculation with the negative-parity states,
although with overestimated excitation energies, results in the
proper ordering of the 17O bound states. The ground state is
5/2+ at −1.32 MeV, and the 1/2+ state gains binding as well,
which appears at −1.03 MeV.

B. p-16O

We also investigated the p-16O scattering and 17F states.
When the NCSM/RGM calculations are restricted to the
channels that only involve the 16O ground state, we find a
1/2+ resonance at 1.0 MeV and a 5/2+ resonance at 2.2 MeV.
These resonances correspond to the 17F 1/2+ first excited
state, bound by 0.105 MeV, and the 17F 5/2+ ground state
bound by 0.6 MeV with respect to the p + 16O threshold.
By coupling channels that involve the 1p-1h 16O 3−, 1−, and
2− excited states, the calculated 1/2+ and 5/2+ states are
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FIG. 21. (Color online) The n-16O phase shifts calculated within
the NCSM/RGM by using the SRG-N3LO NN potential with � =
2.66 fm−1 and the HO frequency h̄� = 24 MeV in the Nmax = 13
model space. The ground state and the lowest 3−, 1−, and 2− excited
states of 16O were included. The 16O wave functions were obtained
within the IT-NCSM.

still unbound resonances, but their energy moves significantly
closer to the threshold: The 1/2+ appears at +0.7 MeV, and
the 5/2+ appears at +1.2 MeV.

The 17F low-lying states were recently investigated within
the coupled-cluster approach with the Gamow-Hartree-Fock
basis [70]. In those calculations with the N3LO NN potential,
the 1/2+ state is weakly bound, while the 5/2+ state remains
unbound by about 0.1 MeV. By using the SRG-evolved
interaction, the 5/2+ state became bound with the decrease
of the SRG parameter �. We note that our calculated 16O
ground-state energy −139.0(8) MeV (Fig. 18) obtained with
the SRG-N3LO NN potential with � = 2.66 fm−1, compares
well with the coupled-cluster singles-doubles 16O calculations:
−137.6 MeV with the SRG-N3LO NN potential with � =
2.8 fm−1 [71]. The differences in the positions of the 1/2+
and 5/2+ are caused by deficiencies in our description of the
negative parity 1p-1h states, which could be related to the
two-body Hamiltonian used here as well as the uncertainties
of the threshold extrapolations for the excitation energies. The
inclusion of additional 16O excited states would increase the
absolute energy of our calculated 17F states. The most efficient
way to do this is by coupling the presently used NCSM/RGM
basis with the 17F NCSM eigenstates as outlined in Ref. [58].

VII. CONCLUSIONS

By combining the IT scheme for the cluster eigenstate basis
with the ab initio NCSM/RGM approach, we were able to
perform many-body calculations for nucleon scattering on
nuclei with mass number as high as A = 16. With the soft
SRG-evolved chiral NN potentials, convergence of the cal-
culations with respect to the HO-basis expansion of the
target eigenstates and the localized parts of the NCSM/RGM
integration kernels can be reached by using Nmax = 12–16.

We first benchmarked the IT-NCSM results with the full-
space NCSM results for the A = 5 system. Our neutron-4He

and proton-4He calculations compare well with an R-matrix
analysis of the data, in particular, at energies above 8 MeV, and
describe well-measured cross sections and analyzing powers
for those energies.

Our calculations of n-7Li and p-7Be scattering predict
low-lying 0+ and 2+ resonances in 8Li and 8B that have not
been experimentally clearly identified yet. We found that the
prospects of a realistic ab initio calculation of the 7Be(p, γ )8B
capture within our approach are very good. In the present
calculations, we found the 8B unbound by only 200 keV. It
is quite possible that 8B will become bound (with the NN

potential employed here: SRG-N3LO with � = 2.02 fm−1) by
including more excited states of 7Be in the coupled-channel
NCSM/RGM calculations. Even if the 8B will still not be
bound or, most likely, the threshold energy will not agree with
the experiment, we have the possibility to explore a variation
of the SRG NN potential evolution parameter � and to tune
this parameter to fit the experimental threshold.

The use of the IT basis becomes essential in calculations
with 12C or 16O targets as the full-space NCSM calculations
are limited to Nmax = 8. Our n-12C and p-12C investigations
included 12C ground and the first excited 2+ states. We found
a single bound state 1/2+ in 13N as in the experiment. In
13C, we found three bound states with the 5/2+ state still
unbound contrary to the experiment. Our calculated spectrum
of A = 13 states is more spread than in the experiment because
of the underestimation of the 12C radius, a consequence of the
softness of the SRG-evolved NN interaction.

The description of nucleon scattering on 16O within our
formalism was the most challenging. The α clustering that
plays an important role in the structure of 16O is not yet
included in our present calculations. Furthermore, the 1p-1h
16O excited states are more difficult to treat in the IT-NCSM
approach, as the extrapolations of excitation energies are
performed from the independent ground state and the negative-
parity state calculations. We found a strong impact of the 1p-1h
16O states on the positions of the lowest A = 17 states. For
example, correct ordering of the 5/2+ and 1/2+ states in 17O
was obtained only when the 1p-1h states were included.

Overall, we find that the inclusion of additional excited
states of the target nuclei would be beneficial in all studied
systems and more significant with the increase of A. Coupled-
channel NCSM/RGM calculations with many excited states of
the target are computationally challenging. The most efficient
way to include the effects of such states is by coupling the
presently used NCSM/RGM basis, which consists of just
a few lowest excited states, with the NCSM eigenstates of
the composite system as outlined in Ref. [58]. Work on this
coupling is under way.

The use of the SRG-evolved NN interaction facilitates
convergence of the NCSM/RGM calculations with respect to
the HO-basis expansion. On the other hand, because of the
softness of these interactions, radii of heavier nuclei become
underestimated. To remedy this, one would have to calculate
three-nucleon interaction terms induced caused by the SRG
evolution. This can be done as described in Ref. [69]. It
is essential to further develop the NCSM/RGM formalism
to handle three-nucleon interactions, both genuine and the
SRG-evolution induced, in the scattering calculations.
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In the present paper, we limited ourselves to single-
nucleon projectile scattering. Extensions of the NCSM/RGM
formalism to include deuteron, 3H, and 3He projectiles are
under way.
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PETR NAVRÁTIL, ROBERT ROTH, AND SOFIA QUAGLIONI PHYSICAL REVIEW C 82, 034609 (2010)

[58] P. Navratil, S. Quaglioni, I. Stetcu, and B. R. Barrett, J. Phys. G
36, 083101 (2009).

[59] F. C. Barker and A. M. Mukhamedzhanov, Nucl. Phys. A 673,
526 (2000).

[60] J. P. Vary (unpublished).
[61] E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves,

J. Retamosa, and A. P. Zuker, Phys. Rev. C 59, 2033 (1999);
E. Caurier and F. Nowacki, Acta Phys. Pol. B 30, 705 (1999).

[62] F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).
[63] W. Trachslin and L. Brown, Nucl. Phys. A 101, 273 (1967).
[64] C.-C. Hsu, Y.-C. Yang, and T.-J. Lee, Chin. J. Phys. (Taipei) 4,

49 (1966).

[65] C. D. Roper et al., Phys. Rev. C 72, 024605 (2005).
[66] A. Galindo Uribarri (private communication).
[67] G. Pisent, J. P. Svenne, L. Canton, K. Amos, S. Karataglidis, and

D. van der Knijff, Phys. Rev. C 72, 014601 (2005).
[68] J. P. Svenne, K. Amos, S. Karataglidis, D. van der

Knijff, L. Canton, and G. Pisent, Phys. Rev. C 73, 027601
(2006).

[69] E. D. Jurgenson, P. Navratil, and R. J. Furnstahl, Phys. Rev. Lett.
103, 082501 (2009).

[70] G. Hagen, T. Papenbrock, and M. Hjorth-Jensen, Phys. Rev. Lett.
104, 182501 (2010).

[71] T. Papenbrock (private communication).

034609-18

http://dx.doi.org/10.1088/0954-3899/36/8/083101
http://dx.doi.org/10.1088/0954-3899/36/8/083101
http://dx.doi.org/10.1016/S0375-9474(00)00134-2
http://dx.doi.org/10.1016/S0375-9474(00)00134-2
http://dx.doi.org/10.1103/PhysRevC.59.2033
http://dx.doi.org/10.1016/0375-9474(91)90446-D
http://dx.doi.org/10.1016/0375-9474(67)90187-X
http://dx.doi.org/10.1103/PhysRevC.72.024605
http://dx.doi.org/10.1103/PhysRevC.72.014601
http://dx.doi.org/10.1103/PhysRevC.73.027601
http://dx.doi.org/10.1103/PhysRevC.73.027601
http://dx.doi.org/10.1103/PhysRevLett.103.082501
http://dx.doi.org/10.1103/PhysRevLett.103.082501
http://dx.doi.org/10.1103/PhysRevLett.104.182501
http://dx.doi.org/10.1103/PhysRevLett.104.182501

