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K− absorption at rest in nuclei followed by p� emission

Grishma Mehta Pandejee,* N. J. Upadhyay,† and B. K. Jain‡

Department of Physics, University of Mumbai, Vidyanagari, Mumbai - 400 098, India
(Received 3 March 2010; revised manuscript received 14 June 2010; published 20 September 2010)

p� emission in coincidence following K− absorption at rest in nuclei is studied using quantum-mechanical
scattering theory and nuclear wave functions. K− absorption is assumed to occur on two protons in the nucleus. In
the formalism, emphasis is put on the study of the final state interaction (FSI) effects of p and � with the recoiling
nucleus. We include elastic scattering and single-nucleon knock-out (KO) channels in the FSI. Calculations are
presented for the 12C nucleus, using shell-model wave functions, and without any extra mass modification of the
K−pp system in the nucleus. Calculated results are presented for the angular correlation distribution between
p and �, their invariant mass distribution, and the momentum spectra of p and �. These results are compared
with the corresponding experimental measurements of M. Agnello et al., [Phys. Rev. Lett. 94, 212303 (2005)].
With only elastic scattering FSI included, the angular correlation distribution and the momentum spectra are
found to be in good accord with the corresponding measurements. With full FSI, the calculated p� invariant
mass distribution is found to have two peaks, one corresponding to the elastic scattering FSI and another to
single-nucleon KO FSI. The KO peak agrees fully, in position and shape, with the peak observed by M. Agnello
et al. The peak corresponding to elastic scattering FSI does not seem to exist in the measured distribution.
Considering that such a two-peak structure is always seen in the inclusive (p,p′) and (e,e′) reactions in nuclei at
intermediate energies, absence of the elastic scattering peak in the p� reaction is intriguing.
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I. INTRODUCTION

The K−p interaction is attractive in the s-wave and isospin,
T = 0 state. Because of this, there is much interest in its study
and the study of its implications in the possible existence of
the K−nucleus quasibound states in nuclei. Experimentally,
the existence of such bound states is indicated in the Fisica
Nucleare a DAFNE (FINUDA) measurements [1] of the
stopped K− absorption on Li, C, and other target nuclei.
These experiments using the FINUDA spectrometer installed
at the Double Annular Factory for Nice Experiments (DAFNE)
collider detect a � hyperon and a proton pair in coincidence
following K− absorption at rest on several nuclei. The emitted
�-p pairs are found to emerge predominantly back to back
in all target nuclei and have their invariant mass distributions
peaking significantly below the sum of a kaon and two-proton
mass in the free state (2.370 GeV). If it is assumed that the
�-p pair is emitted from a K−pp system in the nucleus, this
mass shift implies a bound K−pp system in nuclei with the
binding energy above 100 MeV. In a more elaborate second
run of these experiments carried out recently [2], it is further
reported that these mass shifts occur only for the K−pp module
and not for the K−np cluster. The absorption on an n-p pair
gives �-n and �−-p pairs in the final state.

Recent analysis of the old DISTO data from the Saturne
accelerator on the pp → p�K+ reaction too suggests the
existence of a K−pp cluster with the binding energy around
100 MeV [3].
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Theoretically, following the extraordinary success of the
SU(3) chiral perturbation theories in describing the π -N
and K+-N systems, the K−-p system has also been studied
under this framework; though, unlike pion and K+ cases, the
basic interaction here is relatively strong. This, however, is
incorporated in these studies by including terms up to order
q2 in the chiral Lagrangian expansion. Then, in combina-
tion with nonperturbative coupled-channel techniques, this
framework has been found to be quite appropriate for the
study of antikaon-nucleon interaction in the literature. It was
first developed in Ref. [4] and subsequently expanded in
Ref. [5]. Various channels involved for S = −1 meson-baryon
scattering are π+�−, π0�0, π−�+, π0�, K−p, and K0n.
With the proper choice of parameters entering into these
calculations, all available low-energy scattering data in these
channels are reproduced well. The K−p scattering amplitudes
resulting from these calculations have a two-pole structure
between the �π and K̄N thresholds. The pole which is
located close to the real axis couples strongly to the K̄N

channel, while the one coupling strongly to the π� channel
lies away from the real axis. Empirically, only available
information pertaining to K−p scattering below threshold is
the �π invariant mass distribution. This mass spectrum has
its maximum at 1405 MeV and has a width of about 50 MeV.
In the Particle Data Group table [6] this is identified as the
T = 0, spin-half, S = −1 �(1405) K−p bound state with a
binding energy of 27 MeV. However, it has been noticed in the
literature that there is some subtlety involved in assigning a
mass to the �(1405). The observed �π spectrum has T = 0.
Hence, in principle, it can have a generic s-wave, T = 0
source. This means that one needs to fit a superposition of
the contributions from both the K̄N and �π poles mentioned
above to reproduce the observed �π spectrum and assign a
mass to �(1405). Within this scenario, it turns out that both
the poles contribute roughly in equal measure to reproduce the
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measured �π spectrum, with a tendency toward a higher K̄N

share. A more thorough investigation of this issue has been
carried out recently in Ref. [7]. They concluded that for the
study of K̄N scattering, among various channels involved in
the coupled-channel calculations, the K̄N and �π channels
dominate, and they couple strongly. They also concluded that
the mass of the �(1405) state is in fact 1420 MeV, and
not 1405 MeV, thus making it only 12 MeV below the K̄N

threshold.
Recent measurements on the pp → pK+Y 0 reaction at

the cooler synchrotron (COSY) at Forschungszentrum Julich
GmbH [8], however, seem to present experimental evidence
which does not support the above two-pole model for the
�(1405). The shape and position of the �(1405) distribution
in these measurements is reconstructed cleanly in the �0π0

channel using invariant- and missing-mass techniques. The
mass of the �(1405) is found to be ∼1400 MeV and width
∼60 MeV.

The theoretical search for the antikaon-nucleus bound state
has been carried out in the literature following the variational
approach [9,10] and the Faddeev method [11] for K− plus 2–3
nucleons and heavier nuclei. All these calculations need, as
input, realistic choices for the NN and the K−N potentials.
For the nucleon-nucleon potential, following extensive work
over the years on this subject, it is always possible to make a
correct choice. For the K−N potential, however, the situation
is uncertain. Some calculations generated a pseudopotential
for it by reproducing the K−p bound state of 27 MeV binding
energy, while others used a leading-order chiral interaction.
They all found K−pp bound states with about 50 MeV or
more binding energies. The latest calculation in Ref. [10],
which, following the two-pole model, uses the K−N effective
potential corresponding to 1420 MeV mass of �(1405), finds
a K−pp system bound by around 19 MeV only. This state
has a width between 40 and 70 MeV. This suggests that
the K−pp module might not be sufficiently bound to produce
any experimentally observable signal corresponding to the
antikaon-nucleus mesic bound state.

The situation is further confused by the suggestion in
Ref. [12] that the down-shift observed in the invariant mass of
the p and � in the FINUDA experiment could be the result
of the final state interaction (FSI) of these particles with the
recoiling nucleus. This seems quite plausible, because, due
to Q value of the K− + pp → �p reaction being around
317 MeV, the kinetic energies of outgoing p and � are
160 MeV or so. At these energies, it is well known that
in the nucleon-nucleus scattering, the reactive cross section
mainly consists of the single-nucleon knock-out channel [13].
Thus, the knock-out of one nucleon in the nucleus by the
outgoing p or � can shift their energies considerably. The
calculations in Ref. [12] indeed reproduce the observed mass
shifts in the FINUDA experiments. However, as mentioned
earlier, the fact that similar effects were not observed in run
(2) of FINUDA in K−-pn absorption cannot be reconciled by
this explanation [2].

Therefore, the situation on the (K−,p�) reaction in the
nucleus seems very confusing. It calls for more studies of the
description of the reaction dynamics, as well as the K−-nuclear
binding.

In the present paper, we reexamine the hypothesis of
Magas et al. [12] of the origin of the observed �-p peak in
the FINUDA measurements to the single-nucleon knock-out
events in the final state. The calculations reported in Ref. [12]
are the computer simulations of the internuclear cascade model
for the nucleon-nucleus scattering. This approach describes
the sequence of nucleon-nucleon collisions of the outgoing
nucleon while passing through the residual nucleus in the final
state in the framework of classical physics. The trajectory
of each nucleon is followed. After a mean free path, a N -N
collision takes place, and its results are computed by the Monte
Carlo or some similar method. Apart from the Pauli principle,
there are no quantum-mechanical effects in this approach of de-
scribing the FSI. The nucleus too is described by the Fermi gas
model, thus being totally devoid of any nuclear structure effect.
In view of the crucial role played by the FSI in interpreting the
FINUDA �-p measurements for K−-nuclear bound states, it is
absolutely necessary that the FSI in this reaction be described
using quantum-mechanical scattering theory and nuclear wave
functions. This is the purpose of the present paper.

The paper is organized as follows. In Sec. II, first, based
on physical reasoning, we present an overall description
of the (K−,�p) reaction following K− absorption in the
nucleus along with an appropriate final state interaction. This
is followed by the formalism utilized for the evaluation of
the cross section. Calculated results along with a discussion
around them are presented for 12C target nucleus. This is
followed by the conclusions.

To remain specific in our discussion and presentation, in
the following we consider the 12C target nucleus all along.

II. GENERAL DISCUSSION

A. K− absorption

The K− meson after being captured in a high atomic orbit
reaches the 3d orbit through electromagnetic transitions. From
there onward, it comes under the influence of the strong nuclear
interaction and gets absorbed. The x-ray transition width for
the 3d → 2p transition and the nuclear capture from the 3d

orbit are reported in Ref. [14] to be 0.0749 and 0.98 ± 0.19 eV,
respectively. This gives the relative population of kaons in 2p

and 3d orbits, using

P (2p)

P (3d)
= �X(3d → 2p)

�X(3d → 2p) + �a(3d)
, (1)

around 7%. Such a small population of kaons in the 2p orbit
also makes nuclear capture of kaons from the 1s orbit as
insignificant. We, thus, consider in our calculations the capture
of the kaon from both the 3d and 2p atomic orbits. The K−
absorption yield for the p� branch is written as the weighted
average yield from these orbits as

ω(p�) = ω3d (p�) + 0.07ω2p(p�). (2)

However, as we will see later (Fig. 1), due to a larger centrifugal
barrier, the overlap of the 3d orbit with the nuclear wave
functions is about two orders of magnitude smaller than that of
the 2p orbit. Furthermore, as the calculation of the absorption
yield, ω involves the square of this overlap, despite the factor
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FIG. 1. (a) Overlap function, P (r)
showing the localization of the K− ab-
sorption for the 2p and 3d orbits. The
vertical line shows the rms radius of the
12C nucleus. (b) Distribution of the 2p and
the 3d K− wave functions.

of 0.07 in Eq. (2) for the 2p orbit, the contribution from the 3d

orbit to the K− nuclear capture remains about two orders of
magnitude smaller than that from the 2p orbit. Therefore, in
the following, we present calculations considering the capture
from the 2p orbit only.

In the absorption process, the � hyperons in the final state
are produced either in the quasifree process K−N → �π

or the two-nucleon absorption process K−NN → �N . For
the measurements which involve p-� detection in coinci-
dence, obviously only the two-nucleon absorption contributes.
The absorption on more than two nucleons is expected to
be weak, because the probability of finding three or more
nucleons together in the nucleus is small. The Q value of
the K−NN → �N process (ignoring nuclear binding of the
absorbing protons) is 317 MeV. This energy is mainly shared
by the emerging nucleon and the � hyperon. Furthermore,
since the Fermi momentum of the nucleons in the nucleus is
not large, the outgoing nucleon and the � hyperon following
K− absorption at rest emerge back to back and have their
momenta centered around 570 MeV/c. Of course, due to Fermi
motion, in an actual situation the back-to-back correlation is
smeared into two narrow cones, and momenta of the nucleon
and the � are spread around 570 MeV/c by the Fermi motion.
Additionally, the target nucleus, after absorption, is left into a
two-hole shell-model state.

Structurally, two aspects of nucleon motion in the nucleus
appear in the (K−,p�) absorption process in the nucleus.
Because of the predominantly back to back emission of p

and � hyperon and their momenta being centered around
570 MeV/c, the absorbing pair of nucleons in the nucleus
needs to be as close as around 0.2 fm to each other at
the time of K− absorption. Since the N -N potential at
these distances is very strong, the relative wave function
of these protons has strong short-range correlations. These
correlations in the nucleus, however, heals very fast [15] and
the wave function goes over to the shell-model mean-field
wave function. The center of mass of these two protons,
however, has no such constraints on it, hence, it always moves
in the most probable trajectory given by the nuclear mean field.
The appropriate two-proton wave function in the nucleus for
the kaon absorption, therefore, has the form

�pp( �r1, �r2) = ψp( �r1)ψp( �r2)f (r), (3)

where ψ’s are the shell-model wave functions and f (r) is a
Jastrow-type correlation function [16].

The outgoing p and � will also be correlated similarly by a
correlation function, say f ′(r). The healed p-� wave function
here, however, will be a phase-shifted wave function.

Consequent to the above completely two different space
scales involved, the absorption probability for K− in the
nucleus for the p-� branch (for absorption on a pp pair, say)
factors into two parts (shown in the next section),

ωabs( �pp, �p�) = gabs(q)G(Q), (4)

where �q = (mp �p� − m� �pp)/(mp + m�) and �Q = �pp + �p�

are the center of mass and the total momenta of the p and �,
respectively. g and G are, respectively, the absorption strength
for the K−pp → p� process in their center of mass and the
momentum probability distribution of nuclear wave functions
corresponding to the total momentum, Q. Because of the back-
to-back emission of p and �, obviously the magnitude of q is
very large and that of Q is small. Due to these vastly different
momentum scales for q and Q, over most of the variables
measured in the (K−,p�) reaction, while G(Q) can go through
a large variation, the factor g(q) does not change much.

B. Final state interaction

Before we talk about the FSI, let us mention that the K−
absorption in the nucleus occurs on its surface. Quantitatively,
this region is determined by the overlap of the K− 2p and
3d atomic orbits with the spatial distribution of the absorbing
protons. Figure 1(a) shows these overlaps, where

P (r) = r2φK (r)ψp1 (r)ψp2 (r). (5)

For the 12C nucleus, we have taken the two protons moving
in the 1p shell-model orbital. Their radial distribution is
described by the harmonic oscillator wave function. The
kaonic atomic orbits are given by the hydrogenic wave
function. To show their relative localization clearly, in Fig. 1(a)
we plot P (r) for the 2p and the 3d K− orbits, which have
different magnitudes, on the same scale with arbitrary units.
We see that both the overlap functions peak around r = 2.5 fm,
with 3d overlap function about half a fermi ahead. The 12C rms
radius is known to be 2.4 fm. The magnitude of the 3d overlap
function, we note is two orders of magnitude smaller than that
of the 2p orbit. This happens because the 3d wave function
rises slower than the 2p K− wave function in the region of the
overlap, as we see in Fig. 1(b).
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Above localization of the P (r) beyond the 12C rms radius
coupled with the back-to-back emission of p and � following
absorption, suggests that only one of the two emitted particles,
p and �, goes into the nucleus at a time. The other particle
moves outward. Hence, the FSI with the recoiling nucleus is
mainly suffered by only one particle, p or � at a time. The
channels which dominate in contribution to this interaction
are the elastic channel and the single nucleon knock-out (KO)
channel. The latter is known to constitute about 80% of the total
reactive cross section in the proton-nucleus inelastic scattering
in nuclei around 160 MeV proton energy [13], which is the
relevant proton energy in the present study. Out of these, the
effect of the elastic channel at intermediate energies is mostly
absorptive, while that of the KO channel is dispersive as well as
absorptive. In our calculations, we include both the channels.
The inclusive probability for a process like

K− + A → p + � + X, (6)

is therefore written as

dω = dωelas + dωKO. (7)

The sum of two terms in the above is incoherent because
in principle (by making exclusive measurements) we can
distinguish between elastic scattering and single scattering
with one target nucleon being knocked out.

III. FORMALISM AND RESULTS

A. Elastic

The “elastic” process for the A(K−,p�)B reaction is
shown in Fig. 2(a). In it, the K− gets absorbed on a pair of
protons in the target nucleus and produces a p-� pair. This pair
is detected in coincidence in the final state. No measurements
are made on the recoiling nucleus, hence the measurements
are inclusive in that sense. The recoiling nucleus is left in a
two-hole state centered around the excitation corresponding
to the summed binding energy (B1 + B2) of nucleons 1 and
2 in nucleus A. Let us denote different states of B around
this excitation by n. The inclusive absorption probability for
protons in shells (n1l1; n2l2) in the nucleus is then given by

dωelas = 1

(2π )5

∑
n

δ(Mi − T� − Tp − TB − E∗
n)

× δ( �PB + �pp + �p�) d �ppd �p�d �PB

∑̄
σ

|Mfi|2, (8)

K

C12

12
H K

p
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B
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FIG. 2. Reaction mechanism of (a) elastic process and (b) knock-
out process.

where Mi = mK + mp − m�, and E∗
n is the excitation energy

of the state n in B. Tx denotes the kinetic energy of the
particle x. Bar on the sum in the above expression denotes the
average and sum over the spins in the initial and final states,
respectively. The transition matrix element Mfi is given by

Mfi = [
Nl1l2

]1/2
∫

dξdx1dx2�
∗
B,n(ξ )χ−∗(x1, x2)HK−

12

×�A(ξ, x1, x2)φK, (9)

where Nl1l2 are the active number of absorbing proton pairs
in shell (n1l1; n2l2) in the target nucleus, A. �x is the nuclear
wave function, and χ is the elastically scattered p and � wave
function. HK−

12 is the absorption vertex, and it depends only on
the proton coordinates, x1 and x2 in nucleus A. ξ represents
collectively the coordinates of the (A − 2) nucleons.

To proceed further we note that since the excited states n in
nucleus B are the hole states corresponding to two nucleons,
they are not likely to have much energy spread. Hence, in the
energy δ function in Eq. (8) we replace E∗

n by |B1 + B2| = B12.
With this we obtain

dωelas = [PS]
∑

n

∑̄
σ

|Mfi|2, (10)

with [PS], the phase-space factor, given by

[PS] = 1

(2π )5
δ(Mi − T� − Tp − TB − B12)d �p�d �pp, (11)

and �PB = −( �pp + �p�) = − �Q. Sum over n is now performed
using the “closure relation,” yielding∑̄

σ

∑
n

|Mfi|2 ≡ |M̄fi|2

= [
Nl1l2

]∑̄
σ

∫
dξ

∣∣∣∣
∫

dx1dx2

× χ−∗(x1, x2)HK−
12 �A(ξ, x1, x2)φK

∣∣∣∣
2

. (12)

Since we are interested only in the inclusive absorption
strength we take a simple description of the target nucleus,
where the absorbing protons move in shell model orbitals
(n1l1) and (n2l2) and the core of (A − 2) nucleons is a spectator.
With this description, the above expression reduces to

|M̄fi|2 = [
Nl1l2

]∑̄
σ

∣∣∣∣
∫

dx1dx2χ
−∗(x1, x2)HK−

12

×�n1l1m1;n2l2m2 (x1, x2)φK

∣∣∣∣
2

, (13)

where �n1l1m1;n2l2m2 (x1, x2) is the properly antisymmetrized
two-proton wave function in the nucleus. In the LS represen-
tation, it is written as

�n1l1m1;n2l2m2 (x1, x2)

=
∑

LMSσ

(l1l2m1m2/LM)(1/2 1/2σ1σ2/Sσ )

×φLM ( �r1, �r2)χSσ ( �s1, �s2). (14)

For two protons in the same shell antisymmetry requires that
L + S = even. Further on, performing sum over m1,m2, σ1,
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and σ2 contained in
∑̄

σ in Eq. (13), we get

|M̄fi|2 = Nl1l2

1

4

∑
Sσ

1

(2l1 + 1)(2l2 + 1)

∑
LM

∣∣∣∣
∫

dx1dx2

× χ−∗(x1, x2)HK−
12 φKφLM ( �r1, �r2)χSσ ( �s1, �s2)

∣∣∣∣
2

.

(15)

The correlation functions f (r) and f ′(r) mentioned in Eq. (3)
and after it are absorbed here in the absorption vertex HK−

12 .

1. Evaluation of |M̄fi|2

To proceed further, let us now utilize the fact that the
momentum �q appearing in the absorption vertex HK−

12 has
a large magnitude and a short range. Because of this, in the
expression for |M̄fi|2, we can factorize the expectation value
of HK−

12 from the rest, and write,

|M̄fi|2 =
[

1

4

∑
Sσ

∣∣〈p,�, �q|HK−
12 |χSσ ( �s1, �s2), ppK−〉∣∣2

]

×
[

Nl1l2

(2l1 + 1)(2l2 + 1)

∑
LM

∣∣∣∣
∫

d �r1d �r2χ
−∗( �r1, �r2)

×φK ( �r1)φLM ( �r1, �r2)δ( �r1 − �r2)

∣∣∣∣
2
]
. (16)

Two expressions in the square brackets above can be identified
with two terms of Eq. (4), i.e.,

gabs(q) =
[

1

4

∑
Sσ,σp,σ�

∣∣〈p,�, �q|HK−
12 |χSσ ( �s1, �s2), ppK−〉∣∣2

]
,

(17)

and

G(Q) = [PS]Nl1l2

1

(2l1 + 1)(2l2 + 1)

∑
LM

∣∣∣∣
∫

d �r1d �r2

× χ−∗( �r1, �r2)φK ( �r1)φLM ( �r1, �r2)δ( �r1 − �r2)

∣∣∣∣
2

. (18)

2. Distorted waves χ

As the energies of the proton and � following K− absorp-
tion are around 160 MeV or so, we describe the scattering
of these particles by the recoiling nucleus using eikonal
approximation. The basic assumption in this description is
that the propagating particle is mainly scattered in the forward
direction. Taking the z axis parallel to the proton momentum,
�pp, the proton distorted wave χ−∗

�pp
is written in eikonal

approximation as

χ−∗
�pp

(�r) = e−i �pp ·�rD �pp
(�r), (19)

where the distortion function D is given in terms of an optical
potential Vp by

D �pp
(�r) ≡ D �pp

(�b, z) = exp

[
− i

h̄vp

∫ ∞

z

Vp(�b, z′) dz′
]

, (20)

where �r = (�b, z). For writing the � distorted wave, we recall
that the � moves opposite to the proton. Therefore, the
momentum vector �p� is antiparallel to the chosen z axis. The
distortion factor D �p�

(�r) for � therefore becomes [17]

D �p�
(�r) = exp

[
− i

h̄v�

∫ z

−∞
V�(�b, z′) dz′

]
. (21)

Combining D’s for the proton and the �, we then get

D �pp
(�r)D �p�

(�r) = exp

[
− i

h̄

(∫ z

−∞

V�

v�

dz′ +
∫ ∞

z

Vp

vp

dz′
)]

.

(22)

If we make the tρ approximation for V and assume forward
scattering for t , we get

D �pp
(�r)D �p�

(�r) = exp

[
i

2

(
σ�N

T (i + β�N )
∫ z

−∞
ρdz′

+ σ
pN

T (i + βpN )
∫ ∞

z

ρdz′
)]

, (23)

where σx
T and βx are, respectively, the total cross section and

the ratio of the real to imaginary part of the scattering amplitude
for the xN system.

Now, if we ignore the difference between the proton and
the � elementary scattering parameters and take them as that
for the better studied pN system at some mean value of the p

and � energies, the above expression simplifies to

D �pp
(�r)D �p�

(�r) ≡ D(�r) = exp

[
i

2
σ

pN

T (i + βpN )
∫ ∞

−∞
ρ(�r ′) dz′

]

= exp

[
i

2
σ

pN

T (i + βpN )T (�b)

]
, (24)

where ρ(r) is the nuclear density and T (�b) is the total nuclear
material seen by the proton and the � together at an impact
parameter �b. It is given by

T (�b) =
∫ ∞

−∞
ρ(�r ′) dz′, (25)

with r ′ =
√

b2 + z′2. Now if we observe Eq. (24) for D(�r)
closely, we realize that this, in fact, is the total distortion
factor for the passage of a proton from one end of the nucleus
to the other. This, thus, is the mathematical description for
the statement made in an earlier section that, because of the
peripheral localization of the K− absorption and the back-to-
back emission of p and �, total scattering of the p and the �

can be included in the final state by considering the passage of
only one particle (p or �) through the whole nucleus.

Furthermore, since the effect of distortion at the energies of
p and � in the studies here (∼160 MeV) is mainly absorptive,
and most of the measurements on p� following K−absorption
are of inclusive type, it will be reasonably correct to include
the overall effect of the distortion in G(Q) by multiplying it
by an attenuation factor ηA(Tp), given by

ηA(Tp) =
∫

d �b dz ρA(�b, z)|D(�r)|∫
d �b dz ρA(�b, z)

(26)

=
∫

d �b dz ρA(�b, z)e− 1
2 [Pσ

pN

T (Tp)]T (�b)∫
d �b dz ρA(�b, z)

,
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and removing the distortion factor from the integral in Eq. (18).
Factor P in the above equation has been introduced before σ

pN

T

to include the effect of Pauli-blocking of the nucleons in the
nucleus after scattering. A nuclear matter estimate for its value
above twice the Fermi energy is given by [18]

P (ε) = 1 − 7

5ε
, (27)

where ε = Tp

EF
, with EF denoting the Fermi energy.

With the above treatment of distortion, Eq. (18) for G(Q)
simplifies to

G(Q) = [PS]|ηA(Tp)|2
∑
LM

∣∣F l1l2
LM (Q)

∣∣2
, (28)

where

∑
LM

∣∣F l1l2
LM (Q)

∣∣2 =
∑
LM

∣∣∣∣∣
√

Nl1l2

(2l1 + 1)(2l2 + 1)

×
∫

d �r1e
−i �Q· �r1φK ( �r1)φLM ( �r1, �r1)

∣∣∣∣
2

= Nl1l2

∑
L

(l1l200/L0)2
∣∣gL

l1l2
(Q)

∣∣2
, (29)

with

gL
l1l2

(Q) =
∫

dr r2jL(Qr)Rn1l1 (r)Rn2l2 (r)φK (r), (30)

where Rx are the nucleon radial wave functions in the nucleus.
The value of ηA(Tp) depends upon the proton energy Tp

through PσpN
T and upon the nucleus through the thickness

function, T (b). To get an idea about the value and its variation,
in Fig. 3 we plot ηA(Tp) in the proton kinetic energy range 50–
250 MeV for three nuclei, 6Li, 12C, and 40Ca. For calculating
the Pauli-blocking factor P , the Fermi momentum is taken
equal to 200 MeV/c. The nuclear densities are taken from
Ref. [19]. We find that in the energy range (100–200 MeV)
of interest in the present calculations, the attenuation factor
approximately remains constant. The values of this factor for
the three nuclei are around 0.9, 0.7, and 0.4, respectively.

3. Absorption vertex, gabs(q)

The prescription to describe the absorption vertex gabs(q) is
not clear and also not simple. One thing that is definite about it
is that it involves large momentum transfer; hence, spatially it
cannot be localized over any extended volume. Dynamically,
the one-nucleon absorption mechanism K−p → π� is under-
stood to involve the �(1405), which decays into a pion and a
hyperon. The range of this vertex is determined by the �(1405)
propagator. A study in Ref. [20] suggests that the absorption
probability depends upon this range, and in their estimate
this range could be around 0.75 fm or so. The two-nucleon
mechanism, due to the strong attractive K−-p interaction in
the T = 0 state, involves dynamically a strongly correlated
system of K−pp, where the K− is continuously exchanged
between two protons. Detailed dynamical composition of this
system is determined in the χPTs by the nonperturbative
coupling among various S = −1, T = 0 channels, π+�−,
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FIG. 3. Attenuation factor ηA(Tp) [Eq. (26)] for 6Li, 12C, and 40Ca
nuclei.

π0�0, π−�+, π0�, K−p, and K0n. This system eventually
decays into p�. The exact mechanism of this decay is not
immediately obvious. However, in line with the one-nucleon
K− absorption, one mechanism could be that at some stage in
the K−pp system, a �(1405) is produced, which, as suggested
in Ref. [10], interacts with another proton through an exchange
of pions or a pair of π -K and goes over to the p-� final
state. In Ref. [10], using the range parameter 0.2–1.2 fm for
the absorption vertex, the authors estimate the decay width
of 2–8 MeV for the K−pp system, with the maximum width
occurring for the range around 0.7 fm. Thus, it appears that
even if the details of the absorption vertex are not known
very clearly, two things are clear: (i) the magnitude of the
two-proton K− capture depends upon the spatial extension
of the absorption vertex, and (ii) the probable range of the
vertex is such that the variation of the capture probability with
momentum q could not be very rapid.

The (K−,p�) reaction measurements have been done
on the distributions of the � (and proton) momentum,
invariant p� mass, and their angular correlations. In all these
distributions, as we will discuss in the next section, each point
involves a folding of g(q) and G(Q). However, the values
of q for all the measurements are large (around 500 MeV/c)
and do not have much spread (only up to 10%). Because of
this, the factor gabs(q) [Eq. (17)] in the formalism enters into
determining the absolute magnitude of the (K−,p�) process
only. The shapes of different distributions are determined by
the factor G(Q). Furthermore, as the available data from the
experiments exist only in arbitrary units, we have taken gabs(q)
as a constant factor, denoted by C, in our calculations.

4. Results

Before we present the results let us make some points
about the FINUDA experiment. The �’s are detected in this
experiment by reconstructing the invariant mass of the �

decay products, p and π−. However, the restriction on the
low-momentum threshold for π− in the FINUDA spectrometer
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FIG. 4. Angular correlation distribution between � and p along
with the FINUDA measurements [1].

is such that it cuts out the � hyperons with a momentum
lower than 300 MeV/c. Therefore, the � from the quasifree
process (K−N → �π ) in this experiment is hardly observed.
Above around 400 MeV/c, since the main contribution comes
from two-nucleon absorptions (K−NN → �N,�0N ), the
FINUDA measurements have a major contribution from this
capture process. Furthermore, the measurements are done with
the p and � in coincidence, with the cosine of the angle
between them restricted to −1 � cos θp� � −0.8. The latter
constraint is made because the cross section beyond these
limits is insignificant (see Fig. 4).

For calculations, putting all factors together from the
above section, the differential absorption strength dω for K−
absorption on two protons in shell-model orbitals (n1l1; n2l2)
is finally written as

dωelas = [PS]C|ηA(Tp)|2Nl1l2

∑
L

(l1l20 0/L0)2
∣∣gL

l1l2
(Q)

∣∣2
,

(31)

where all the terms are as defined in the above sections. We
present here calculated results using this expression for the
12C target nucleus with an appropriate phase-space factor
[PS]. The proton wave functions in 12C are generated in an
oscillator potential, whose length parameter b is taken equal
to 1.67 fm. This parameter fits the elastic electron scattering
data on the 12C nucleus [19]. The binding energies of protons
in 1p and 1s shells are taken as given by the (p,2p) and
(e,e′p) reactions [21]. For 12C they are 15.96 and 34.0 MeV,
respectively. The K− absorption is considered to occur on
proton pairs in 1p, 1s, and 1s1p shells. The value of Nl1l2

for these absorptions is taken equal to the number of possible
proton pairs in these shells, as an upper limit. They are in the
ratio of (1p)2 : (1s1p) : (1s)2 :: 6 : 8 : 1.

The phase-space factor PS for calculating the angular
correlation between the p and � and their momentum
distribution is written as

PS = 4πmpm�

(2π )5

| �pp|2| �p�|2
(m� + mB)| �p�| + | �pp|m� cos(θ�p)

× d cos(θ�p)d| �p�|. (32)

In Fig. 4 we present the calculated angular correlation
between the � and the proton along with the FINUDA
measurements. We find them to agree very well with each
other. The steep rise in the distribution toward θ�p = 180◦
is the strong confirmation of the two-proton absorption
mechanism. Both results are given in relative units.

Measurements have also been made in the FINUDA
experiment on the momentum distributions of the proton and
�. The measured � distribution from Ref. [22] is shown
in Fig. 5. If one believes that the observed p and � come
from the two-proton absorption vertex and do not undergo
any further FSI except the elastic scattering, this distribution
should be similar to the one calculated using Eq. (31). We
show the calculated � and proton momentum distributions in
Fig. 5, and find that the peak position of the � distribution
nearly agrees with the corresponding measured distribution.
The shape of the calculated distributions is, however, found
to be less broad compared to the observed one. The larger
magnitude of measured events below 400 MeV/c, which
makes it broader, cannot be understood easily. They cannot be
attributed to the quasifree process either, because the FINUDA
spectrometer cuts off �’s below 300 MeV/c. Another source
of this deficiency can be that in our calculations, we have taken
gabs(q) [denoted by C in Eq. (31)] as constant. We examined it.
As we see in the phase-space expression [Eq. (32)], calculation
of the absorption probability for each value of the | �p�| involves
an integral over cos(θp�), which in the FINUDA measurements
lies between −1.0 and −0.8. This implies in the calculation
for each p� an integral over a certain range of q and Q

corresponding to this range of p� angle. For 400, 500, and
600 MeV/c values of p� (which more or less covers Fig. 5) this
range of q is about 510–495, 520–505, and 515–500 MeV/c,
respectively. These values, as we see, are large and have
about the same range for all the � momenta. Therefore our
assumption about the constancy of gabs(q) in the calculations
should not be the cause of concern. The shape of the p�

distribution is, in fact, mainly determined by G(Q) through
the Q dependence of the nuclear wave functions. The range
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FIG. 5. � and p inclusive momentum distributions with −1 �
cos θp� � −0.8 along with the measured � momentum distribution
(represented by a histogram).
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of Q for the above three p�’s in the −1 � cos θp� � −0.8
are 200–260, 35–220, and 160–270 MeV/c, respectively. This
range shows why the p� momentum distribution peaks around
500 MeV/c. It also suggests that it can probably be made
broader by enriching the nucleon shell-model wave functions
in high-momentum components. However, to reproduce the
width of the observed momentum distribution, we believe that
it will require a considerable modification of the nuclear wave
function.

Next we calculate the p-� invariant mass distribution. The
phase space for this is written as

PS = 4πµ�pµ(�+p)B

(2π )5
| �Q||�q|dM�pd cos(θQq), (33)

where µxy denotes the reduced mass of the (x, y) system. The
magnitudes of �Q and �q are determined for a given invariant
mass M�p through

|�q| = √
2µ�p(M�p − mp − m�), (34)

and

| �Q| = √
2µ(�+p)B (mK− + 2mp − Bl1l2 − M�p). (35)

The angle θQq between �Q and �q is constrained such that −1 �
cos θp� � −0.8. The calculated invariant mass distribution
and the corresponding measured FINUDA distribution [1] are
shown in Fig. 6. We observe that compared to the mass of
K−pp in the free state (2370 MeV), the calculated distribution
is down-shifted in mass by about 50 MeV due to proton binding
in 12C. The measured mass distribution, however, is still below
this by an additional 70 MeV or so. This, incidentally, is around
the reported calculated binding energy in the literature of the
K−pp module taking the �(1405) mass 27 MeV below the
K−-N threshold.

The range of the values of q and Q for 2290 � Mp� �
2320 MeV (which covers the calculated distribution) are 520–
490 and 27–320 MeV/c, respectively. This says that the values
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FIG. 6. Invariant mass distribution of � and p along with
FINUDA measurements. −1 � cos θp� � −0.8.

of q are large and do not vary much, hence g(q) is not likely to
influence the shape of the mass distribution. Its shape would
be mainly determined by the nuclear wave function through
G(Q) and the factor Q in the phase space.

If we include in the kinematics of our calculations an
additional binding energy of 70 MeV in the initial system,
then we find that the peak position in the calculated mass
distribution (not plotted here), of course, comes near to the
peak position of the measured distribution, but the shape of the
calculated distribution is much sharper than the experimental
one. The calculated � momentum distribution with the
additional binding also gets shifted toward lower momenta.
This then spoils the agreement of the calculated results with the
experiments shown in Fig. 5 without any K−pp binding. The
angular correlation between � and proton, however, remains
unchanged.

5. Conclusion

In the two-nucleon K− absorption model, with only elastic
scattering of p and � included in the final state, the measured
�-p angular correlation distribution is reproduced well, and
the momentum spectrum of � is reproduced to a reasonable
extent without introducing any additional binding of the
K−pp module. The calculated invariant �-p mass distribution,
however, peaks around 70 MeV higher than the measured one.
Attributing this shift to the additional binding of the K−pp
module, the calculations including this binding in kinematics,
obviously, reproduce the peak position of the measured mass
distribution, but the shape of the distribution remains very
narrow. It also spoils the agreement with the � momentum
distribution achieved without including any K−pp binding.
Thus, in an overall conclusion, it seems that the observed
invariant mass distribution in the (K−,p�) reaction does not
correspond to the peak predicted in this section with only
elastic scattering included in the FSI.

B. Knock-out scattering

The knock-out scattering means that the proton or �,
emanating from vertex I, encounters a hard collision with a
nucleon in the residual nucleus and knocks it out (Fig. 2b).
This collision alters significantly the momentum distribution
of the striking particle. To calculate the knock-out contribution
we recollect that, as discussed in the earlier section, p and �

move back to back at vertex I, and the vertex itself is localized
on the surface of the target nucleus. Because of this only
one particle goes into the nucleus, the other one moves out.
For such trajectories, as discussed earlier in Sec. III A2 for
distorted waves in elastic scattering, here too the contribution
of p and � to KO FSI can be included by considering the
passage of only one of the two particles, but through the whole
nucleus. This can be reasonably correct if the elastic scattering
parameters for pN and �N systems at intermediate energies
are not much different. Considering that it is so, in the follow-
ing we calculate the KO contribution induced by the proton.

Let f ( �p′
p) describe the momentum distribution of the proton

when it incidents on the vertex II, where �p′
p is the momentum

of the proton at the time of leaving the vertex I. The altered
momentum of this proton after the KO scattering is denoted
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by �pp. The proton with this momentum along with the � are
detected in the experiment. The knocked-out nucleon from the
nucleus is not seen. The probability for this “inclusive” process
is determined by the product of f ( �p′

p) and the proton-induced
inclusive single-nucleon knock-out cross section as

dωKO = f ( �p′
p)

σKO( �pp, �p′
p)

σ
pB

T (p′
p)

, (36)

where σ
pB

T (p′
p) is the total proton-nucleus cross section at

the momentum | �p′
p|. Momentum | �p′

p| is given in terms of the
variables at the first vertex. In terms of �p� it is given by

| �p′
p| = µp′B

{
−| �p�| cos(θ�p′)

MB

+
[ ( | �p�| cos(θ�p′)

MB

)2

−
(

2

µpB

) (
m�

µ�B

T� − M

)]1/2
}

, (37)

where all the notations are self-explanatory. Tx represents
the kinetic energy of the particle x. M = mK + MA − mp −
m� − MB . Function f ( �p′

p) is obtained from Eq. (31) by first
writing the phase space [PS] for �p� as

[PS] = m�MB

(2π )5

| �p′
p|| �p�|2

(m� + MB)| �p�| + | �p′
p|m� cos(θ�p′)

d �p�,

(38)

and then substituting this phase-space expression in Eq. (31)
and identifying f ( �p′

p) with (dωelas/d �p′
p). This gives

f ( �p′
p) =

[
m�MB

(2π )5

| �p′
p|| �p�|2

(m� + MB)| �p�| + | �p′
p|m� cos(θ�p′)

d �p�

]

×
[
C|ηA(Tp)|2Nl1l2

∑
L

(l1l200/L0)2
∣∣gL

l1l2
(PB)

∣∣2

]
.

(39)

However, before we proceed further let us mention that
Eq. (36) for the knock-out contribution, which has a fac-
torization of the vertices I and II, holds under a certain
approximation. More correctly, as shown in Fig. 2(b) these
two vertices should have been correlated in space through
the proton (or �) propagator between them. This propagator
would be a proton scattered wave between the two vertices
with an outgoing boundary condition. That is, we would have
between two vertices a factor such as∫

d �p f ( �p, �p′)
| �p′|2 − | �p|2 − 2mU + iε

, (40)

where f ( �p, �p′) collectively represents all other factors. U

represents the proton interaction with the medium. This
integral has two parts, one originating from the principal value
and another from the energy-conserving δ-function part of the
propagator. Physically these two parts represent the off-shell
and on-shell scattering in the intermediate state. The on-shell
part can be shown to be roughly proportional to the proton
momentum, hence dominates at higher energies. The off-shell
part dominates at lower energies (see, for example, Ref. [23]).
In our case, since the energies of the proton (or �) are in the

intermediate energy range, we have restricted ourselves to the
energy-conserving on-shell contribution only. This, essentially
is the assumption implicit in writing Eq. (36) with the proton
being described at both vertices by distorted waves.

1. Inclusive knock-out cross section

The proton-induced single-nucleon knock-out reaction at
intermediate energies is a well studied subject experimentally
as well as theoretically [24]. Using the notation given in
Fig. 2(b), the expression for the (p,pN ) knock-out reaction
is given by

dσ

d �pp

= 1

(2π )5

1

v′
p

∑
n

∫
d �pN d �QRδ(T ′

p − Tp − TN − TR −E∗
n)

× δ( �p′
p − �pp − �pN − �QR)

×
∑̄

|Tn( �p′
p, B → �pp, �pN, �QR,Xn)|2, (41)

where
∑̄

denotes the average and sum over the spins in the
initial and final states, respectively. �QR is the momentum
of the recoiling nucleus. Xn and E∗

n denote its intrinsic
excitation and the excitation energy, respectively. To evaluate
this expression, first we integrate over �pN and utilize the
momentum-conserving δ function, giving

dσ

d �pp

= 1

(2π )5

1

v′
p

∑
n

∫
d �QR δ(T ′

p − Tp − TN − TR − E∗
n)

×
∑̄

|Tn( �p′
p, B → �pp, �pN, �QR,Xn)|2, (42)

with �pN = �p′
p − �pp − �QR = �q − �QR , where �q = �p′

p − �pp is
the momentum transfer from the incident proton.

The transition matrix Tn above describes the T matrix for
the knock-out of a nucleon from nucleus B and leaving the
residual nucleus in a one-hole excited state denoted by n. It is
given by

Tn( �p′
p, B → �pp, �pN,Xn)

= 〈p, �pp; N, �pN ; Xn, �QR|tp′N→pN (ε)|p′, �p′
p; B〉, (43)

where B and Xn denote the nuclear wave functions in the initial
and final states, respectively. tp′N→pN is the N -N scattering
amplitude. This amplitude is half off-shell if the distortion
of the continuum nucleons is ignored and becomes fully off-
shell if the distortions are included. However, at the energies
of concern to us, the off-shell effects are known not to be
significant. Hence, normally the N -N t-matrix here is taken
on-shell and the energy ε at which it is evaluated is taken
corresponding to the incident momentum �p′

p. The tNN itself is
related to the N -N cross section in the center of mass through

dσ

d�
= m2/4

(2π )2

| �κf |
| �κi | �̄|〈 �κf |tNN(ε)| �κi〉|2, (44)

where �κx is the N -N momentum in its center of mass, and m

is the nucleon mass.
The sum over n in Eq. (42) means the sum over the excited

states in the recoiling nucleus consistent with the momentum
conservation. Since the reaction mechanism involves only a
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nucleon in nucleus B, n would have only a small spread.
Therefore, in the energy δ function in Eq. (42), we can replace,
to a reasonable approximation, E∗

n by the binding energy BN of
the knocked-out nucleon in B. This simplifies the summation
over n in Eq. (42). Using closure, we can then write∑

n

∑̄
|Tn|2

=
∑̄ ∫

dξ |〈p, �pp; N, �pN ; �QR|tp′N→pN (ε)|p′, �p′
p; B〉|2,

(45)

where ξ collectively denotes coordinates of all the spectator
core nucleons in nucleus B. To proceed further, we now use a
simple description of the nucleus. We write the target nucleus
B wave function as a product of a single nucleon (N ) wave
function in a shell with quantum numbers nl and the core
nucleus wave function �c(ξ ). With this, Eq. (45) reduces to∑

n

∑̄
|Tn|2

=
∑̄

|〈p, �pp; N, �pN ; �QR|tp′N→pN (ε)|p′, �p′
p; φnl(N )〉|2,

(46)

with ∑̄
= 1

4

S(l)

(2l + 1)

∑
ml

∑
nucleon−spins

, (47)

where S(l) is the nucleon spectroscopic factor. In the present
simplified description of the nuclear wave function, it is
equal to the number of nucleons in the shell nl. For the
bound nucleon, we use the momentum-space representation
φnl( �p′

N ), where �p′
N from the momentum conservation at the

〈tp′N→pN (ε)〉 vertex and that following Eq. (42) equals − �QR .
With this identification, Eq. (46) then factorizes as∑

n

∑̄
|Tn|2

=
[∑̄

σ ’s

|〈σp, �pp; σN, �pN |tpN (ε)|σ ′
p, �p′

p; σ ′
N,− �QR〉|2

]

×
[

1

4

S(l)

2l + 1

∑
ml

|φnlml
(− �QR)|2

]
. (48)

The single-nucleon knock-out cross section expression
[Eq. (42)] subsequently becomes

dσ

d �pp

= 1

(2π )5

1

v′
p

∫
d �QRδ(T ′

p − Tp − TN − TR − BN )

×
[∑̄

σ ’s

|〈σp, �pp; σN, �pN |tpN (ε)|σ ′
p, �p′

p; σ ′
N,− �QR〉|2

]

×
[

1

4

S(l)

2l + 1

∑
ml

|φnlml
(− �QR)|2

]
. (49)

To obtain the expression for the inclusive cross section,
we still need to integrate this expression over �QR . Following
Ref. [25] we use the energy δ function to remove angle

integration and with some algebraic manipulations obtain∫
d �QRδ(T ′

p − Tp − TN − TR − BN )

×
[

S(l)

2l + 1

∑
ml

|φnlml
(− �QR)|2

]

= S(l)
m

2q

∫ ∞

Qmin
R

QRdQR|φnl(QR)|2. (50)

Substituting this in Eq. (49) above, and also writing∑̄
σ ’s|〈tpN 〉|2 in terms of the elementary N -N differential cross

section [Eq. (44)], we get

dσ

d �pp

=
[

2

qp′
p

][
dσ

d�
(ε)

]pN

cm

×
[
S(l)

∫ ∞

Qmin
R

QR dQR

∣∣∣∣ 1

(2π )3/2
φnl(QR)

∣∣∣∣
2 ]

. (51)

Here Qmin
R is that minimum momentum which a nucleon of

binding energy BN must have in the nucleus for the scattered
proton to be observed at a scattering angle θ with a momentum
| �pp|. Its value is given by

Qmin
R =

[
p2

p − p′
ppp cos(θ ) + mBN

]
[
p2

p′ − p′
ppp cos(θ ) + mBN

]1/2 . (52)

Equation (51) for the knock-out cross section assumes that
the incoming proton and the outgoing nucleons do not suffer
any additional scattering except the hard knock-out collision.
This additional scattering, however, can be incorporated in
the formalism by replacing the plane-wave description of the
continuum nucleons by the “distorted waves,” which would
be solutions of the wave equation with appropriate optical
potentials in it. Several studies of the distortion effect in the
knock-out reaction have been carried out in the literature, and it
has been found that in the energy range of nucleons of interest
to us here, the effect of distortion is mainly absorptive. The
dispersive effect is very small. The absorption factor for 12C
(p,2p) 11B reaction at 160 MeV beam energy, for example, in
Ref. [26] is found to be around 0.5.

Finally, before closing this section, we determine the extent
of accuracy to which the expression in Eq. (51) describes
the measured inclusive proton-induced single-nucleon knock-
out cross section. We calculate the inclusive cross sections
at 160 MeV beam energy for 12C and compare them with
the measured (p,p′) ones at the same beam energy [13]. The
calculated results are summed over the knocked-out nucleon
(including both neutron and proton) from 1s and 1p shells.
The single-nucleon binding energies for them are taken from
Ref. [21]. The nucleon-nucleon differential cross section in the
center of mass required in the calculations are taken from the
analytic form given in Ref. [27], i.e.,

d2σ

d�dT
=

[
1.9 + 230

T
+ 4850

T 2

] (
1 + 0.1 cos2 θ

)
, (53)

where the cross section is in mb and energy (kinetic) T in MeV.
This form is in good agreement with the energy dependence of
the observed cross sections for the range 20 � T � 200 MeV.
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FIG. 7. Calculated energy spectrum of a 160 MeV incident proton
on 12C after a single-nucleon knock-out scattering from the nucleus
along with the experimental points at the same energy [13].

The bound nucleon wave function is described by the os-
cillator potential form with the length parameter b = 1.67 fm.
The spectroscopic factor S(l) is taken to be equal to the number
of nucleons (neutrons + protons) in the orbital nl.

With these inputs and the distortion factor equal to 0.5
(as discussed above), the calculated energy spectrum for the
proton going at 30◦, for example, in the laboratory frame along
with the experimental cross sections is shown in Fig. 7. As we
see, the agreement between them, both in shape and magnitude,
is very good. This validates the accuracy of Eq. (51) for
the description of the inclusive knock-out channel and gives
confidence for its use in calculations of the (K−,p�) reaction.

2. Results

The final expression for calculating the knock-out con-
tribution to the K− absorption probability is obtained by
substituting Eq. (51) for σKO( �pp, �p′

p) in Eq. (36). We get

dωKO = [d �p�d �pp]f ( �p′
p)

1

σ
pB

T (Tp′)

[
2

qp′
p

][
dσ

d�
(ε)

]pN

cm

×
[
S(l)

∫ ∞

Qmin
R

QR dQR

∣∣∣∣ 1

(2π )3/2
φnl(QR)

∣∣∣∣
2 ]

, (54)

where f ( �p′
p) is given by Eq. (39). As in the case of elastic

scattering, we present here calculated results for the target
nucleus 12C. The results are the probabilities summed over
two-proton-hole states in various pairs of (n1l1; n2l2) shell-
model orbitals at vertex I and, for each of these pairs, summed
over various one-nucleon nl orbitals in nucleus B at the knock-
out vertex II. Since in the final state after knock-out we do
not detect the knocked-out nucleon, we use the spectroscopic
factor S(l) summed over both the neutrons and protons. The
radial part of the bound state wave functions, as discussed
in the last section, is taken for the oscillator potential. The
differential scattering cross section for p-N is described by
Eq. (53) with energy taken corresponding to momentum �p′

p

of the proton incident at vertex II [Fig. 2(b)]. The required
σT for the proton on nucleus B at energies corresponding to a
different proton momentum | �p′

p| is taken from Ref. [28]. This
cross section, of course, does not vary significantly over the p′
energy range of interest here.

The physical effect of knock-out scattering at vertex II
is to reduce the energy of the proton p′ and deflect it from
its direction of incidence. The amount of these changes, as
can be seen from the experimental results on the inclusive
(p,p′) reaction at 160 MeV in Ref. [13], are about 30 MeV
and above for the energy reduction and about 30◦ and above for
the deflection. The immediate consequence of these numbers
would be that the angular correlation between p and � shown
in Fig. 4, coming from vertex I, will be widened significantly
and the energy spectrum of p and �, shown in Fig. 5, will
be shifted toward lower energies. Both these effects will,
therefore, spoil the agreement shown in Figs. 4 and 5 between
the calculated results from vertex I and the corresponding
FINUDA measurements. To get a quantitative idea about the
extent of deflection the vertex II may introduce in the proton
p′, in Fig. 8 we show its angular distribution relative to the
� motion after being scattered from vertex II. Initially p′ is
taken to move at 180◦ with respect to � with energy as fixed
at vertex I, including the spread due to Fermi motion. Without
the knock-out scattering, this distribution will be just a point
at cos(θp�) = −1 in this figure. Due to scattering, this point
gets a significant spread, as we see in this figure. Calculated
results use Eq. (54) and are integrated over the energy spread
of p′.

The consequence of above is expected to be a significant
modification in the invariant mass distribution of p and �.
However, before we show these results, we may mention that,
because of various sums, integrals, and constraint checks on
kinematic variables, the calculations are very involved and
tedious. Therefore, to keep the calculations somewhat simpler
and physically transparent, we have put some constraints in
the calculations without, of course, losing any essence of the
physics of the results. We have seen earlier in the calculations
on vertex I that the p and � from it emerge mainly back to
back with a very small cone angle. We have, therefore, done

cos θΛp
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FIG. 8. Angular distribution of an incident proton after a single-
nucleon knock-out scattering on vertex II.
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FIG. 9. Invariant p� mass distribution from both the vertices
along with the experimental points [1].

the vertex II calculations with θp� = 180◦ only. The energy
variation of the p and � due to Fermi motion of the absorbing
protons in nucleus A, however, has been kept intact. With this,
in Fig. 9 we show the calculated invariant mass distribution
of p-� after knock-out scattering along with the FINUDA
measurements [1]. It is extraordinary to see that the calculated
mass distribution totally agrees with the measured ones. They
agree in mass shift as well as in the shape of the distribution.
This is the same observation as reported in Ref. [12].

However, to get the complete p-� invariant mass distribu-
tion, we need to add to the above the contribution from the
elastic scattering FSI corresponding to vertex I [Fig. 2(a)].
Therefore, in Fig. 9 we also show the p-� invariant mass
distribution due to vertex I, and the sum of the elastic and
knock-out contributions. The summed distribution obviously
has two peaks, one corresponding to elastic scattering FSI and
another to the single-nucleon knock-out FSI. This is similar to
the inclusive inelastic spectrum normally seen experimentally
in (p,p′) or (e,e′) scattering on any nucleus at intermediate
energies [13]. An unusual thing following K− absorption seen
here is that the peak corresponding to elastic scattering seems
to be missing in the FINUDA data. This is intriguing.

3. Conclusions

We summarize our observations for vertex II as follows:

(i) The calculated invariant p-� mass distribution totally
reproduces the experimentally observed distribution.
This is in line with the finding in Ref. [12].

(ii) Though we have not shown the full calculations for the
inclusive energy spectra for the proton or � and angular
correlation between them, we believe that due to
large deflection and energy shift by the single-nucleon
knock-out scattering, the agreement seen in Figs. 4
and 5 between the observed and calculated angular
correlation between the p and � and the inclusive p

and � energy spectra using only vertex I will be spoiled

considerably. We have not calculated these spectra
fully because, due to several integrations over various
kinematic variables, they are very long and involved.

IV. SUMMARY AND FINAL CONCLUSIONS

We have calculated the inclusive differential absorption
probability for K− at rest in the 12C nucleus for the p�

exit channel. The K− is assumed to be absorbed on a pair
of protons in the nucleus. The final state interaction in the
reaction includes the elastic scattering of p and � in the
final state and the single-nucleon knock-out from the recoiling
nucleus. The calculated invariant p-� mass distribution shows
two peaks, one due to elastic scattering and another due to the
knock-out channel. The latter peak overlaps in position and
width with the peak observed in the FINUDA measurements.
The peak corresponding to elastic scattering is not seen in the
experiments.

The measured angular correlation between p and � and
their inclusive energy distribution agree with the correspond-
ing calculated results including only the elastic scattering in
the final state. Inclusion of the knock-out channel is likely to
spoil this distribution.

Thus, finally, we may conclude that, seen in isolation,
the experimentally observed shift in the invariant p-� mass
distribution could be interpreted as being due to the single-
nucleon knock-out final state interaction. But if we include
other results, such as the absence of an elastic scattering peak
in experiments, full agreement of the calculated p-� angular
correlation, and their inclusive spectra using only vertex I with
the corresponding measurements, the situation becomes quite
a bit confusing.

As a final comment in the present work on the K−pp cluster
interpretation of the observed downshift of about 100 MeV
in the FINUDA measurements of the �p invariant mass
compared to its free value, the knock-out reaction in the
final state seems to be a definitive alternative for this shift.
The only discomfiture in this conclusion comes from the
absence of the elastic scattering peak (Fig. 9) in the observed
invariant mass distribution in the FINUDA measurements.
This absence cannot be attributed to the cutoff of the �

hyperons below 300 MeV/c momentum in the FINUDA
spectrometer, because these momenta in the elastic scattering
peak are above 400 MeV/c.

Availability of absolute measurements may help us under-
stand the (K−,p�) reaction better.
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