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We perform coupled-cluster calculations for the doubly magic nuclei 4He, 16O, 40,48Ca, for neutron-rich isotopes
of oxygen and fluorine, and employ “bare” and secondary renormalized nucleon-nucleon interactions. For the
nucleon-nucleon interaction from chiral effective field theory at order next-to-next-to-next-to leading order, we
find that the coupled-cluster approximation including triples corrections binds nuclei within 0.4 MeV per nucleon
compared to data. We employ interactions from a resolution-scale dependent similarity renormalization group
transformations and assess the validity of power counting estimates in medium-mass nuclei. We find that the
missing contributions from three-nucleon forces are consistent with these estimates. For the unitary correlator
model potential, we find a slow convergence with respect to increasing the size of the model space. For the
G-matrix approach, we find a weak dependence of ground-state energies on the starting energy combined with
a rather slow convergence with respect to increasing model spaces. We also analyze the center-of-mass problem
and present a practical and efficient solution.
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I. INTRODUCTION

In the last decade, ab initio nuclear structure calculations
have made great progress [1–9]. Light nuclei up to carbon or
so can now be described in terms of their nucleonic degrees
of freedom, realistic nucleon-nucleon (NN) forces (i.e., those
that fit the available body of NN data with a χ2 ≈ 1 per datum)
augmented by a three-nucleon force (3NF). One of the major
advances is from the systematic construction of nuclear forces
within chiral effective field theory (EFT) [10–15]. Within this
approach, the unknown short-range part of the nuclear force is
systematically encoded in terms of low-energy constants and
contact terms, whereas the long-range part of the interaction
stems from pion exchange. One of the hallmarks of this
approach is the “power counting” (i.e., an expansion of the
nuclear Lagrangian in terms of the momentum ratio Q/�χ ).
Here, Q denotes the typical momentum scale at which the
nucleus is probed, while �χ denotes the high-momentum
cutoff scale that limits the applicability of the effective field
theory. Within this approach, three-nucleon forces appear
naturally at next-to-next-to-leading (N2LO) order (Q/�χ )3,
and four-nucleon forces get introduced at N3LO, that is at
order (Q/�χ )4 in terms of the momentum scale and the
cutoff �χ .

The chiral interactions have been tested in very light
systems of mass A = 3, 4 through precise few-body calcu-
lations [3,4], and in p-shell nuclei within no-core shell model
(NCSM) calculations [6,7]. In these calculations, the NN
interaction was taken up to N3LO, while the three-nucleon
interaction was taken at its leading order (Q/�χ )3 (N2LO).
Within the NCSM calculations, the “bare” chiral interaction
needs to be renormalized because of the size of the model
space. Lattice calculations provide a different approach for
the implementation and solution of chiral interactions in the
nuclear many-body problem [5]. Presently, such calculations
employ two- and three-nucleon forces at order N2LO, and

they target p-shell nuclei. The coupled-cluster method is an
alternative approach that is particularly suited to study the
saturation properties of chiral nucleon-nucleon interactions
in medium-mass nuclei such as 40,48Ca and 48Ni [8], or
even heavier nuclei. Using a Gamow basis expansion [16],
this method can also include continuum effects and describe
rare isotopes that are in the vicinity of nuclei with closed
(sub)shells [17,18].

The “bare” chiral interaction models are still relatively
“hard” interactions, that is the interaction has nonzero matrix
elements even for high-momentum transfers Q � kF , where
kF ≈ 1.35 fm−1 denotes the Fermi momentum at nuclear
saturation. Using, for example, matrix elements of the chiral
interaction by Machleidt and Entem [13], we extend typically
the momentum integrations up to 8 fm−1. For a model space
consisting of oscillator wave functions, a simple estimate
shows that the number of oscillator shells required for the
solution of a nucleus with radius R and an interaction with
momentum cutoff λ is about N ≈ λR (see Sec. IV below
for details). Recall that the number of single-particle states
(single-particle j shells) grows as N3 in the m scheme
(and as N2 in a j -coupled spherical scheme). It is therefore
clear that high-momentum interactions require large model
spaces. This makes wave-function-based solutions of the
nuclear many-body problem a challenging task. Within the
coupled-cluster approach, one can overcome this difficulty
through a spherically symmetric reformulation of the method.
This approach enables us to consider much increased model
spaces, including even up to 20 oscillator shells. The obvious
alternative consists of lowering the momentum cutoff.

The momentum cutoff of the interactions can be decreased
by a similarity renormalization group (SRG) transformation of
the NN interaction [19], or by integrating out high-momentum
modes within a renormalization group transformation or a sim-
ilarity transformation [20,21]. Such transformations preserve
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all properties (such as phase shifts and bound states) of the NN
interactions up to the cutoff. The SRG transformations yield
interactions that are band diagonal in momentum space, and the
band width is characterized by a momentum scale. Eigenstates
of these interactions are localized in momentum space, and
the low-momentum states are thus decoupled from the high-
momentum physics. The low-momentum interactions Vlow k

are characterized by a momentum cutoff beyond which all
interaction matrix elements quickly approach zero. We denote
the momentum scale of the SRG interactions and the cutoff of
the Vlow k interactions by λ. Starting with λ = �χ , one can thus
generate a one-parameter family of interactions from the chiral
NN interaction models by performing SRG transformations,
or by integrating out high-momentum modes. We will use this
approach to study the scale or cutoff dependence of the nuclear
binding energy, and to examine aspects of the power counting.
Throughout this work we make the underlying assumption
that a complete description within chiral effective field theory
would yield an accurate description of atomic nuclei. Thus,
we attribute any scale dependence directly to the neglected
three-nucleon forces and other neglected high-order terms of
the interaction.

The more traditional way of dealing with “hard” interac-
tions consists of the computation of the so-called G matrix
[22], which is based on a Green’s function approach [23] using
normally unperturbed propagators. The G matrix depends,
thus, on the starting energy that is employed in its construction.
Analytical arguments demand that this dependence weakens
as increasingly larger model spaces are considered, and it
vanishes for infinite spaces. Within the spherical coupled-
cluster approach, we are able to investigate the convergence
properties of the G matrix that is constructed from chiral
interaction models.

Another approach to renormalize “hard” interactions is the
unitary correlator method (UCOM). Here a unitary transfor-
mation is constructed to remove the hard core and short-range
contributions of the tensor force by an appropriately formu-
lated correlation operator [24]. This method has seen several
applications, but its convergence and saturation properties have
not yet been studied in a framework that includes substantial
wave-function correlations. We fill this gap in this work.

It is the purpose of this article to employ “bare” and
renormalized nucleon-nucleon interactions (employing SRG
and low-momentum techniques, the G matrix, and the UCOM
method), and to compare and analyze their convergence and
saturation properties and their impact on nuclear structure. In
addition to this task, this article also contains significant sup-
plemental information that could not be presented in several
recent short communications [8,18,25–27]. In particular, we
present a detailed study and practical solution of the center-
of-mass problem, and study the evolution of single-particle
energies in neutron-rich oxygen and fluorine isotopes.

This article is organized as follows. In Sec. II, we introduce
spherical coupled-cluster theory. We address and resolve
questions regarding the center-of-mass problem in Sec. III.
In Sec. IV, we compute the binding energies of the nuclei 4He,
16O, 40Ca, and 48Ca starting from “bare” chiral NN interactions.
Section V is dedicated to the evolution of single-particle
energies in neutron-rich oxygen isotopes. In Sec. VI, we study

40Ca for several momentum scales λ of the SRG interaction,
and examine the power counting. Section VII focuses on the
starting-energy dependence and the convergence properties of
the G matrix for 4He and 16O. We analyze the convergence
properties of the UCOM interaction in Sec. VIII. We finish with
our summary in Sec. IX. Some technical details of the spherical
coupled-cluster method are relegated to the Appendix.

II. SPHERICAL COUPLED-CLUSTER THEORY

In this section we give an outline of the coupled-cluster
method [28–39] and introduce an angular momentum coupled
formulation of the coupled-cluster equations. First we outline
coupled-cluster theory for the computation of ground-state
energy of closed-shell nuclei within the so-called CCSD
and �-CCSD(T) approaches. Thereafter, we introduce the
equation-of-motion theory for the calculation of ground and
excited states in closed- and open-shell nuclei. We introduce
also the spherical formulation of coupled-cluster theory.
Finally, we discuss how to calculate expectation values of
observables in coupled-cluster theory.

A. Coupled-cluster theory for closed-shell nuclei

Coupled-cluster theory is based on the similarity
transformation,

H = e−T HeT , (1)

of the normal-ordered Hamiltonian H . Here, the Hamiltonian
is normal ordered with respect to a product state |φ0〉, which
serves as a reference. Likewise, the particle-hole cluster
operator,

T = T1 + T2 + · · · + TA, (2)

is defined with respect to the reference state. The k-particle
k-hole (kp-kh) cluster operator is

Tk = 1

(k!)2

∑
i1,...,ik ;a1,...,ak

t
a1...ak

i1...ik
a†

a1
· · · a†

ak
aik · · · ai1 . (3)

Here and in the following, the indices i, j, k, . . . label occupied
single-particle orbitals while a, b, c, . . . label unoccupied
orbitals. The most commonly used approximation is coupled-
cluster with singles-and-doubles excitations (CCSD) where
T ≈ T1 + T2. The unknown amplitudes tai and tab

ij in Eq. (2) are
determined from the solution of the coupled-cluster equations,

0 = 〈
φa

i

∣∣H |φ0〉, (4)

0 = 〈
φab

ij

∣∣H |φ0〉. (5)

Here, |φa
i 〉 = a

†
aai |φ0〉 is a 1p-1h excitation of the reference

state, and |φab
ij 〉 is a similarly defined 2p-2h excited state. The

CCSD equations (4) thus demand that the reference state |φ0〉
has no 1p-1h and no 2p-2h excitations [i.e., it is an eigenstate
of the similarity-transformed Hamiltonian (1) in the space of
all 1p-1h and 2p-2h excited states]. Once the CCSD equations
are solved, the ground-state energy is computed as

E = 〈φ0|H |φ0〉. (6)
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Coupled-cluster theory has the following virtues. First, the
similarity-transformed Hamiltonian can be evaluated exactly
because the Hausdorff-Baker-Campbell expansion,

H = H + [H, T ] + 1

2!
[[H, T ], T ]

+ 1

3!
[[[H, T ], T ] , T ] + · · ·

= (H eT )c, (7)

terminates exactly at fourfold-nested commutators for two-
body Hamiltonians. Here, the last term in parentheses, (· · ·)c,
indicates that only those terms enter where a cluster operator T

is connected to the Hamiltonian H to the right. Because every
cluster operator is linked to the Hamiltonian, coupled-cluster
theory by construction fulfills Goldstone’s linked cluster
theorem and yields size-extensive results. This is particularly
important in applications to medium-mass nuclei. Second,
within the CCSD approximation, the computational effort
scales as n2

on
4
u where no and nu denote the number of

occupied and unoccupied orbitals in the reference state |φ0〉,
respectively. Thus, the computational effort is much smaller
than within the configuration interaction approach (or shell
model in nuclear physics), which exhibits a factorial scaling
as a function of the chosen single-particle space and number
of nucleons.

Coupled-cluster theory with inclusion of full triples
(CCSDT) [40] is usually considered to be too computationally
expensive in most many-body systems of considerable size.
Therefore, triples corrections are usually taken into account
perturbatively using the noniterative CCSD(T) approach de-
scribed in Ref. [41]. Recently, a more sophisticated way of
including the full triples known as the �-CCSD(T) approach,
was developed by Taube et al. [42,43]. In the �-CCSD(T)
approach the left-eigenvector solution of the CCSD similarity-
transformed Hamiltonian is utilized in the calculation of a
noniterative triples correction to the coupled-cluster ground-
state energy. The left-eigenvalue problem is given by

〈φ0|�H = E〈φ0|�, (8)

were � denotes the de-excitation cluster operator,

� = 1 + �1 + �2, (9)

with

�1 =
∑
i,a

λi
aaaa

†
i , (10)

�2 = 1

4

∑
i,j,a,b

λ
ij

ababaaa
†
i a

†
j . (11)

The unknowns, λi
a and λ

ij

ab, result from the ground-state
solution of the left-eigenvalue problem (8). They are utilized
together with the cluster amplitudes, tai and tab

ij , to compute
the energy correction from triples clusters as

�E3 = 1

(3!)2

∑
ijkabc

〈φ0|�(Fhp + V )N
∣∣φabc

ijk

〉

× 1

εabc
ijk

〈
φabc

ijk

∣∣(VNT2)C |φ0〉. (12)

Here, Fhp denotes the part of the normal-ordered one-
body Hamiltonian that annihilates particles and creates holes,
whereas

εabc
ijk ≡ fii + fjj + fkk − faa − fbb − fcc (13)

is expressed in terms of the diagonal matrix elements of
the normal-ordered one-body Hamiltonian F . In the case of
Hartree-Fock orbitals, the one-body part of the Hamiltonian
is diagonal and Fhp vanishes. The subscript C denotes the
connected part of the operator, and |φabc

ijk 〉 is a 3p-3h excitation
of the reference state.

B. Equation-of-motion coupled-cluster theory for ground
and excited states of closed- and open-shell nuclei

The CCSD and the �-CCSD(T) approaches are known
as single-reference coupled-cluster methods (SR-CCMs), and
therefore they are particularly well suited for nuclei with an
expected closed (sub)shell structure. By adding or removing
particles to a closed-shell nucleus, we move into regions of
nuclei with an open-shell structure, and clearly the SR-CCMs
are not well suited for the description of these nuclei. Most
nuclei are of open-shell character and to study and predict
properties like the evolution of shell structure as we move
toward the drip line in various isotopic chains, we clearly need
to go beyond the SR-CCM class of approaches. There exists a
variety of coupled-cluster methods that have been specifically
designed to address the structure of open-shell systems; see
Ref. [33] for an overview of some of these methods. Most
methods are either based on a multireference formulation of the
coupled-cluster method (MR-CCM) (see Ref. [44] for a discus-
sion of various SR-CCMs and MR-CCMs), or an extension of
equation-of-motion (EOM) theory [45] based on the coupled-
cluster method (EOM-CCM) (see, e.g., Refs. [46,47]).
The beauty of the EOM-CCM is that it has the simplicity
and transparency of the SR-CCM such as the CCSD and
�-CCSD(T) approaches discussed previously, and that the
method allows for systematic improvements and extensions.

To extend our ab initio coupled-cluster program beyond
closed (sub)shell nuclei, we use the EOM-CCM approach.
We give a brief outline of the method in the following. The
basic idea behind EOM [45] is to calculate states |ψk〉 of
the nucleus B by acting with an excitation operator �k on
the ground state |ψ0〉 of a closed-shell reference nucleus A.
If �k is a particle number-conserving operator (B = A), �k

will generate excited states of the nucleus A. In the case of
�k not conserving the number of particles (B �= A), �k can
generate ground and excited states of the open-shell nucleus B

with respect to the reference nucleus A. In EOM-CC theory, the
ground state of the closed-shell reference nucleus A is given by
the coupled-cluster wave function, |ψ0〉 = exp(T )|φ0〉. In case
we wish to calculate excited states of the closed-shell nucleus
A (B = A), we define the excitation operator �k = RA

k ,

RA
k = r0 +

∑
i,a

ra
i a†

aai + 1

4

∑
i,j,a,b

rab
ij a†

aa
†
bajai + · · · , (14)

and by truncating at the two-particle-two-hole excitation level,
we get the standard EOM-CCSD approach. In case we wish to
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calculate ground and excited states of a nucleus with a nucleon
added or removed from a closed-shell nucleus (B = A ± 1),
we define the excitation operators �k = RA±1

k with

R
(A+1)
k =

∑
a

raa†
a + 1

2

∑
j,a,b

rab
j a†

aa
†
baj + · · · ,

R
(A−1)
k =

∑
i

riai + 1

2

∑
i,j,a

ra
ij a

†
aaiaj + · · · , (15)

and truncating at the two-particle-one-hole and two-
hole-one-particle levels, we get the particle-attached and
particle-removed equation-of-motion coupled-cluster methods
(PA/PR-EOM-CCMs); see, for example, Refs. [33,47]. The
PA-EOM-CCM adds a particle to a nucleus with A nucleons by
creating 1p, 2p-1h, 3p-2h, . . . , excitations on the ground state
of the nucleus with A nucleons. Similarly, the PR-EOM-CCM
removes a particle from A by creating 1h, 1p-2h, 2p-3h, . . . ,
excitations on the ground state of A. By multiplying the
equation for the nucleus A, H |φ0〉 = E0|φ0〉, from the left
with �k , and subtracting it from the equation for the nucleus
B, H�k|φ0〉 = Ek�k|φ0〉, we obtain the following equation,

[H,�k]|φ0〉 = (H�k)C |φ0〉 = ωk�k|φ0〉 , (16)

with H = e−T HeT being the similarity-transformed Hamilto-
nian and ωk = Ek − E0 the energy of the nucleus B relative to
the ground state of the nucleus A. Equation (16) defines a right
eigenvalue problem for the excitation amplitudes in Eqs. (14)
and (15), and is usually solved using iterative eigenvalue
algorithms.

C. Spherical coupled-cluster theory

For “hard” interactions such as the “bare” N3LO interaction,
wave-function methods need to employ very large model
spaces to yield converged results. For spherical reference states
(nuclei with closed major shells or closed subshells), it is
therefore better to employ the spherical symmetry to further
reduce the number of unknowns, that is, the number of cluster
amplitudes. For such nuclei, the cluster operator of Eq. (2) is a
scalar under rotation, and depends only on reduced amplitudes.
Thus,

T1 =
∑
ji ja

t
ja

ji

(
a
†
ja

× ãji

)(0)
, (17)

and

T2 =
∑

ji jj jajbJ

t
jajb

ji jj
(J )

(
a
†
ja

× a
†
jb

)(J ) · (
ãjj

× ãji

)(J )
. (18)

Here, we employed the usual notation for spherical tensors,
and ji and ja denote the spin of the occupied and unoc-
cupied subshells, respectively. It is clear that the similarity-
transformed Hamiltonian is also a scalar under rotation, and it
is straightforward to work out the CCSD equations within
this formulation. Details are given in the appendix. The
computational cost of PA-EOM-CCSD is like that of CCSD
(i.e., n4

un
2
o), where nu is the number of unoccupied orbitals and

no is the number of occupied orbitals. To reduce the memory
and computational cost related to the basis size, we write the

excitation amplitudes R
(A±1)
k as spherical tensors of rank J

and projection M ,

R
(A+1)
k (J,M) =

∑
ja

rja (J ) a
†
jama

δ
ja

J δ
ma

M + 1

2

∑
jj jajbJab

r
jajb

jj

× (Jab, J )
[(

a
†
ja

⊗ a
†
jb

)Jab ⊗ ãjj

](J )
M

, (19)

R
(A−1)
k (J,M) =

∑
ji

rji (J ) ajimi
δ

ji

J δ
mi

M + 1

2

∑
ji jj jaJij

r
ja

ji jj

× (Jij , J )
[
a
†
ja

⊗ (
ãji

⊗ ãjj

)Jij
](J )
M

. (20)

Here, we wish to solve for the reduced excitation amplitudes
rja (J ) and r

ja,jb

jj
(Jab, J ). In this coupled scheme, the eigen-

value equation in Eq. (16) is solved separately for each set of
quantum numbers {Jπ , Tz}.

A simple estimate shows that a model space of no + nu

single-particle states consists of only (no + nu)2/3 j shells.
Thus, the entire computational effort is approximately reduced
by a power 2/3 within the spherical scheme compared to the
m scheme. We have derived and numerically implemented
the spherical scheme within the CCSD approximation. We
tested that our m-scheme code and the spherical code
give identical results for several test cases. The spherical
code permits us to reach much larger model spaces, and we
are able to achieve satisfactory convergence even for “hard”
interactions such as the “bare” N3LO interaction. In Ref. [8]
we used the spherical coupled-cluster code to calculate the
ground states of medium-mass nuclei like 40,48Ca and 48Ni
within the CCSD approximation and starting from bare chiral
interactions. In a model space of 15 major oscillator shells,
the results were reasonably well converged. Recently, we have
also implemented the �-CCSD(T) approach in an angular-
momentum-coupled scheme. In Ref. [27], we calculated the
ground states of the oxygen isotopes using chiral interactions
in model spaces comprising up to 20 major oscillator shells
within the �-CCSD(T) approach. In such large spaces we were
even able to converge the ground-state energies for a chiral
interaction with a 600-MeVc−1 momentum cutoff. Likewise,
the inclusion of continuum scattering states—necessary for a
description of halo states in weakly bound nuclei—yields large
model spaces that can be treated within the spherical scheme
[18]. Details of the angular-momentum-coupled �-CCSD(T)
approach are given in the appendix.

D. Expectation values in coupled-cluster theory

For expectation values and the computation of ground-state
properties other than the energy, we utilize the right and left
eigenvectors of the similarity-transformed Hamiltonian H and
compute the one- and two-body reduced density matrices,

ρpq = 〈φ0|�e−T a†
paqe

T |φ0〉, (21)

ρpqrs = 〈φ0|�e−T a†
pa†

qarase
T |φ0〉. (22)

Expectation values can then be computed by expressing
the operator of interest in terms of the density matrices.
The Hellmann-Feynman theorem is another route to the
computation of expectation values. In this case, we consider a
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response of the ground-state energy to a perturbation caused by
a given operator of interest. The Hellmann-Feynman theorem
expresses the expectation values of an observable B as

〈B〉 = ∂E(β)

∂β

∣∣∣∣
β

= 0. (23)

Here, E(β) is the ground-state energy of the Hamiltonian
H + βB. Unfortunately, the relation (23) does not hold exactly
within the coupled-cluster approach because this method is
not variational when the cluster operator is truncated. We will
nevertheless base the computation of expectation values on
Eq. (23). Experience shows that this approach is approximately
valid if the relevant particle-hole excitations are incorporated.
In practice, the differential quotient (23) is numerically imple-
mented as a difference quotient with β ≈ 0.01. This requires
us to perform two calculations (one for zero and one for
small nonzero β). For relatively “hard” interactions such as the
“bare” N3LO, we also perform two Hartree-Fock calculations
and thus employ slightly different single-particle bases in
these two cases. While such a procedure is unnecessary for
methods that fulfill the Hellmann-Feynman theorem, it is
important within our approach. We note that this approach
most closely reflects the physical situation of an expectation
value measuring the system’s response to a perturbation.

III. TREATMENT OF THE CENTER-OF-MASS PROBLEM

In this section, we demonstrate that the coupled-cluster
wave function factorizes to a very good approximation into
a product of a center-of-mass wave function and an intrinsic
wave function. We will present a simple procedure that checks
this factorization and give an estimate for the degree of the
achieved factorization. This section significantly expands on
the short demonstration of the factorization in Ref. [26].

A. Statement of the center-of-mass problem

Let us consider the nuclear A-body Hamiltonian,

HA =
A∑

j=1

�pj
2

2m
+

A∑
j<k

V (j, k). (24)

Here, V is a two-body operator that is invariant under rotations
and translations. Thus, the total momentum and angular
momentum are conserved quantities. It is advantageous to
separate the Hamiltonian into an intrinsic Hamiltonian Hin

and the center-of-mass Hamiltonian (i.e., the kinetic energy
Tcm of the center of mass) as

H = Tcm + Hin

= Tcm +
A∑

j<k

(
( �pj − �pk)2

2mA
+ V (j, k)

)
. (25)

Note that the intrinsic Hamiltonian Hin does not depend on the
center-of-mass coordinate. Thus, we could add an arbitrary
operator Hcm of the center-of-mass coordinate to the intrinsic
Hamiltonian Hin without changing the intrinsic properties of
the resulting Hamiltonian. In other words, the eigenfunctions

ψA of the A-body Hamiltonian Hin + Hcm are products of
an intrinsic eigenfunction ψin of the intrinsic Hamiltonian
Hin, and a center-of-mass wave function ψcm that is the
eigenfunction of the center-of-mass Hamiltonian Hcm, that is,

ψA = ψcmψin. (26)

The corresponding energy is the sum EA = Ecm + Ein of the
center-of-mass energy and the intrinsic energy. The question
thus arises which operator Hcm to choose. Let us consider the
NCSM [7] as an example. Here, one works in a complete Nh̄ω

space consisting of a basis of all A-particle Slater determinants
of oscillator states with frequency ω and total excitation
energy not exceeding Nh̄ω. One can add the center-of-mass
Hamiltonian,

Hcm(ω̃) = Tcm + 1
2mAω̃2R2

cm − 3
2h̄ω̃, (27)

with ω̃ = ω to the intrinsic Hamiltonian Hin, and obtains a
factorized ground-state wave function where the center-of-
mass wave function ψcm is a Gaussian with frequency ω. The
(truncated) coupled-cluster method is unable to employ an
Nh̄ω space, and it is arguably the best idea to completely
remove any reference to the center-of-mass coordinate. Thus,
we solve an intrinsic Hamiltonian Hin that depends on A − 1
independent coordinates in a Hilbert space spanned by wave
functions of A coordinates. Two comments are in order.
First, the truncated coupled-cluster method is not an exact
solution of the A-body problem, but rather a very efficient
approximation. Thus, it is not guaranteed a priori that the
coupled-cluster wave function exhibits the factorization (26).
Recall that any A-body wave function can be expanded as

ψA =
∑
j�1

sjψ
(j )
cm ψ (j )

in , (28)

where
∑

j s2
j = 1 from normalization, and we assume that

the non-negative weights sj are ordered in decreasing order.
Only if all but one of the weights sj vanishes, does the
factorization (26) take place; otherwise, the factorization might
be mildly or strongly violated, depending on the size of the
weights sj . Second, if a factorization of the coupled-cluster
wave function takes (approximately) place, the form of the
center-of-mass wave function ψ (1)

cm corresponding to the largest
weight s1 has to be determined. In what follows we will see that
the A-body coupled-cluster wave function factorizes to a good
approximation (i.e., s1 ≈ 1), and that the center-of-mass wave
function is the Gaussian ground state of the center-of-mass
Hamiltonian (27) for a yet-to-be determined frequency ω̃.

B. Approximate separation of the center-of-mass wave
function in coupled-cluster calculations

We consider the nucleus 16O and employ the low-
momentum interaction Vlow k with a smooth momentum cutoff
λ = 1.8 fm−1 derived from Machleidt’s and Entem’s chiral
N3LO interaction. Figure 1 shows the ground-state energy
as a function of the oscillator spacing h̄ω of the underlying
oscillator basis in a model space of nine oscillator shells.
These results are obtained from a CCSD calculation within
a spherical Hartree-Fock basis. The energy is well converged
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FIG. 1. (Color online) Ground-state energy (within CCSD) of
16O with a low-momentum interaction as a function of the oscillator
spacing h̄ω. The model space consists of nine major oscillator shells.
(Inset) Expectation value Ecm(ω) of the center-of mass Hamiltonian
with the standard frequency dependence.

as it depends very weakly on the model-space parameters. We
also computed the ground-state expectation value,

Ecm(ω̃) = 〈H (ω̃)〉, (29)

of the center-of-mass Hamiltonian (27) for a frequency ω̃ = ω

and show the result in the inset of Fig. 1. This expectation
value is generally not zero. This indicates that the coupled-
cluster wave function is in general not an eigenstate of the
center-of-mass Hamiltonian H (ω). However, there seems to
be little correlation between the ground-state energy and the
expectation value E(ω), and the latter vanishes approximately
in a model space with h̄ω ≈ 20 MeV. Thus, at this frequency,
the coupled-cluster wave function is approximately the ground
state of the center-of-mass Hamiltonian H (ω). As a check,
we fix h̄ω = 20 MeV, consider the Hamiltonian H = Hin +
βH (ω), and compute its ground-state energy as a function of
the parameter β. The result is shown in Fig. 2. Clearly, the
ground-state energy is rather insensitive to β and varies by
only 15 keV as β is increased from zero to one.

The factorization of Eq. (26) is thus achieved in a model
space with h̄ω ≈ 20 MeV. Let us assume that such a fac-
torization takes place generally, and that the corresponding
center-of-mass wave function is a Gaussian with unknown
frequency ω̃ that might differ from the frequency of the
underlying oscillator basis. Thus, we assume that the coupled-
cluster wave function is the ground state of the center-of-mass
Hamiltonian (27) for a suitable frequency ω̃. To determine this
frequency we employ the identity,

Hcm(ω) + 3

2
h̄ω − Tcm = ω2

ω̃2

(
Hcm(ω̃) + 3

2
h̄ω̃ − Tcm

)
,

and take its expectation value. We seek (and insert) Ecm(ω̃) =
0, employ the relation 〈Tcm〉 = 3

4h̄ω̃ valid for Gaussians, insert
the already computed expectation values Ecm(ω), and solve
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FIG. 2. Ground-state energy (within CCSD) of 16O using a low-
momentum interaction with the center-of-mass Hamiltonian βHcm

added. Calculations employ nine major oscillator shells and h̄ω =
20 MeV. As β is varied between 0 and 1, the ground-state energy
changes by about 15 keV.

for the unknown frequency ω̃. This yields the two possible
solutions.

h̄ω̃ = h̄ω + 2

3
Ecm(ω) ±

√
4

9
(Ecm(ω))2 + 4

3
h̄ωEcm(ω).

(30)

We compute the ground-state expectation values Ecm(ω̃)
for these two frequencies and find that one expectation
value is typically very close to zero. Figure 3 shows that
the small expectation value essentially vanishes for a large
range of frequencies of the underlying oscillator basis in a
model space of 13 major oscillator shells. Closer inspection
shows that the expectation value is about Ecm(ω̃) ≈ −10 keV.
Recall that coupled-cluster theory is nonvariational (as the
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FIG. 3. (Color online) 16O Ground-state expectation value (within
CCSD) of the generalized center-of-mass Hamiltonian Hcm(ω̃) and
of the kinetic energy Tcm as a function of the oscillator spacing h̄ω.
The model space consists of 13 major oscillator shells.
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FIG. 4. (Color online) (Bottom) Ground-state energy of 16O
within the �-CCSD(T) approximation as a function of the frequency
h̄ω of the underlying oscillator basis. (Middle) Relation between the
frequency ω̃ and the frequency ω of the underlying oscillator basis.
(Top) Expectation value Ecm(ω̃) of the center-of-mass versus h̄ω.

similarity-transformed Hamiltonian is non-Hermitian), and
such a small negative expectation value is certainly tolerable
for the non-negative operator (27). Figure 3 also shows that
the frequency of the Gaussian center-of-mass wave function
stays approximately constant h̄ω̃ ≈ 20 MeV for a large range
of frequencies ω of the underlying oscillator basis. As a final
check, we also computed the ground-state expectation value
of the center-of-mass kinetic energy. For a Gaussian, this
expectation value fulfills 〈Tcm〉 = 3

4h̄ω̃. Figure 3 shows that
this relation is indeed obeyed.

Let us turn to the “bare” N3LO interaction [13,15]. This
interaction has a substantially higher momentum cutoff than
the previously employed low-momentum interaction. For con-
verged results, we need to employ larger model spaces and also
triples clusters. We performed coupled-cluster calculations
of the ground states of 16O and 4He. Figure 4 shows the
ground-state energy of 16O (lower panel), the ground-state
expectation value Ecm(ω̃) (upper panel) of the center-of-mass
Hamiltonian (27), and the corresponding frequency ω̃ (middle
panel) as a function of the frequency ω of the underlying
oscillator basis. One sees that the ground-state energy is
well converged and displays only a weak dependence on ω.
Similar comments apply to the frequency ω̃. The expectation
value Ecm(ω̃) is small (i.e., |Ecm(ω̃)| 	 h̄ω̃ but nonzero). For
smaller values of the frequency ω of the underlying oscillator
basis, we are at the limit of well-converged results, and Ecm

even becomes negative. This shows that the coupled-cluster
ground state is not an exact eigenstate of the center-of-mass
Hamiltonian (27). Let us also assume that the factorization is
not perfect (though this is not implied by a nonzero value
of Ecm). We want to estimate the level of admixture of
center-of-mass excitations. A simple and conservative estimate
based on perturbation theory shows that the admixture is
essentially Ecm/h̄ω̃ ≈ 5%. We also computed the intrinsic
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FIG. 5. (Color online) RMS radii of 16O within the �-CCSD(T)
approximation using the intrinsic point radius and subtracting 〈R2

cm〉
assuming a Gaussian for the center of mass.

point radius r from

r2 ≡ 1

A2

∑
1�j<k�A

〈(�rj − �rk)2〉, (31)

and show the result in Fig. 5. This calculation is again based
on the triples-corrected �-CCSD(T) approximation, and it still
exhibits a weak model-space dependence. It provides us with a
further test of the wave-function factorization, because we can
employ the center-of-mass coordinate �Rcm and rewrite Eq. (31)
as

r2 = 1

A

A∑
j=1

〈(�rj − �Rcm)2〉 = 1

A

A∑
j=1

〈�r2
j

〉 − 〈 �R2
cm

〉
. (32)

For a Gaussian corresponding to the frequency ω̃, we have
1
2mAω̃2〈 �R2

cm〉 = 3
4h̄ω̃, and the intrinsic point radius can thus be

computed from the expectation value of a one-body operator.
The result from this calculation is in very good agreement
with the result obtained from Eq. (31), as shown in Fig. 5. This
suggests that the factorization of the wave function might be
better than expected from the calculation of the ground-state
expectation value (29) depicted in Fig. 4.

At the moment, we have no analytical insights into the
observed factorization and the Gaussian shape of the center-
of-mass wave function. We believe that the factorization
itself is not entirely surprising. Although our finite basis
is not complete in a mathematical sense, it is sufficiently
complete to describe nuclear structure at low energies (i.e.,
it contains momentum modes that exceed the cutoff of the
interaction), and it is sufficiently extended in position space
to accommodate a quantum object of the size of the nucleus.
Thus, one expects the basis to capture the relevant physics,
and a well-factorized ground state is not too surprising, even if
the employed many-body basis functions do not individually
reflect this factorization.
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C. Center-of-mass problem for open-shell nuclei

Odd-mass nuclei that differ from a nucleus with closed
subshells by the addition or removal of one nucleon can also
be computed efficiently within the coupled-cluster method.
For the calculation of 17O, we employ the particle-attached
equation-of-motion method (16), which is based on describing
17O as a nucleon (i.e., a superposition of 1p and 2p-1h
excitations) upon the ground state of 16O. We first solve the
coupled-cluster equations (4) for the “mass-shifted” nucleus
16O [i.e., for the computation of the 16O ground state, we
employ the Hamiltonian (24) with mass number A = 17]. In
a second step, we describe the ground and excited states in
17O in terms of the excitations (15) upon this 16O ground state.
For an SRG interaction with cutoff λ = 2.8 fm−1, the energies
of a few low-lying states are shown in Fig. 6 as a function
of the oscillator frequency in a model space with N = 12.
These states are single-particle states and can be well computed
within our approach. Figure 7 shows the energy expectation
value Ecm(ω) [defined in Eq. (29)] for the three low-lying
single-particle states as a function of the oscillator frequency
ω of the underlying model space. These expectation values
are small for ω ≈ 16 MeV, but large for other parameters.
This shows that the center-of-mass wave function is generally
not a Gaussian with frequency ω. No further conclusion can
be reached from this expectation value. In particular, this is
no evidence that the center-of-mass wave function does not
separate.

Let us again assume that the coupled-cluster wave function
factorizes into a Gaussian (with frequency ω̃) for the center of
mass and an intrinsic wave function, and let us determine
ω̃ from Eq. (30). Figure 8 shows the resulting frequency
for the three states we computed in 17O. The corresponding
expectation values Ecm(ω̃) defined in Eq. (29) are shown in
Fig. 9 as a function of the oscillator frequency ω of the
underlying model space. We employ ω̃ = ω̃(ω) as depicted in
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FIG. 6. (Color online) Energies of low-lying J π = 1/2+, J π =
3/2+, J π = 5/2+ states in 17O based on an SRG interaction with
cutoff λ = 2.8 fm−1 in a model space consisting of N + 1 = 13
oscillator shells versus the oscillator frequency.
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FIG. 7. (Color online) Expectation values Ecm(ω) of the center-
of-mass Hamiltonian Hcm(ω) [see Eq. (27)] for the low-lying J π =
1/2+, J π = 3/2+, J π = 5/2+ states in 17O versus the oscillator
frequency.

Fig. 8. As evident from Figs. 8 and 9, we have Ecm(ω̃) 	 h̄ω̃.
Thus, the computed states in 17O also exhibit a Gaussian
center-of-mass wave function to a very good approximation
[admixtures of higher h̄ω̃ oscillator excitations are of the order
of Ecm(ω̃)/h̄ω̃ ≈ 1%–2%]. This implies that the factorization
is at least of the same degree of quality.

D. Center-of-mass problem in a toy model

To shed some light onto the observed factorization, we
consider a simple problem of two interacting particles in one
spatial dimension. We choose a two-body interaction of the
form V (x) = −V0 exp(−(x/l)2), where x = (x1 − x2)/

√
2 is
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FIG. 8. (Color online) Frequency ω̃ of the (approximately)
Gaussian center-of-mass wave function for the low-lying J π = 1/2+,
J π = 3/2+, J π = 5/2+ states in 17O versus the oscillator frequency.
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FIG. 9. (Color online) Expectation values Ecm(ω̃) of the center-
of-mass Hamiltonian Hcm(ω̃) [see Eq. (27)] for the low-lying J π =
1/2+, J π = 3/2+, J π = 5/2+ states in 17O versus the oscillator
frequency. Here, the frequency ω̃ = ω̃(ω) employed in the center-
of-mass Hamiltonian is as depicted in Fig. 8. We have Ecm(ω̃) 	 h̄ω̃

and thus a very good separation of center-of-mass excitations.

(up to a factor
√

2) the relative coordinate of the two-particle
system, and l is a length scale. We, thus, consider the intrinsic
Hamiltonian,

H = p2

2m
− V0 exp[−(x/l)2], (33)

with m being the mass and p the relative momentum p =
(p1 − p2)/

√
2. We choose a basis consisting of products

�m(x1/l)�n(x2/l) of oscillator wave functions �k , and
choose 0 � m, n � N . Thus, the basis is not a complete Nh̄ω

space, and we solve an intrinsic Hamiltonian that depends
on the relative coordinate in a model space consisting of
single-particle coordinates. We consider different interaction
parameters V0, and set the oscillator length of our basis
equal to the scale l of the Gaussian interaction. Note that
the resulting ground state has an extension that, depending
on the strength V0 of the interaction, differs considerably
from l. Indeed, approximating the interaction by a parabola
at its minimum shows that the corresponding frequency is
�/ω = √

2V0/(h̄ω). Again, we find that the ground-state wave
function has a Gaussian shape in the direction of the center-
of-mass coordinate (x1 + x2)/

√
2. Figure 10 quantifies this

statement. The circles show the relative error of the ground-
state energy (obtained from comparing the result in a model
space of N = 8 oscillator shells with the result in N = 16
oscillator shells) as the strength V0 of the interaction is varied.
The squares (diamonds) show to what extent the ground-state
wave function factorizes in a model space consisting of N = 8
(N = 16) oscillator shells. The residual 1 − s2

1 is clearly very
small, and it decreases with increasing size of the model
space. The triangles show the ground-state expectation value
of the center-of-mass Hamiltonian (27), normalized by the
corresponding spacing h̄ω̃. Thus, the center-of-mass wave
function factorizes, and it is to a high accuracy a Gaussian.
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FIG. 10. (Color online) Results for the toy model (33) as a func-
tion of the strength of the interaction V0. (Circles) Estimate of relative
error �E/E of the ground-state energy by comparing a calculation in
N = 8 oscillator shells with a calculation in N = 16 shells. (Squares
and diamonds) Fraction 1 − s2

1 of the ground-state wave function
that is not factorized in an intrinsic state and a center-of-mass state,
obtained from the singular value decomposition (28) in a model space
of N = 8 and N = 16 oscillator shells, respectively. (Triangles) The
ground-state expectation value Ecm(ω̃) of the harmonic oscillator
center-of-mass Hamiltonian is much smaller than the energy h̄ω

of spurious center-of-mass excitations, indicating that the center-of-
mass wave function is approximately a Gaussian.

The result obtained for this simple Hamiltonian lends further
support to the results obtained in the coupled-cluster approach.
It thus seems that one might obtain a very accurate factorization
in sufficiently large model spaces even without employing
an Nh̄ω space. Again, this factorization is not surprising
because the model space becomes more and more complete
as it increases in size. The emergence of a Gaussian center-
of-mass wave function, however, is remarkable and not yet
understood.

The center-of-mass problem in coupled-cluster calculations
has also recently been addressed by Roth and coworkers [48].
These authors consider a Hamiltonian of the form H = Hin +
βHcm(ω), that is, the center-of-mass Hamiltonian (27) with a
frequency fixed to that of the employed harmonic oscillator
basis is added to the intrinsic Hamiltonian. This method,
pioneered by Gloeckner and Lawson [49], aims at shifting
spurious states up in the spectrum. Roth et al. found that the
coupled-cluster wave function for such a Hamiltonian does not
factorize into a Gaussian with frequency ω for center-of-mass
wave function and an intrinsic wave function. Two comments
are in order. First, we believe that this approach misses the
point as it requires perhaps more than the coupled-cluster
approximation needs to deliver. For atomic nuclei, there is
no center-of-mass interaction, and the requirement that the
wave function factorizes in the presence of a center-of-mass
interaction is more than one needs. Some time ago, McGrory
and Wildenthal also pointed out that the method by Gloeckner
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and Lawson is not fully appropriate in truncated model spaces
that are not complete Nh̄ω spaces [50]. For nuclei, one only
needs that the wave function of the intrinsic Hamiltonian,
when computed in a Hilbert space of A coordinates, exhibits
a factorization. Second, we caution that the conclusions by
Roth and coworkers are based on results that are not fully
converged with respect to the size of the model space (see
Sec. VIII following).

The results of this section suggest the following procedure
when dealing with model spaces that are not complete Nh̄ω

spaces: (i) Compute the spectrum of the intrinsic Hamiltonian
Hin in as large a model space as conveniently possible.
(ii) Check a posteriori whether the resulting center-of-mass
wave function is a Gaussian by computing the expectation
value Ecm, and determine the corresponding frequency ω̃.
(iii) The ratio Ecm/(h̄ω̃) serves as a conservative estimate for
the quality of the factorization. (Strictly speaking, this ratio
measures to what extent the center-of-mass wave function
deviates from a Gaussian with frequency ω̃.)

IV. COUPLED-CLUSTER RESULTS FOR MEDIUM-MASS
NUCLEI WITH CHIRAL INTERACTIONS

In this section, we compute binding energies and radii of
several doubly magic nuclei within the CCSD and the �-
CCSD(T) approximation, and employ chiral NN interactions.

Our single-particle wave functions are eigenfunctions of the
harmonic oscillator and characterized by the frequency ω. Our
model space consists of spherical oscillator wave functions
with radial quantum number n and angular momentum l, and
we include single-particle states with 2n + l � N and l �
10. Fully converged energies have to be independent of the
parameters N and ω of our single-particle basis. In practice,
we cannot go to infinitely large spaces, but this is also not
necessary for the description of low-energy properties of finite
nuclei. Our basis needs to be complete in the following sense.
It must be sufficiently extended in momentum space to resolve
the cutoff �χ of the employed interaction, and its extension in
position space must be such that a nucleus of radius R literally
fits into the basis. Let us estimate the parameters required for
a model space of oscillator functions.

An oscillator basis consisting of N shells at a frequency ω

resolves the high-momentum cutoff λ if the inequality,

Nh̄ω � h̄2λ2

m
, (34)

is fulfilled. Likewise, the basis has to be sufficiently extended
in position space to describe a nucleus with a radius R. For
this, the inequality,

h̄ω � N
h̄2

mR2
, (35)

needs to be fulfilled. In other words, an oscillator basis with
oscillator length lho = √

h̄/(mω) exhibits the infrared cutoff
l−1
ho /

√
N and the ultraviolet cutoff l−1

ho

√
N . Thus, converged

results require model space parameters (N,ω) that fulfill
the inequalities (34) and (35), and the results will then be
insensitive to the specific values of the parameters. Note

that the simultaneous fulfillment of Eqs. (35) (34) requires
N � λR. (Our calculations presented in this article show that
these approximate relations are reasonable estimates.) Note
also that

h̄ω ≈ h̄2λ

mR
, (36)

for a minimum model space with N ≈ λR. Thus, the well-
known estimate h̄ω ≈ 42/A1/3 MeV is only valid for small
cutoffs λ ≈ kF that are close to the Fermi momentum kF .
These considerations show that much is to be gained from low-
momentum interactions, and—conversely—that “bare” chiral
interactions with λ = �χ require very large model spaces.

Let us consider the oscillator basis as an example. A model
space of N oscillator states contains about � ≈ N3/3 single-
particle states. We obtain converged results for 16O and the
interactions from chiral EFT in N ≈ 15 shells. In this model
space there are �!/[(� − Z)!Z!] ≈ 1020 Slater determinants
for the protons alone. Thus, the resulting model space for
protons and neutrons is far out of reach from diagonalization
methods.

We employ the chiral NN interaction at order N3LO [i.e.,
the NN interaction is included up to the order (Q/�χ )3],
whereas 3NF at this order and interactions at higher order are
neglected. We perform a spherical Hartree-Fock calculation
and transform the Hamiltonian to the Hartree-Fock basis. The
CCSD equations are then solved in the spherical Hartree-Fock
basis, and the Hartree-Fock state is taken as the reference state
for the coupled-cluster method. Note that the chiral N3LO
interaction is quite “hard.” Within the Hartree-Fock approxi-
mation one does not even obtain bound nuclei. Nevertheless,
the solution of the nonlinear coupled-cluster equations yields
rather well-bound nuclei.

Figure 11 shows the ground-state energy of 4He in a
model space of N = 18 (19 major oscillator shells). In such
a large model space, the results are virtually independent
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FIG. 11. (Color online) CCSD and �-CCSD(T) ground-state
energy of 4He using a chiral NN interaction at order N3LO in 19 major
oscillator shells as a function of the oscillator spacing h̄ω, compared
to virtually exact results from Faddeev-Yakubowsky calculations.
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FIG. 12. (Color online) 4He RMS radii calculated using the
Hellmann-Feynman theorem within the CCSD and the �-CCSD(T)
approximations using a chiral NN interaction at order N3LO with
cutoff 500 MeVc−1. Calculations employed 19 major oscillator shells,
and the results are plotted as a function of the oscillator spacing h̄ω.

of the frequency ω over a wide range. The CCSD result
for 4He deviates from the virtually exact result from the
solution of the Faddeev-Yakubowsky (FY) equations by about
6%. This difference is from the omission of three- and
four-particle clusters. The more accurate �-CCSD(T) method
includes three-body clusters approximately and overshoots
the (FY) result by about 1.5%. This overbinding is from the
nonvariational character of the coupled-cluster method and is
not really a concern because of the accuracy of the method. The
experimental ground-state energy of 4He is E = −28.3 MeV,
and the additional binding must be attributed to the 3NFs at
order N3LO; other high-order terms in the chiral Langrangian
play only a very small role in 4He.

We also computed the radius of the alpha particle within
the Hellmann-Feynman approach. The results shown in
Fig. 12 exhibit a very weak dependence on the oscillator
frequency, particularly within the �-CCSD(T) approximation.
Within this approach, the radius deviates by about 0.01 fm
from the NCSM results [51], and about 0.015 fm from
the virtually exact result from the hyperspherical harmonics
method employed by the Pisa group [4]. We believe that
the results presented for the alpha particle manifest the high
degree of accuracy that the coupled-cluster approximation
exhibits. Note that the alpha particle also exhibits the ap-
proximate factorization into a Gaussian center-of-mass wave
function and an intrinsic wave function. Here, the frequency
of the Gaussian is h̄ω̃ ≈ 19 MeV whereas the expectation
value of the center-of-mass Hamiltonian is much smaller
Ecm ≈ 0.3 MeV.

We next turn to the calcium isotopes 40Ca and 48Ca.
Figure 13 shows the CCSD and �-CCSD(T) ground-state
energy for 40Ca as a function of the oscillator frequency
h̄ω and the size of the model space N (here the number of
major shells is N + 1). For h̄ω = 32 MeV and N + 1 = 15
shells the �-CCSD(T) ground-state energy is −345.074 MeV.
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FIG. 13. (Color online) �-CCSD(T) and CCSD results for 40Ca
from the chiral NN interaction at order N3LO as a function of the
oscillator spacing h̄ω and the size of the model space.

We also performed a calculation in N + 1 = 19 shells at
h̄ω = 32 MeV, yielding a �-CCSD(T) ground-state energy
of −345.781 MeV. This shows that our results are converged
within 1–2 MeV with respect to the size of the model
space. Within this approximation, one overbinds 40Ca by
about 3 MeV. Compared to the previously published CCSD
results, the triples corrections add more than 30 MeV of
binding.

Figure 14 shows the �-CCSD(T) results for 48Ca. The
results are converged to within about 2 MeV in a model space
of N + 1 = 19 shells, and only exhibit a weak model-space
dependence in the largest model space. The approximation
with triples yields about an additional 40 MeV of binding
when compared to the CCSD results. Let us assume that
the difference between our calculations and the experiment
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FIG. 14. (Color online) �-CCSD(T) and CCSD results for 48Ca
from the chiral NN interaction at order N3LO as a function of the
oscillator spacing h̄ω and the size of the model space.
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TABLE I. Ground-state energies per nucleon E/A and deviation
�E/A from experiment for doubly magic nuclei within the CCSD
and �-CCSD(T) approximations. All energies are in units of MeV.

Nucleus CCSD �-CCSD(T)

E/A �E/A E/A �E/A

16O −6.72 1.25 −7.56 0.41
40Ca −7.72 0.84 −8.63 −0.08
48Ca −7.40 1.27 −8.26 0.40

is mainly from the omitted 3NFs. This suggests that the
three-nucleon forces (3NF) will exhibit an interesting isospin
dependence. For 40Ca, only small (repulsive) contributions
from the 3NF are expected, whereas about 20 MeV of
attraction is needed for 48Ca. A similar picture arises when
comparing 16O with 22O. For the former, about 0.41 MeV per
nucleon in binding are missing, whereas the latter lacks about
0.82 MeV per nucleon in binding [27].

At this point, it is interesting to compare the energies from
the Hartree-Fock calculation, the CCSD calculation, and the
�-CCSD(T) approximation. This comparison will permit us
to estimate the precision of the coupled-cluster method. Table I
shows that CCSD accounts for about 90% of the correlation
energy, while the �-CCSD(T) approximation yields about
10%. This hierarchy was observed in quantum chemistry as
well; see, for example, Ref. [33]. For the alpha particle we
know that four-particle clusters account again for about 10%
of the triples correction. Thus, it makes no sense to artificially
increase the precision of our results by turning to even larger
model spaces. The error estimates from the finite model space
are of the same order as the estimates from omitted four-body
clusters. Note that the results in Table I are also consistent with
the size extensivity of the employed coupled-cluster methods,
as the deviation �E from data is approximately linear in
mass number (i.e., �E/A is approximately constant over a
considerable range).

It is also very interesting to compare our results with
the results [52] by Fujii et al. obtained within the unitary
model operator approach [53]. For 16O, Fujii et al. report
binding energies of 6.62 MeV per nucleon and 7.47 MeV
per nucleon employing two-body clusters and three-body
clusters, respectively. The close agreement between our results
presented in Table I and those of Ref. [52] demonstrate that
different ab initio methods are setting reliable benchmarks for
increasingly heavier nuclei.

V. SHELL EVOLUTION WITH CHIRAL NN
INTERACTIONS

In this section we investigate the evolution of the low-lying
positive parity states 1/2+, 3/2+, and 5/2+ in the oxygen
and fluorine isotope chains using the chiral nucleon-nucleon
interaction at N3LO. Our calculations do not include three-
body forces, but to probe the effects of omitted short-ranged
many-body forces we renormalize the “bare” chiral interaction
using the similarity renormalization group method and study
the resolution scale dependence on the calculated energies.

The low-lying states Jπ = 1/2+, Jπ = 3/2+, and Jπ = 5/2+

in oxygen and fluorine are usually interpreted as the s1/2, d3/2,
and d5/2 proton and neutron single-particle states in the closed-
shell oxygen isotopes 16O, 22O, 24O, and 28O. Here, we define
the single-particle energy of the state Jπ as the difference in
binding energy between the A ± 1 nucleus and the closed-shell
nucleus A, that is,

Esp(Jπ ) = EA±1(Jπ ) − EA
0 . (37)

The evolution of nuclear shell structure for neutron-rich
isotopes is of great theoretical and experimental interest; see,
for example, the recent review [54]. Some of the traditional
magic numbers of the nuclear shell model might fade away as
one moves away from the valley of beta stability, whereas new
magic numbers emerge in neutron-rich nuclei. The evolution of
shell structure in the isotopes of oxygen has recently received
considerable experimental [55–58] and theoretical attention
[27,59–63]. Considerable shell gaps have been observed in
22O [55] and 24O [56,57], leading to the interpretation of new
magic numbers at (Z = 8, N = 14) and (Z = 8, N = 16),
respectively. Hoffman et al. [58] found that 25O is a resonance
and unstable toward one-neutron emission. The instability of
25O is closely related to the location of the d3/2 single-particle
shell, and it is clear that the evolution of the d3/2 shell will
decide whether 24O or 28O is the most neutron-rich stable
isotope of oxygen.

The underlying microscopic mechanisms for the evolution
of nuclear shell structure is not yet entirely understood. One
might expect that both three-nucleon forces and coupling
with the scattering continuum will play significant roles in
predicting the limits of nuclear stability and the shell evolution
toward the drip line. Zuker [64] suggested that three-nucleon
forces modify the monopole terms of microscopically derived
shell-model interactions. Indeed, Otsuka et al. [62] found
within the sd shell model that 3NFs will add repulsion
between the d5/2 and d3/2 orbitals, thus making 24O the
heaviest bound isotope of oxygen. Coupled-cluster calcu-
lations of the isotopes 16,22,24,28O reveal that three-nucleon
forces (or more complicated many-body forces) play a non-
negligible role in the determination of the drip line for oxygen
isotopes.

In this section, we study the evolution of shell structure
in the isotopes of oxygen and fluorine based on chiral NN
interactions [13]. We will omit continuum effects and 3NFs
from our study. Recall that chiral 3NFs consist of a long-
ranged two-pion exchange, a midrange one-pion exchange,
and a contact term [65]. Variation of the cutoff will induce
short-range 3NFs that are in their structure identical to the
chiral 3NF [66,67]. Thus, we will be able to probe the effect of
short-ranged 3NFs a posteriori by cutoff variation. Continuum
effects are, of course, expected to be important for nuclei close
to the drip line [18,68,69]. However, it will turn out that most of
the computed single-particle states are fairly well bound (likely
from the omission of 3NFs). In this situation, the continuum
plays a smaller role.

Figures 15 and 16 show the effective single-particle
energies for the neutron and proton s1/2, d3/2, and d5/2 states
in 16O, 22O, 24O, and 28O. The calculations employed a
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FIG. 15. (Color online) Single-particle energies [Eq. (37)] of the
s1/2, d3/2, and the d5/2 single-particle states in the oxygen isotopes us-
ing the “bare” chiral NN interaction. The calculations employ N = 14
shells for fixed h̄ω = 28 MeV. The d5/2 and s1/2 experimental
single-particle energies are shown as dashed lines.

model space consisting of N + 1 = 15 oscillator shells at a
fixed oscillator frequency h̄ω = 28 MeV. The proton s1/2, d3/2,
and the d5/2 single-particle states were computed within the
PA-EOM-CCSD approach. The neutron single-particle states
resulted from either the PR-EOM-CCSD or the PA-EOM-
CCSD method (see Sec. II B for more details), depending
on whether the considered single-particle state is a hole
or a particle state of an isotope of oxygen with a closed
subshell.

Several interesting features can be extracted from the
results. The computed neutron single-particle energies (shown
in Fig. 15) do not reproduce the experimentally observed shell
gaps in 22O and 24O. Furthermore, the chiral NN interactions
incorrectly yield a bound 25O [58]. This behavior was also
seen in shell-model calculations of the oxygen isotopes using
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FIG. 16. (Color online) Single-particle energies [Eq. (37)] of
the s1/2, d3/2, and the d5/2 single-particle states in the fluorine
isotopes using the “bare” chiral NN interaction. The calculations
employ N = 14 shells for fixed h̄ω = 28 MeV. The experimental
d5/2 single-particle energy is shown as a dashed line.
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FIG. 17. Single-particle energy [Eq. (37)] of the neutron d3/2 state
in 24O as a function of the resolution scale λ of the SRG evolved
chiral NN interaction. The calculations employ N = 14 shells at fixed
h̄ω = 26 MeV.

microscopically derived shell-model interactions (see, e.g.,
Ref. [62]). For the fluorine isotopes (shown in Fig. 16), the
d5/2 state follows the experimental trend but lacks binding.
In 25F our calculations yield an inversion of the s1/2 and
d5/2 states, giving a 1/2+ state as the ground state of 25F.
To gauge the effects of omitted short-range 3NFs, we vary the
resolution scale λ by a similarity renormalization group (SRG)
transformation [19].

Figure 17 shows the dependence of the neutron d3/2 single-
particle state in 24O as a function of the SRG cutoff λ. In these
calculations we used N + 1 = 15 oscillator shells with a fixed
oscillator frequency of h̄ω = 26 MeV.

The d3/2 single-particle state in 24O depends weakly on
the cutoff and stays bound for all choices of the cutoff λ.
This suggests that long-ranged 3NFs are needed to yield an
unbound state and to place the drip line at 24O. Furthermore,
the effect of the scattering continuum is expected to add
some additional binding to this state (see Ref. [18]). Thus, a
realistic description of 25O will result from a fine interplay
between the scattering continuum and 3NFs. Figure 18
shows the cutoff dependence of the CCSD and �-CCSD(T)
ground-state energies for 24O (using the same model space
and oscillator frequency as in Fig. 17). Note that there is
no cutoff λ that simultaneously reproduces the experimental
binding energy of 24O and the resonance energy of 25O ground
state.

Figure 19 shows that proton s1/2, d3/2, and d5/2 single-
particle states in 24O exhibit a considerable dependence on
the cutoff λ. No single cutoff reproduces simultaneously the
ground-state binding energies of 24O, 25O, and 25F, again
pointing to the importance of the omitted 3NFs and to
subtleties in its isospin dependence.

In conclusion, chiral NN interactions alone do not reproduce
the evolution of single-particle energies within the sd shell.
Close to 16O, the single-particle states are in semiquantitative
agreement with data, but missing 3NFs become increasingly
more important for neutron-rich isotopes of oxygen. It is
expected that a realistic description of single-particle states
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FIG. 18. (Color online) Ground-state energy of 24O within the
CCSD (circles) and the �-CCSD(T) approximation (squares) as a
function of the resolution scale λ of the SRG evolved chiral NN
interaction. The calculations employ in N + 1 = 15 shells at fixed
h̄ω = 26 MeV.

and the evolution of shell structure will require a theory that
allows for a consistent and systematic inclusion of many-body
correlations, 3NFs, and coupling to the scattering continuum.
The beauty of coupled-cluster theory is that it allows for
inclusion of all these ingredients in a simple and transparent
way, and we aim to investigate and predict properties of
nuclei from the valley of stability to the very limits of
matter taking all these ingredients into account in the near
future.

VI. RESOLUTION-SCALE DEPENDENCE FOR
40Ca AND POWER COUNTING

In this section we study the ground-state properties of
40Ca using renormalized nucleon-nucleon interactions derived
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FIG. 19. (Color online) Single-particle energies [Eq. (37)] of the
proton s1/2, d3/2, and d5/2 states in 24O as a function of the resolution
scale λ of the SRG evolved chiral NN interaction. The calculations
employ N + 1 = 15 shells at fixed h̄ω = 26 MeV.

with the SRG method [19]. The SRG method drives the
Hamiltonian to a band diagonal form, and therefore decouples
low-momentum degrees of freedom from high-momentum
degrees of freedom. The cutoff parameter λ determines the
decoupling and sets the resolution scale or energy scale with
which we can probe the structure of a particular nucleus.
However, this procedure induces three-body forces and forces
of higher rank. At the two-body level, these interactions
typically overbind medium-mass nuclei considerably, and
show a strong dependence on the cutoff λ. The dependence
on the cutoff λ on calculated observables gives an indication
of the missing physics and on the role of many-body forces not
included in the calculation; only the sum of all forces induced
by the renormalization is truly independent of the scale of
resolution or the cutoff.

For the ground-state calculations of 40Ca, we use SRG
interactions at the resolution scales λ = 2.5, 2.2, 1.9 fm−1, and
compute the binding energy within the CCSD approximation.
We solve the CCSD equations in a spherical harmonic
oscillator basis. The SRG interactions are soft and the
corrections from triples clusters are found to be rather small.
For 40Ca and a low-momentum interaction Vlow k with cutoff
λ = 1.9 fm−1, for instance, the CCSD binding energy is
E/A = 12.28 MeV and the CCSD(T) approximations yields
an additional 0.29 MeV per nucleon [70]. Therefore, we
limit the computations for the SRG interactions to the CCSD
approximation. Our focus is on the saturation and convergence
properties of the SRG interactions in medium-mass nuclei and
not on precision results.

Figures 20–22 show the convergence of the ground-state
energy of 40Ca using SRG evolved interactions with resolution
scales λ = 1.9, 2.2, 2.5 fm−1, respectively. The ground-state
energies computed for the various cutoffs are well converged
in model space sizes comprising up to 13 major oscillator
shells. As the cutoff λ is lowered, these SRG interactions
become increasingly soft, and we observe a faster conver-
gence with increasing basis size. The computed ground-state
energies show that the SRG NN interactions alone overbind
considerably with respect to experiment. The results also
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FIG. 20. CCSD ground-state calculation of 40Ca for increasing
number of oscillator shells, N = 2n + l, at fixed h̄ω = 26 MeV, using
SRG evolved chiral NN interaction at resolution scale λ = 1.9 fm−1.
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FIG. 21. Same caption as in Fig. 20 except that resolution scale
is λ = 2.2 fm−1.

exhibit a strong dependence on the resolution scale λ, and
the overbinding with respect to the experimental binding
energy of 40Ca, which is approximately 342 MeV, increases
with decreasing momentum scale. This strong resolution
dependence is, of course, from our omission of three-nucleon
forces 3NFs (and more complicated many-body forces)
and higher-order terms [66,67]. Likewise, with increasingly
softer NN interactions, the proper reproduction of saturation
properties must come from the repulsive character of the
3NF [62].

Table II shows the binding energy per particle E/A, inter-
action energy per particle 〈V 〉/A, the momentum expectation
value Q ( Q2

2m
= 1

A
〈T − Tcm〉), and the difference in binding

energy per particle compared to experiment �E/A for 40Ca
using the different SRG interactions.

We would like to address the question regarding a power
counting for SRG interactions. This is not unproblematic,
as it is not a priori clear how the power counting from an
underlying chiral interaction evolves as the cutoff is lowered
within the SRG transformation. Before we address this point
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FIG. 22. Same caption as in Fig. 20 except that resolution scale
is λ = 2.5 fm−1.

TABLE II. CCSD results for 40Ca with SRG interactions evolved
from the chiral N3LO nucleon-nucleon interaction to the momentum
scale λ. The binding energy per nucleon, and interaction energy
per nucleon are denoted as E/A and 〈V 〉/A, respectively. Q

denotes the expectation value of the momentum probed in this
nucleus, whereas �E denotes the difference to the experimental
binding energy. Energies are in units of MeV and momenta in units
of fm−1.

λ E/A 〈V 〉/A Q �E/A

∣∣∣�E

〈V 〉

∣∣∣/(
Q

λ

)3

1.9 −15.35 −47.59 1.25 −6.80 0.50
2.2 −13.63 −44.84 1.23 −5.08 0.62
2.5 −12.14 −42.39 1.21 −3.59 0.77

in more detail, we remind the reader that the power counting is
a highlight of an EFT. Within chiral EFT, the contributions of
the chiral potential [11–13] (i.e., the chiral interaction without
the kinetic energy) can be classified in terms of powers of
Q/�χ . For the 3H nucleus, Nogga [3] confirmed the validity
of the power counting. To this purpose, he employed chiral
interactions with different chiral cutoffs �χ and of different
order n in the power counting. Nogga confirmed that the
difference �E between the computed and the experimental
ground-state energy scales as 〈V 〉(Q/�χ )n (with 〈V 〉 denoting
the expectation value of the potential energy). For low-
momentum interactions, similar estimates were employed in
light nuclei [66] and in nuclear matter calculations [71]. Again,
it was found that the computed energy ratios are consistent
with power counting expectations. How can the use of power-
counting arguments be justified after a renormalization group
transformation took place? The application of an EFT is based
on a separation of scale between low-lying relevant degrees of
freedom, and high-lying degrees of freedom that can only be
excited virtually. The cutoff λ marks the separation. Appelquist
and Carazzone [72] showed that the decoupling between
low- and high-lying degrees of freedom remains valid in a
renormalization group transformation (for a renormalizable
theory), that renormalization group transformations change the
parameters of the effective theory, and that an EFT continues
to exist at the lowered cutoff. The chiral EFT results from the
renormalizable theory of quantum chromodynamics, and this
motivates us to assess power-counting estimates. Although we
cannot provide a proof that power-counting estimates apply to
SRG interactions in medium mass nuclei, we can ask whether
such estimates are consistent with our results. In our approach,
we employ two assumptions, namely (i) that the difference �E

between theoretical and experimental ground-state energies
is from omitted forces (i.e., forces of rank higher than two
and high-order corrections to nucleon-nucleon forces), and
(ii) that the long-range contributions of omitted forces (which
we cannot compute without including them explicitly), are of
the same size as omitted short-range contributions (which we
assess by cutoff variation).

To assess the power counting within this framework, we
compute the expectation value of the interaction energy via
the Hellmann-Feynman theorem, and also deduce the average
momentum Q from the expectation value of the kinetic energy.
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The results are given in Table II. The CCSD results are very
well converged for momentum scales λ = 1.9, 2.2, 2.5 fm−1.
As already pointed out, our results are far from complete.
Because of the restriction to NN forces at order N3LO, we
are missing contributions of 3NFs and forces of higher rank,
and from higher order NN forces. The missing contributions
from clusters because of the CCSD approximation are much
smaller than the contributions related to neglected terms of
the interaction. The ratios |�E/〈V 〉| / (Q/λ)3 are also shown
in Table II. The ratios are of natural size and suggest that
the power counting is not violated in medium-mass nuclei.
We emphasize again that this consistency check is by no
means a proof of the applicability of power counting for
SRG interactions in medium-mass nuclei but merely a first
step toward an improved understanding of this important
problem.

VII. CONVERGENCE PROPERTIES
OF THE G MATRIX

In this section we calculate CCSD ground states of 4He
and 16O using the in-medium G matrix [22]. The G matrix is
an effective in-medium interaction that is computed starting
from the bare nucleon-nucleon (NN) interaction using a
Green’s function approach with unperturbed propagators [23].
It depends therefore on the starting energy ω. The starting
energy defines the energy of the incoming and outgoing
single-particle states, and is normally set equal to the sum of the
unperturbed energies of the interacting single-particle states.
The G matrix is defined in a model space P by summing ladder
diagrams to infinite order, where the intermediate particle
states are defined in the Q space. Each ladder diagram scatters
two particles from the P space to the complement Q space and
back to the P space. The number of interaction vertices in a
ladder diagram gives the number of times the particles rescatter
within the Q space. It is clear that the G matrix depends
inherently on the model space and the interaction. The purpose
of the G matrix is to tame the hard core of the “bare” interaction
making it suitable for many-body perturbation theory. In this
section we investigate how the G matrix behaves in ab-initio
coupled-cluster ground-state calculations of 4He and 16O as
the model space P increases and the starting energy is varied
over a wide range.

In constructing the G matrix, we start from the “bare” N3LO
interaction (�χ = 500 MeVc−1) by Entem and Machleidt
[13,15] and a spherical harmonic oscillator basis. In Figs. 23
and 24, we show the CCSD results for 4He and 16O,
respectively, starting from the calculated G matrix. In the
calculations we varied the starting energy ω from −140 MeV
to −5 MeV and studied the effect of this variation on the CCSD
ground-state energy. We increased the model space from 10
to 14 major oscillator shells while the oscillator frequency
was held fixed at h̄ω = 20 MeV. The figures show that the
dependence on the starting energy is reduced as we increase
the model space. In the largest model space considered here,
the starting-energy dependence is very mild. As ω is varied
over a range of 135 MeV, the binding energy of 4He changes
only by about 0.25 MeV and of 16O by about 5 MeV.
Furthermore, we see that at a fixed starting energy, the binding
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FIG. 23. (Color online) CCSD binding energy for 4He using a G

matrix and starting energies ω in the range from −140 to −5 MeV.
The oscillator spacing is held fixed at h̄ω = 20 MeV.

energy converges rather slowly with increasing size of the
model space. As the model space P increases the complement
space Q in which the particles scatter is reduced, and the
G matrix should therefore converge to the underlying “bare”
nucleon-nucleon interaction in an infinite model space. This
expectation is compatible with our CCSD results for the
ground-state energies of 4He (about −24 MeV) and 16O (about
−108 MeV) using the “bare” chiral NN interaction (see, e.g.,
Figs. 1 and 2). Figures 23 and 24 show that the ground-state
energy of the G matrix converges from below as the model
space is increased in size, and that the result of the “bare”
interaction is approached in very large model spaces.

In conclusion, we observe slow convergence for the CCSD
ground-state energy with increasing model space with the
G matrix defined from the “bare” N3LO interaction. The
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FIG. 24. (Color online) CCSD binding energy for 16O using a G

matrix and starting energies ω in the range from −140 to −5 MeV.
The oscillator spacing is held fixed at h̄ω = 20 MeV.
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dependence on the starting energy disappears in sufficiently
large model spaces, and the coupled-cluster results with the
G matrix converge toward coupled-cluster results for the
free nucleon-nucleon interaction. In the case of the N3LO
interaction, it is clearly better to start from the free interaction.
It remains to be seen in the case of harder interactions, like
the Argonne V18 interaction, whether convergence is better
using the in-medium G matrix as a starting point for ab initio
coupled-cluster calculations.

Let us briefly contrast the G matrix to low-momentum NN
interactions à la Vlow k or from the similarity renormalization
group. The latter two preserve phase shifts from NN scattering
and bound-state properties up to the chosen momentum cutoff.
They soften the NN interaction and—when not augmented
by the induced 3NF—tend to considerably overbind heavier
nuclei at lower cutoffs around λ ≈ 2 fm−1 or so. In a finite
model space, the G matrix always exhibits a dependence
on the starting energy; it converges slowly to the “bare”
interaction, and it somewhat overbinds the nuclear many-
body system compared to the “bare” interactions that are
used in its construction. The authors speculate that this
last point might seem attractive with a view on practical
applications, as “bare” nucleon-nucleon interaction models
such as the Argonne interaction, the CD-Bonn interaction,
and the chiral interaction [13] somewhat underbind nuclei.
In other words, the slight overbinding of the G matrix
often results into very reasonable energies for heavier nuclei,
and the G matrix simply works very well in practical
applications.

VIII. CONVERGENCE PROPERTIES OF VUCOM

Let us also consider the saturation and convergence prop-
erties of the VUCOM nucleon-nucleon interaction [24]. The
interaction VUCOM is obtained from a unitary correlation op-
erator method (UCOM) that softens the short-range repulsion
of the initial “bare” interaction by a similarity transformation
with a unitary operator, which is explicitly designed to remove
the hard-core and the short-ranged tensor components of
phenomenological NN interaction. In this section we consider
the UCOM interaction obtained from the “bare” Argonne V18
interaction.

The VUCOM interaction was initially applied in mean-
field methods. These applications were very successful. Very
reasonable binding energies and saturation properties could
already be obtained within the Hartree-Fock approximation.
Only later did this interaction see applications that included the
inclusion of many-body correlations within the RPA, many-
body perturbation theory [73], the coupled-cluster method
[74], and within the no-core shell model [75]. (For a recent re-
view, we refer the reader to Ref. [76].) Those later applications
suggest that the VUCOM interaction is soft yet with appealing
saturation properties, and without the need for sizable 3NFs.
This situation seems surprising. On the one hand, the VUCOM

interaction is similar in its technical construction to the SRG
interactions [77]. On the other hand, the VUCOM interaction
seems to differ significantly in its saturation property from
the SRG nucleon-nucleon interactions which tend to overbind
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FIG. 25. (Color online) CCSD ground-state energy of 16O with
VUCOM as a function of the oscillator spacing h̄ω and the size of the
model space N . The experimental ground-state energy is given by the
solid line.

nuclei at low momentum cutoffs. We address this puzzle in
what follows, and perform structure calculations with the
UCOM interaction in large model spaces and for various
oscillator frequencies.

We employ the VUCOM interaction and compute the ground
states of 16O and 40Ca within the CCSD approximation.
Our calculations employ very large model spaces and a
considerable range of oscillator frequencies, and thereby
differ from the previous studies [73–75]; see also Ref. [25].
Figures 25 and 26 show the ground-state energy of 16O and
40Ca, respectively, as a function of the employed oscillator
frequency ω for different sizes of the model space (N + 1
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FIG. 26. (Color online) CCSD ground-state energy of 40Ca using
VUCOM as a function of the oscillator spacing h̄ω and the size of the
model space N . The experimental ground-state energy is given by the
solid line.
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denotes the number of oscillator shells.). The convergence
with respect to increasing size of the model space is slow,
and we are unable to achieve convergence in up to 14 major
oscillator shells. The results obtained in the largest model
spaces also show that the VUCOM interaction considerably
overbinds 40Ca. Within the CCSD approximation, we find a
ground-state energy of about −133 MeV for 16O and of about
−400 MeV for 40Ca. The inclusion of triples corrections within
the �-CCSD(T) approximation yields a ground-state energy of
−140.99 MeV for 16O in 13 oscillator shells and an oscillator
frequency h̄ω = 42 MeV.

We checked our results as follows. First, our CCSD results
agree with those reported for 4He in Ref. [74] within about
50 keV in model spaces of up to eight oscillator shells.
Second, we also computed the ground-state energy of 40Ca
in third-order many-body perturbation theory. The relevant
diagrams that are included can be found in Ref. [37]. Our
results are shown in Fig. 27 as a function of the oscillator
energy h̄ω and the number of shells N . The results from
many-body perturbation theory confirm the trend seen in the
coupled-cluster calculations, (i.e., they exhibit a rather slow
convergence in terms of the number of shells N and overbind
the nucleus 40Ca). Ref. [73] also solved the UCOM potential
within many-body perturbation theory, albeit for oscillator
frequencies below h̄ω ≈ 20 MeV or so. In this regime, the
binding energy is closer to the experimental value as the small
oscillator frequency acts as a cutoff in momentum space.

We speculate that the VUCOM interaction still exhibits
relatively long tails in momentum space, which prevents
a decoupling of low- and high-momentum modes, or that
peculiarities of the corresponding cutoff yield a slow con-
vergence of the UCOM interaction in an oscillator basis.
This speculation is borne out by two observations. First, the
comparison of the UCOM interaction with the SRG interaction
in Fig. 8 of Ref. [77] shows that the UCOM interaction does
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FIG. 27. (Color online) Ground-state energy for 40Ca using many-
body perturbation theory to third order in the interaction VUCOM.
The results are presented as a function of the oscillator spacing h̄ω

and the size of the model space N . As in the CCSD calculations, a
Hartree-Fock basis was used.

not decouple well in an oscillator basis. Second, the energy
minima in Figs. 25–27 shift to higher frequencies h̄ω as the
size of the model space is increased, as one would expect
based on the estimate (36) for an interaction with a large
momentum cutoff. Our results also suggest that—similar to
other SRG interactions and low-momentum interactions—the
UCOM interaction has to be augmented by sizable many-body
forces [78]. The need for these forces is not seen if one restricts
the calculations to fixed model spaces where model space
parameters such as the oscillator frequency and the number of
shells introduce additional momentum cutoffs.

IX. SUMMARY

We presented a spherical formulation of the coupled-cluster
method for the computation of energy spectra in nuclei
with closed subshells and their neighbors. This method was
used to solve nuclear structure problems in model spaces
consisting of up to 20 oscillator shells, which allows us to
obtain well-converged results for nucleon-nucleon interactions
derived from chiral effective field theory. We find that chiral
NN interactions saturate nuclei such as 16O and 48Ca within
0.5 MeV per nucleon compared to data. The two-particle–two-
hole clusters provide about 90% of correlation energy, with the
approximation of triples clusters accounting for the remaining
10%. We investigated the shell evolution in neutron-rich
isotopes of oxygen and fluorine and found that nucleon-
nucleon interactions alone fail to describe the experimentally
observed (sub)shell structure.

We also employed similarity renormalization group trans-
formations of a “bare” chiral interaction. At the considered
resolution scale, we obtained overbinding of up to several MeV
per nucleon. Again, the missing contributions (when compared
to experiment) are of natural size in the power counting of
effective field theory. These results suggest that the systematic
approach to nuclear structure can (in principle) be extended to
medium-mass nuclei. We studied the G-matrix approach and
found a very weak starting-energy dependence in large model
spaces combined with a rather slow convergence with respect
to increases in the size of the model space. For the UCOM
interaction, we find a slow convergence with respect to the
size of the model space and an overbinding for 40Ca that is
comparable to other low-momentum interactions.

We presented an in-depth study of the center-of-mass
problem, and demonstrated that the wave functions of the
intrinsic Hamiltonian factorize to a very good approximation
into an intrinsic wave function and a Gaussian for the center of
mass. Although an analytical understanding of this behavior
is still lacking, our calculations for ground and excited states
and for a virtually exactly solvable toy model indicate that
calculations in sufficiently large model spaces—when based
on the intrinsic Hamiltonian—do not suffer from a center-of-
mass problem.
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APPENDIX A: COUPLED-CLUSTER DIAGRAMS
IN A J-COUPLED SCHEME

In this section we present expressions for several diagrams
involved in our computation of the CCSD or �-CCSD(T)
equations that involve various one-body, two-body, and three-
body amplitudes and operators.

A. Examples of CCSD diagrams in a J-coupled scheme

We employ the following shorthands for the T1 and T2

amplitudes, namely tai and tab
ij , respectively. To the latter we

add the total two-particle angular momentum Jij to indicate
a two-body wave operator with hole states ij coupled to a
two-body angular momentum Jij , that is,

tab
ij (Jij ) = 〈(jajb)Jij |t |(jijj )Jij 〉

=
∑

mambmimj

C
jajbJab

mambM
C

jijj Jij

mimiM
,

〈(jama)(jbmb)|t |(jimi)(jjmj )〉, (A1)

with mi,mj , etc. being the magnetic quantum numbers of the
corresponding single-particle angular momenta ji, jj , etc. The
coefficients C are the standard Clebsch-Gordan coefficients.

The two-body amplitudes are diagonal in the total angular
momentum, that is, we have Jij = Jab. The final matrix
elements are independent of M . The labels a, b, c, d . . . refer
to particle states whereas i, j, k, l, . . . are hole states.

In Fig. 28 we give a diagram contributing to the T2 equation,
and the corresponding algebraic expression in the J -coupled
scheme is (we list only the angular momentum related part)

t̃ ab
ij (Jij ) ←

∑
cd

〈(jajb)Jab|V |(jcjd )Jab〉〈(jcjd )Jab|t |(jijj )Jab〉.

i a b j

c d

FIG. 28. Diagram contributing to the tab
ij (pp) amplitudes in

particle-particle coupled scheme.

k

i a j b

c

FIG. 29. Diagram contributing to the tab
ij (ph) amplitudes in

particle-hole coupled scheme.

The previous expression is obtained by identifying the di-
agram as a ladder cutting apart the lines connecting the
various vertices. This technique is described in detail in
Ref. [79]. Several applications of this technique are listed
also in Ref. [22]. This is the most expensive diagram in
the CCSD approximation and scales as n2

on
4
u, where no is

the number of occupied j orbitals and nu is the number of
unoccupied j orbitals. As seen, the diagram can be calculated
by a matrix-matrix multiplication utilizing efficient BLAS
routines [80].

The diagram in Fig. 29 also contributes to the T2 equation,
and is easiest calculated in a particle-hole coupled scheme
so that intermediate sums of 9j symbols are avoided. The
transformation of the tab

ij (Jij ) amplitudes to a particle-hole
coupled scheme is given by〈(

jaj
−1
i

)
Jai

∣∣t∣∣(jj j
−1
b

)
Jai

〉

=
∑
Jab

(2Jab + 1)(−1)ja+jj +Jab+Jai

{
ji ja Jai

jb jj Jab

}

×〈(jajb)Jab|t |(jijj )Jab〉, (A2)

and the transformation back to particle-particle coupling is

〈(jajb)Jab|t |(jijj )Jab〉

=
∑
Jai

(2Jai + 1)(−1)ja+jj +Jab+Jai

{
ji jj Jab

jb ja Jai

}

× 〈(
jaj

−1
i

)
Jai

∣∣t∣∣(jj j
−1
b

)
Jai

〉
. (A3)

The diagram in Fig. 29 can now easily be calculated in a
particle-hole coupled scheme as〈(

jaj
−1
i

)
Jai

∣∣t̃∣∣(jj j
−1
b

)
Jai

〉
=

∑
ck

(−1)jk+jc−Jai+1
〈(
jaj

−1
i

)
Jai

∣∣t∣∣(jkj
−1
c

)
Jai

〉

× 〈(
jkj

−1
c

)
Jai

∣∣V ∣∣(jj j
−1
b

)
Jai

〉
, (A4)

i a

b j

FIG. 30. Diagram contributing to the ta
i amplitudes.
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E T

4

FIG. 31. Diagrams for the �-CCSD(T) approximation.

where again an efficient BLAS [80] matrix-matrix multiplica-
tion routine can be used.

In Fig. 30 we give a diagram contributing to the T1 equation.
The algebraic expression of Fig. 30 in a J -coupled

scheme is

t̃ ai ←
∑
Jik

2J + 1

2ja + 1

∑
ck

t ikac(Jik)χb
k ,

where χb
k is a one-body operator.

B. Examples of �-CCSD(T) diagrams in a J-coupled scheme

Figure 31 shows an example of diagrams with a three-
body wave operator that give rise to contributions to the final
energy. These diagrams arise from the so-called �-CCSD(T)
approximation discussed in this work. The lower part of these
diagrams is given by the three-body t amplitude labeled tabc

ijk . It
is antisymmetrized and in the �-CCSD(T) approximation it is
represented by a connected three-body contribution consisting
of a two-body amplitude tab

ij and a two-body interaction vertex
plus a two-body amplitude part tab

ij times a one-body amplitude
t ck . These two contributions are depicted by the diagrams to the
right of the equality sign in Fig. 32. The three-body amplitude
tabc
ijk is shown to the left of the equality sign in Fig. 32.

A diagram like the first to the right of the equality sign in
Fig. 32 can be redrawn as shown in Fig. 33.

Here we have stretched the hole lines in the diagram to the
right of the equality sign. Such a diagram with, for example,
an intermediate particle state can easily be calculated in an
angular momentum coupled scheme. The expressions can be
derived using the methods discussed in Ref. [79]. All three-
body diagrams like those shown in Fig. 33 have been listed in
Ref. [81].

To derive these expressions, one needs to specify the given
coupling order for the angular momenta. Here we choose to
couple our angular momenta as

|([ja → jb]Jab → jc)J 〉
=

∑
mambmc

〈jamajbmb|JabMab〉〈JabMabjcmc|JM〉,

|jama〉 ⊗ |jbmb〉 ⊗ |jcmc〉, (A5)

and indicated in Fig. 34.
Note that the two-body intermediate state is antisymmetric

but not normalized, that is, the state that involves the
quantum numbers ja and jb. We will hereafter assume that
the intermediate two-body state is antisymmetric. With this

2

FIG. 32. Diagrams for the �-CCSD(T) approximation.

FIG. 33. Connected part of three-particle–three-hole diagrams.

coupling order, we can rewrite the general three-particle Slater
determinant as

�(1, 2, 3) = A|([ja → jb]Jab → jc)J 〉, (A6)

with an implicit sum over Jab. The final Slater determinant is

A|([ja → jb]Jab → jc)J 〉
= 1√

3!
|([ja → jb]Jab → jc)J 〉

− 1√
3!

⎡
⎣∑

Jac

(−1)jb+jc+Jab+Jac ĴabĴac

{
ja jb Jab

J jc Jac

}

+
∑
Jbc

(−1)Jbc ĴabĴbc

{
ja jb Jab

J jc Jbc

}⎤
⎦

× |([ja → jb]Jab → jc)J 〉.

J

jcjbja

Jab

FIG. 34. The coupling order ([ja → jb]Jab → jc)J .
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Jab

J

ja jb

jd

jc

jkjjji

FIG. 35. Three-body diagram with two-body vertex and am-
plitude and a particle state as intermediate single-particle states.
The sum over d runs over all possible quantum numbers of the
intermediate particle(hole) state. The algebraic expression of the
above diagram, in an angular momentum coupled scheme, is given in
Eq. (A7).

Here, we used the shorthand Ĵ ≡ √
2J + 1. With this coupling

order, one can then compute all three-body diagrams like those
listed in Fig. 33.

Here we give an example of the closed form expression
for the angular momentum recoupled part of a selected
three-body diagram with two-body amplitudes tab

ij . These
are diagrams that start with a three-body state but have
two-body wave operators and end in a contribution to a
three-body state with a two-body vertex after the two-body
amplitude, as shown in Fig. 35. Again, we employ the
shorthand tab

ij (Jij ) to indicate a two-body wave operator with
hole states ij coupled to a two-body angular momentum Jij ,
that is, t

ij

ab(Jij ) = 〈(jajb)Jij |t |(jijj )Jij 〉. The diagram with a
particle intermediate state is shown in Fig. 35 with its angular
momentum representation,

∑
Jbc

∑
d

(−1)jb+jc+jd+Jbc ĴabĴij Ĵ
2
bc

{
ja jb Jab

jc J Jbc

}
,

{
ja jd Jij

jk J Jbc

}
〈(jbjc)Jbc|V |(jdjk)Jbc〉t ijad (Jij ). (A7)

The expression for this diagram is obtained by opening up
the intermediate three-particle state jajdjk and recoupling
the angular momenta jb and jc to yield a final two-particle
angular momentum Jbc. This applies also to the single-
particle angular momenta jd and jk . These two single-particle
angular momenta couple to the same final two-particle angular
momentum Jbc. These recouplings are reflected in the two
6j symbols in the above expression. The expression for the
corresponding diagram of Fig. 35 with a hole intermediate
state is obtained by replacing the particle labeling jd with jl .
The subscript l refers to the fact that this is a single-hole state.
The internal hole line, however, gives rise to a factor −1.

In total there are, because of the antisymmetry of the
three-body wave function, nine diagrams with an intermediate
particle state and nine diagrams with an intermediate single-
hole state. The angular momentum expressions for these
diagrams are listed in Ref. [81]. The expressions for diagrams
like the rightmost one in Fig. 32 yield similar expressions and
are easy to compute. They represent a two-body part coupled
with a one-body part.
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