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Time-odd mean fields in covariant density functional theory: Rotating systems
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Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are
studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound
effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency
dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear
magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties
of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean
fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic
mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The
moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary,
superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The
structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia
have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by
time-odd mean fields, has been analyzed in detail.
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I. INTRODUCTION

The development of self-consistent many-body theories
aiming at the description of low-energy nuclear phenomena
provides the necessary theoretical tools for an exploration of
the nuclear chart into known and unknown regions. Theo-
retical methods (both relativistic [1] and nonrelativistic [2])
formulated within the framework of density functional theory
(DFT) are the most promising tools for the global investigation
of the properties of atomic nuclei. The power of the DFT
models is essentially unchallenged in medium and heavy
mass nuclei where “ab initio”–type few-body calculations
are computationally impossible and the applicability of the
spherical shell model is restricted to a few regions in the
vicinity of doubly shell closures.

The mean field is a basic concept of every DFT. One can
specify time-even and time-odd mean fields [3,4] dependent
on the response of these fields to the action of time-reversal
operator. While the properties of time-even mean fields in
nuclear density functionals are reasonably well understood
and defined [1,2], there are still many unknowns in our
knowledge of time-odd mean fields which appear only in
the nuclear systems with broken time-reversal symmetry. This
is especially true in the covariant density functional theory
(CDFT) [1] where only few articles were dedicated to the
study of time-odd mean fields (see Ref. [5] for review). Note
that the effects, produced by the magnetic potential in the Dirac
equation and referred to as nuclear magnetism (NM) [6] in the
framework of the CDFT, are due to time-odd mean fields.

Rotating nuclei represent a system which is strongly
affected by time-odd mean fields. The representative studies
of few examples [3,4,7–9] clearly show that the kinematic
and dynamic moments of inertia of the nuclei rotating in
collective manner are considerably affected by time-odd mean
fields. It was shown in the CDFT framework [4] that the
microscopic mechanism of this modification is traced back

to the modifications of the expectation values of the single-
particle angular momentum 〈ĵx〉i in the presence of NM. The
contribution to 〈ĵx〉i due to NM is defined as

�〈jx〉i = 〈ĵx〉NM
i − 〈ĵx〉WNM

i , (1)

where the subscripts NM and WNM indicate the values
obtained in the calculations with and without NM, respectively.
The �〈jx〉i is positive at the bottom and negative at the top
of the N shell [4]. The absolute value of �〈jx〉i correlates with
the absolute value of 〈ĵx〉i . Note that the contributions to 〈ĵx〉i
due to NM are small in the middle of the shell. The �〈jx〉i
contributions can be decomposed into the contributions due
to spin (�〈sx〉i) and orbital (�〈lx〉i) angular momenta, which
have complicated dependencies both on the frequency and the
structure of the single-particle orbital under study [4]. Similar
features are expected also in nonrelativistic DFT [4].

The changes in the alignment properties of the single-
particle orbitals induced by NM [Eq. (1)] reflect themselves
also in physical observables such as effective alignments and
the energy splittings between signature partner orbitals (sig-
nature splitting), measured experimentally [4]. Moments of
inertia and effective alignments in normal- and superdeformed
nuclei in different parts of nuclear chart [1,8–14] are well
described by the parametrizations which include nonlinear
self-couplings only for the σ meson (see Table I in Ref. [5]).
This fact strongly suggests that NM is well accounted in this
type of the relativistic mean-field (RMF) parametrizations.
In addition, NM can have an impact on the energy gap
between the yrast and excited configurations in local minima
(as illustrated on the example of the hyperdeformed minima in
Ref. [15]), on the terminating states [14], and on the additivity
of angular-momentum alignments [16].

A systematic investigation of time-odd mean fields in one-
(two-) particle states in odd (odd-odd) nonrotating nuclei
has been performed in our previous article [5]. The current

0556-2813/2010/82(3)/034329(20) 034329-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.82.034329


A. V. AFANASJEV AND H. ABUSARA PHYSICAL REVIEW C 82, 034329 (2010)

article is a continuation of our efforts aimed on comprehensive
understanding of time-odd mean fields in CDFT. Its goal
is a systematic study of time-odd mean fields and their
manifestation in rotating nuclei.

Table I in Ref. [5] shows large variety of the parametriza-
tions of the RMF Lagrangian. The investigation of all these
parametrizations is definitely beyond the scope of this study.
Thus, the present investigation has been focused on the study of
time-odd mean fields in the CDFT with the parametrizations of
the RMF Lagrangian including only nonlinear self-couplings
of the σ meson (the group A of the parametrizations in Table I
of Ref. [5]). So far, only this group of parametrizations has
been used in the study of rotating nuclei [1,9–14,17,18]. The
results of the study of time-odd mean fields in the groups B,
C, and D of the parametrizations of meson-coupling models
(Table I in Ref. [18]) as well as within the point-coupling
models will be presented in a forthcoming manuscript.

The article is organized as follows. The cranked RMF
theory and its details related to time-odd mean fields in rotating
nuclei are discussed in Sec. II. Section III is devoted to the
analysis of the impact of time-odd mean fields on band crossing
features. Particle number and deformation dependencies of
the impact of NM on the moments of inertia are considered
in Sec. IV. Currents (and their single-particle origin) in the
intrinsic frame of rotating nuclei are discussed in Sec. V.
Frequency and configuration dependencies of the impact of
NM on the moments of inertia are analyzed in Sec. VI.
Parametrization dependence of the NM contributions to the
moments of inertia are discussed in Sec. VII. Section VIII is
devoted to the study of time-odd mean fields in terminating
states. The phenomenon of signature separation in odd-odd
nuclei is investigated in Sec. IX. Finally, Sec. X reports the
main conclusions of our work.

II. THEORETICAL FORMALISM

The results presented in the current article have been
obtained mainly in the framework of cranked relativistic
mean-field (CRMF) theory [6,8,9]. The results obtained within
the cranked relativistic Hartree-Bogoliubov (CRHB) theory
[13] are shown in only a few cases. The CRMF theory has been
successfully employed for the description of rotating nuclei
(see Refs. [1,18] and references therein) in which time-odd
mean fields play an important role. In this theory the pairing
correlations are neglected which allows us to better isolate the
effects induced by time-odd mean fields. The most important
features of the CRMF formalism related to time-odd mean
fields are outlined below (for more details see Refs. [6,9]),
while the details of the CRHB theory are presented in Ref. [13].

In the Hartree approximation, the stationary Dirac equation
for the nucleons in the rotating frame (in one-dimensional
cranking approximation) is given by

(ĥD − �xĴx)ψi = εiψi, (2)

where ĥD is the Dirac Hamiltonian for the nucleon with
mass m

ĥD = α[−i∇ − V (r)] + V0(r) + β[m + S(r)] (3)

and the term

− �xĴx = −�x

(
L̂x + 1

2 �̂x

)
(4)

is just the Coriolis term. Note that the rotational frequency
�x along the x axis is defined from the condition that the
expectation value of the total angular momentum at spin I has
a definite value [19]

J (�x) = 〈��|Ĵx |��〉 =
√

I (I + 1). (5)

The Dirac Hamiltonian contains the average fields determined
by the mesons, i.e., the attractive scalar field S(r)

S(r) = gσσ (r) (6)

and the repulsive time-like component of the vector field
V0(r)

V0(r) = gωω0(r) + gρτ3ρ0(r) + e
1 − τ3

2
A0(r). (7)

A magnetic potential V (r)

V (r) = gωω(r) + gρτ3ρ(r) + e
1 − τ3

2
A(r) (8)

originates from the space-like components of the vector
mesons. Note that in these equations, the four-vector compo-
nents of the vector fields ωµ, ρµ, and Aµ are separated into the
time-like (ω0, ρ0, and A0) and space-like [ω = (ωx, ωy, ωz),
ρ = (ρx, ρy, ρz), and A = (Ax,Ay,Az)] components. In the
Dirac equation the magnetic potential has the structure of a
magnetic field.

The corresponding meson fields and the electromagnetic
potential are determined by the Klein-Gordon equations{−� + m2

σ

}
σ (r) = −gσ

[
ρn

s (r) + ρp
s (r)

]
−g2σ

2(r) − g3σ
3(r), (9){−� + m2

ω

}
ω0(r) = gω

[
ρn

v (r) + ρp
v (r)

]
, (10){−� + m2

ω

}
ω(r) = gω[ jn(r) + jp(r)], (11){−� + m2

ρ

}
ρ0(r) = gρ

[
ρn

v (r) − ρp
v (r)

]
, (12){−� + m2

ρ

}
ρ(r) = gρ[ jn(r) − jp(r)], (13)

−�A0(r) = eρp
v (r), −�A(r) = e jp(r), (14)

with source terms involving the various nucleonic densities
and currents

ρn,p
s (r) =

N,Z∑
i=1

[ψi(r)]†β̂ψi(r), (15)

ρn,p
v (r) =

N,Z∑
i=1

[ψi(r)]†ψi(r), (16)

jn,p(r) =
N,Z∑
i=1

[ψi(r)]†α̂ψi(r), (17)

where the labels n and p are used for neutrons and protons,
respectively. In the equations above, the sums run over
the occupied positive-energy shell-model states only (no-sea
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approximation) [20,21]. Note that the spatial components of
the vector potential A(r) are neglected in the calculations
since the coupling constant of the electromagnetic interaction
is small compared with the coupling constants of the meson
fields.

Two terms in the Dirac equation, namely the Coriolis
operator Ĵx and the magnetic potential V (r) (as well as the
currents jn,p(r) in the Klein-Gordon equations), break time-
reversal symmetry [4]. Their presence leads to the appearance
of time-odd mean fields. However, one should distinguish
time-odd mean fields originating from Coriolis operator and
magnetic potential. The Coriolis operator is always present
in the description of rotating nuclei in the framework of
the cranking model. However, the CRMF calculations, with
only these time-odd fields accounted for, underestimate the
experimental moments of inertia [8,9]. A similar situation also
holds in nonrelativistic theories [3,22]. The inclusion of the
currents jn,p(r) into the Klein-Gordon equations, which leads
to the space-like components of the vector ω and ρ mesons
and thus to magnetic potential V (r), considerably improves
the description of experimental moments of inertia. The effect
coming from the space-like components of the vector mesons
is commonly referred to as nuclear magnetism [6] since the
magnetic potential has the structure of a magnetic field in the
Dirac equation. Note that time-odd mean fields related to NM
are defined through the Lorentz invariance [1] and thus they
do not require additional coupling constants: The coupling
constants of time-even mean fields are used also for time-odd
mean fields.

The goal of the current article is to understand the impact
of nuclear magnetism (NM) on the properties of rotating
nuclei. We will use the terms nuclear magnetism and time-odd
mean fields interchangeably throughout the article. However,
one should keep in mind that the latter term is related
only to the time-odd mean fields produced by the magnetic
potential.

Single-particle orbitals are labeled at rotational frequency
�x = 0.0 MeV by [Nnz�]�sgn. [Nnz�]� are the asymptotic
quantum numbers (Nilsson quantum numbers) of the dominant
component of the wave function. The superscripts sgn to
the orbital labels are used sometimes to indicate the sign
of the signature r for that orbital (r = ±i). Note that the
labeling by means of Nilsson labels is performed only when
the calculated shape of nuclear configuration is prolate or
near-prolate.

Many-particle configurations (further nuclear configura-
tions or configurations) are specified by the occupation of
available single-particle orbitals. In the calculations without
pairing, the occupation numbers n are integer (n = 0 or 1).
In addition, in the CRMF code it is possible to specify the
occupation of either r = +i or r = −i signature of the single-
particle state. In odd-odd nuclei, all single-particle states of
specific (proton and neutron) subsystem with exception of
one are pairwise occupied. We will call this occupied single-
particle state of fixed signature for which its time-reversal
(signature) counterpart state is empty as blocked state in
order to simplify the discussion. The specification of nuclear
configuration by means of listing all occupied single-particle
states is unpractical. Thus, in odd-odd nuclei the Nilsson labels

of the blocked proton and neutron states and their signatures
are used for configuration labeling.

The CRMF equations are solved in the basis of an
anisotropic three-dimensional harmonic oscillator in Cartesian
coordinates characterized by the deformation parameters β0

and γ as well as the oscillator frequency h̄ω0 = 41A−1/3 MeV.
Our selection of the deformation parameters of the basis is
the same as in earlier systematic studies of rotating nuclei in
different regions of nuclear chart (Refs. [9–11,13,18]). γ = 0◦
is used in all calculations. The deformation parameter β0 of the
basis is selected in such a way that it provides the convergence
to the local minimum under study. Thus, β0 = 0.25 is used in
the case of normal-deformed (ND) states, β0 = 0.2 and β0 =
0.5 in the case of superdeformed (SD) states in the A ∼ 60
and A ∼ 150, 190 mass regions, respectively, and β0 = 1.0 in
the case of the hyperdeformed (HD) states. The truncation of
basis is performed in such a way that all states belonging to
the shells up to fermionic NF = 12 and bosonic NB = 20 are
taken into account in the calculations of ND and SD states. The
fermionic basis is increased up to NF = 14 in the calculations
of HD states. Numerical analysis indicates that these truncation
schemes provide sufficient numerical accuracy for the physical
quantities of interest (see Refs. [9–11,13,18]). The majority of
the calculations are performed with the NL1 parametrization
[21] of the RMF Lagrangian since this parametrization has
been used extensively in earlier systematic studies of rotating
nuclei across the nuclear chart [9–11,13,14,18].

To investigate the impact of NM (time-odd mean fields) on
physical observables, the CRMF calculations are performed in
two calculational schemes for fixed configurations:

(i) Fully self-consistent calculations with NM included
(hereafter denoted NM calculations), which take into
account space-like components of the vector mesons
[Eqs. (11), (13), and (8)], currents [Eqs. (11), (13), and
(17)], and magnetic potential V (r) [(Eq. (8)].

(ii) Fully self-consistent calculations without NM (here-
after denoted as WNM calculations), which omit space-
like components of the vector mesons [Eqs. (11),
(13), and (8)], currents in the Klein-Gordon equations
[Eqs. (11) and (13), and magnetic potential V (r)
(Eq. (8)]. The results of the NM and WNM calcu-
lations are always compared for the same nuclear
configuration.

These are the ways in which the effects of time-odd
mean fields can be studied, and as such they are frequently
used in DFT studies of rotating systems, both in relativistic
and in nonrelativistic frameworks [3,4,8,14,22]. One should,
however, keep in mind that if time-odd fields are neglected, the
local Lorentz invariance (Galilean invariance in nonrelativistic
framework [3,23]) is violated. The inclusion of time-odd mean
fields restores the Lorentz invariance.

It is interesting to compare the basic features such as
Lorentz invariance and the definition of the coupling con-
stants of the time-odd channel of the CDF theory discussed
above with the ones of nonrelativistic Skyrme energy-density
functional (EDF) theory. It was recognized in earlier Skyrme
DFT studies that the connection between the coupling con-
stants of time-odd and time-even channels depends on what

034329-3



A. V. AFANASJEV AND H. ABUSARA PHYSICAL REVIEW C 82, 034329 (2010)

entity, namely Skyrme force or energy density functional is
considered to be more fundamental [3,23,24]. If the Skyrme
force is considered more fundamental then the time-odd
constants are determined as a function of time-even constants
[3,24]. However, since the time-even coupling constants are
usually adjusted solely to the time-even observables, the
resulting values of the time-odd coupling constants simply
“fictitious” or “illusory,” as noted already in Ref. [25] (see also
Ref. [24]). On the contrary, in the framework of the Skyrme
energy density functional theory, time-odd properties of the
functional are independent of time-even properties which is a
consequence of broken link between the Skyrme force and the
density functional.

The question of whether Galliean invariance must be
imposed in Skyrme EDF is not yet resolved [23], despite the
fact that it is imposed in many studies. Note that in many
phenomenological approaches, such as the noninteracting or
interacting shell models, Galilean symmetry is not considered,
because the translational motion is not within the scope of such
models [23]. It is also important to mention that the cranking
models based on phenomelogical Woods-Saxon or Nilsson
potentials do not incorporate time-odd mean fields. However,
they successfully describe rotating nuclei [26,27].

Note that the Coriolis term is present in NM and WNM
calculations. This means that the currents [Eq. (17)] are
always present in rotating nuclei. However, it is important
to distinguish the currents induced by the Coriolis term
and the ones which appear due to magnetic potential.
The currents, which appear in the WNM calculations, are
generated by the Coriolis term. Thus, we will call them
Coriolis-induced currents. On the contrary, the currents in
the NM calculations are generated by both the Coriolis
term and magnetic potential. The difference of the cur-
rents in the NM and WNM calculations is attributable
to magnetic potential. Thus, the currents [ jn,p(r)]NM −
[ jn,p(r)]WNM will be called magnetic potential–induced
currents.

In the following, the contribution �ONM−contr (in per-
centage points) of NM to the physical observable O is
defined as

�ONM−contr = ONM − OWNM

ONM
× 100%. (18)

The physical observables, most frequently used in the analysis
of rotating nuclei, are kinematic [J (1)] and dynamic [J (2)]
moments of inertia which are defined as

J (1)(�x) = J

�x

, J (2)(�x) = dJ

d�x

, (19)

where J is the expectation value of the total angular mo-
mentum along the x axis. In the CRMF theory, this quantity
is defined as a sum of the expectation values of the single-
particle angular-momentum operators ĵx of the occupied
states

J =
∑

i

〈i|ĵx |i〉. (20)

Thus, the modifications of the moments of inertia due to
NM can be traced back to the changes of the single-particle
expectation values 〈ĵx〉i = 〈i|ĵx |i〉 and the corresponding

contributions of spin (〈ŝx〉i) and orbital (〈l̂x〉i) angular
momenta [4].

III. NUCLEAR MAGNETISM AND BAND
CROSSING FEATURES

Since NM substantially modifies the single-particle prop-
erties (energies and alignments) [1,4], it is reasonable to
expect that the band crossing features are affected by NM.
In order to study this question, the CRMF (without pairing)
and the CRHB + LN calculations have been performed for
lowest superdeformed (SD) band in 194Pb. In the CRHB + LN
calculations, the D1S Gogny force [28] is used in pairing
channel and an approximate particle number projection is
performed by means of the Lipkin-Nogami method [13].

The unpaired proton band crossing seen in the CRMF
calculations originates from the interaction between the
π [642]5/2+ and π [651]1/2+ orbitals [Fig. 1(a)]. Since NM
increases the single-particle alignment 〈ĵx〉i [Fig. 1(b)] and the
slope of the Routhian for the π [651]1/2+ orbital somewhat
[Fig. 1(a)], the band crossing takes place at lower frequency.
The shift of crossing frequency due to NM is considerable
(120 keV) from 0.465 MeV (WNM) down to 0.345 MeV (NM)
[Fig. 1(a)]. The calculations also suggest that the strength of
the interaction between two interacting orbitals at the band
crossing is modified in the presence of NM as seen in the
change of the energy distance (gap) between these two orbitals
at the crossing frequency [Fig. 1(a)].

An additional mechanism affecting the band crossing
frequencies will be active in odd and odd-odd mass nuclei
as well as in excited configurations of even-even nuclei. In
such configurations, there is at least one single-particle state
the opposite signature of which is not occupied. This results
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FIG. 1. (a) Proton single-particle energies (Routhians) in the self-
consistent rotating potential as a function of rotational frequency �x

obtained in the CRMF calculations with and without NM. They are
given along the deformation path of the lowest SD configuration in
194Pb. Only interacting [651]1/2+ and [642]5/2+ orbitals are shown,
see Fig. 1 in Ref. [13] for full spectra. (b) The expectation values
〈ĵx〉i of the single-particle angular-momentum operator ĵx of the
orbitals shown in (a). Solid and dashed arrows are used to indicate the
frequencies [as well as the energy gap between the interacting orbitals
in (a)] at which the band crossings take place in the calculations with
and without NM, respectively.
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in the currents at �x = 0.0 MeV [5]. The energy splitting
between different signatures of the single-particle states at
no rotation is a typical consequence of these currents (see
Sec. IV A in Ref. [5] for more details). As a result, the energy
gap between interacting orbitals at �x = 0.0 MeV can become
larger or smaller dependent on the impact of the currents on
the single-particle energies of interacting states. Consequently,
this change in the energy gap will translate into higher or
lower band crossing frequencies. Note that for simplicity
we assume that the �x = 0.0 currents will not modify the
alignment properties of interacting orbitals; this translates into
the independence of the single-particle Routhian slope in the
energy versus �x plot [see, for example, Fig. 1(a)] on the
�x = 0.0 currents.

Figure 1(a) can be used to illustrate this mechanism.
Let assume that the �x = 0.0 currents will increase the
energy gap between the π [642]5/2+ and π [651]1/2+ orbitals
at �x = 0.0 MeV: This will lead to higher band crossing
frequencies. However, the band crossing frequencies will
decrease in the case when the energy gap between these
orbitals at �x = 0.0 MeV becomes smaller in the presence
of the �x = 0.0 currents. The assumption that the �x = 0.0
currents do not have an impact on the alignment properties of
interacting orbitals is definitely too simplistic but it allows us
to illustrate the fact that NM can both decrease and increase
the band crossing frequencies. This mechanism is not active
in the configuration of even-even 194Pb nucleus discussed
above since both signatures of all states below the Fermi level
are pairwise occupied. As a result, no current is present at
�x = 0.0 MeV.

The impact of NM on band crossing features is also seen in
the CRHB + LN calculations where the alignment of the pairs
of j15/2 neutrons and i13/2 protons causes the shoulder and
peak in total dynamic moment of inertia J (2) [Fig. 2(c)] (see
also Ref. [13]). Note that each of these two alignments creates
a peak in the dynamic moment of inertia of corresponding
subsystem. NM shifts the paired neutron band crossing to
lower frequencies by 70 keV from 0.485 MeV (WNM) to
0.415 MeV (NM). Paired proton band crossing lies in the
calculations with NM at �x = 0.535 MeV, while only the
beginning of this crossing is seen in the calculations without
NM [Fig. 2(c)].

The origin of this effect is twofold. Similar to the unpaired
calculations, the part of it can be traced to the fact that
NM increases the expectation values 〈ĵx〉i of the orbitals
located at the bottom of the shell (the discussed orbitals
are of this kind) [4]. The corresponding larger slope of the
quasiparticle Routhians causes the shift of the crossing to lower
frequencies. However, an additional contribution comes from
the modification of the pairing by NM. There is a difference
in the pairing energies calculated with and without NM which
increases with rotational frequency, see Figs. 3(c) and 3(d).
The pairing in the calculations with NM is weaker. This can
be explained by the increase of 〈ĵx〉i of the orbitals located at
the bottom of the shell due to NM (see above). The gradual
breaking of high-j pairs proceeds faster, which is reflected
in a faster decrease of pairing with increasing �x . Thus
we can specify this effect as an antipairing effect induced
by NM.
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FIG. 2. Kinematic (J (1)) and dynamic (J (2)) moments of inertia
for the lowest SD configuration in 194Pb obtained in the calculations
with and without NM. Proton and neutron contributions to these
quantities are indicated by π and ν, while total moments are indicated
by tot. Panels (a) and (b) show the results obtained in the calculations
without pairing, while panels (c) and (d) show the results of the
calculations within the CRHB + LN framework. Solid and dashed
arrows are used to indicate the frequencies at which the band crossings
take place in the calculations with and without NM, respectively.

These considerable differences in the crossing frequencies
obtained in the calculations with and without NM cannot
be attributed to the differences in equilibrium deformations,
since calculated transition quadrupole moments Qt and mass
hexadecapole moments Q40 obtained in the calculations with
and without NM differ only marginally before band crossing;
see Figs. 3(a) and 3(b).

The influence of time-odd mean fields on band crossing
features has been studied by means of a schematic non–self-
consistent model based on the Skyrme forces in Ref. [7].
In this study, time-odd fields emerging from the S2 and
−S�S terms of the Skyrme Hamiltonian shift the alignment of
the i13/2 neutron pair to higher frequencies in 158Dy. On the
contrary, this crossing appears at lower frequencies in the
CRHB + LN calculations when NM is taken into account.
This difference is not surprising considering the fact that
time-odd mean fields are not well defined in nonrelativistic
density functional theories [3,29]. It was also suggested in
the cranked Skyrme Hartree-Fock framework that time-odd
mean fields may be responsible for band crossing in yrast
superdeformed band of 60Zn [30]. However, this crossing
is described as paired band crossing in the CRHB + LN
calculations [31].

Above discussed CRMF and CRHB + LN examples clearly
show that the modifications of band crossing features (crossing
frequencies and the features of the kinematic and dynamic
moments of inertia in band crossing region) caused by NM
are substantial and depend on the underlying modifications
of single-particle properties such as alignments and single-
particle (quasiparticle) energies.
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FIG. 3. Transition quadrupole moments Qt (a), mass hexade-
capole moments Q40 (b), proton and neutron pairing energies
Epairing = −1/2Tr (�κ) (c) and proton and neutron particle number
fluctuations 〈(�N̂)2〉 (d) of the lowest SD solution in 194Pb obtained
in the calculations with and without NM. Thick and thin lines in
the upper panels are used for the results obtained in the CRHB and
CRMF theories, respectively. On the bottom panels, thick and thin
lines are used for neutron and proton quantities, respectively.

IV. PARTICLE NUMBER AND DEFORMATION
DEPENDENCIES OF THE IMPACT OF NUCLEAR
MAGNETISM ON THE MOMENTS OF INERTIA

In the current section, the particle number and deformation
dependencies of the impact of NM on the kinematic moments
of inertia are discussed in detail. We consider the contribution
of NM to kinematic moment of inertia, namely the [J (1)

NM −
J

(1)
WNM]/J (1)

NM quantity, and its variations as a function of particle
number and deformation. In addition, we investigate how
close fully self-consistent value of the kinematic moment
of inertia comes to the rigid-body moment of inertia Jrig.
The latter quantity is obtained in one-dimensional cranking
approximation with the rotation defined around the x axis
from the calculated density distribution ρ(r) by

Jrig =
∫

ρ(r)(y2 + z2) d3r. (21)

The contributions of NM to kinematic moment of inertia
(the [J (1)

NM − J
(1)
WNM]/J (1)

NM quantity) for normal deformed bands
in a number of isotope chains with proton number Z � 50
are shown as a function of neutron number in Fig. 4. Only
the cases in which the nuclear configurations are the same
in the calculations with and without nuclear magnetism are
shown in this figure. NM typically increases the calculated
kinematic moments of inertia by 10–30%. However, this
increase is around 40% in the N = 108, 110 W isotopes.
Considerable fluctuations of the [J (1)

NM − J
(1)
WNM]/J (1)

NM quantity
as a function of neutron number seen in some isotope chains
are due to the changes in underlying single-particle structure.
Large changes in the [J (1)

NM − J
(1)
WNM]/J (1)

NM quantity are seen
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FIG. 4. (Color online) The contribution (in percentage points)
of NM to the kinematic moments of inertia of nuclei in different
isotope chains at normal deformation. The results for the lowest in
energy solutions are shown at rotational frequency �x = 0.3 MeV.
The frequency has been fixed at this value in order to make the
comparison with the results of Ref. [32] straightforward.

on going from the isotope with neutron number N to the
isotope with N + 2 when two neutron single-particle orbitals,
by which the configurations of compared nuclei differ, have the
expectation values of the single-particle angular momenta 〈ĵx〉i
strongly affected by NM. The opposite is also true when two
neutron single-particle orbitals, by which the configurations
of compared nuclei differ, have the expectation values of the
single-particle angular momenta 〈ĵx〉i that are only marginally
affected by NM. Note that in some cases proton configurations
of two neighboring nuclei with neutron numbers N and N + 2
are also different due to the deformation changes; this also
contributes into the fluctuations of the [J (1)

NM − J
(1)
WNM]/J (1)

NM
quantity as a function of neutron number.

One can also extract from Fig. 4 the dependence of the
contributions of NM to kinematic moments of inertia on proton
number Z by considering the results of the calculations at
constant value of neutron number N . Such analysis reveals
the fluctuations in the [J (1)

NM − J
(1)
WNM]/J (1)

NM quantities which
are similar to the ones discussed above. The origin of these
fluctuations can again be traced back to the changes (as
a function of proton number) in underlying single-particle
structure.

Figure 5 compares rigid-body moments of inertia Jrig

[Eq. (21)] with fully microscopic kinematic moments of inertia
J

(1)
NM [Eqs. (19) and (20)] obtained in the calculations with

NM using the [Jrig − J
(1)
NM]/Jrig quantity. One can see that

considerable deviations (in majority of the cases being in
the window of ±30% but reaching ±60% in some nuclei)
between these two moments of inertia are observed at normal
deformation.

The analysis within the framework of the periodic orbit
theory [32] concluded that the deviations of the moments of
inertia from the rigid-body value at high spin are determined
by the shell structure of a system of independent fermions
confined by a leptodermous potential. For the case of prolate
deformation and the rotation perpendicular to the symmetry
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FIG. 5. (Color online) The difference (in percentage points)
between the rigid-body moments of inertia Jrig and kinematic
moments of inertia calculated with NM for the nuclear configurations
shown in Fig. 4.

axis (the majority of the cases studied in the current article
fall under this category), the meridian orbits determine the
shell moments of inertia because only they enclose rotational
flux [32].

Large similarities are seen between the results of our
calculations and the ones based on the cranked Woods-Saxon
potential in Ref. [32]. For example, the right bottom panel
in Fig. 10 of Ref. [32] shows the difference Jpper − Jrig

between the moments of inertia Jpper calculated in the cranked
Woods-Saxon potential and rigid-body moments of inertia Jrig

for the case of prolate deformation and the rotation around
the axis perpendicular to the symmetry axis. If one corrects
for the difference in the representation of calculated quantities
{(Jpper − Jrig) in Ref. [32] and [Jrig − J

(1)
NM]/Jrig in the present

article}, then one can see that our results show similar shell
dependence of the [J (1)

NM − J 1
rig] quantities as the one seen

in Fig. 10 of Ref. [32]. Some differences between these
two calculations are in part due to simplistic method of the
calculation of the rigid-body moments of inertia in Ref. [32]
(see Sec. II B of Ref. [32] for details).

The CRMF calculations describe rather well the kinematic
moments of inertia of normal-deformed [12,33] and smooth-
terminating [1,33] bands at high spin where the pairing is
negligible. Experimental data on kinematic moments of inertia
of normal-deformed rotational bands at low spin [which are
strongly affected by pairing] are also well described in the
cranked relativistic Hartree-Bogoliubov calculations [17,34].
These results together with the ones presented in the current
article strongly support the conclusion that weakly and normal-
deformed nuclei show the moments of inertia which strongly
deviate from the rigid-body value (see also Refs. [26,32]).

Figures 6 and 7 show the results of calculations for yrast
SD configurations in the A ∼ 150 mass region of superde-
formation and for yrast hyperdeformed (HD) configurations
in the Z = 40–58 part of the nuclear chart, respectively. It is
clearly seen that the [J (1)

NM − J
(1)
WNM]/J (1)

NM and [Jrig − J
(1)
NM]/Jrig

quantities at these extreme deformations show much smaller
fluctuations than the ones at normal deformation. Indeed, the
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body moments of inertia and kinematic moments of inertia calculated
with inclusion of NM. The results for yrast SD configurations in the
A ∼ 150 mass region of superdeformation are shown at rotational
frequency �x = 0.6 MeV for nuclei which were previously analyzed
in the CRMF calculations in Refs. [9,10].

contribution of NM into kinematic moment of inertia at SD
and HD is in a narrow 20–27% range (Figs. 6 and 7), while
it covers a much larger 9–43% range at normal deformation
(Fig. 4). In addition, the values of kinematic moment of inertia
calculated with NM are typically within 5% of the rigid-body
value for the moment of inertia at SD and HD (Figs. 6 and 7),
while much larger fluctuations (typically within 40% of the
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FIG. 7. (Color online) The same as in Fig. 6 but for the
hyperdeformed configurations. The results of the calculations are
shown for the yrast HD configurations, studied in the systematic
survey of the hyperdeformation in the Z = 40–58 region of the
nuclear chart [15,18], at spins at which they become yrast (rotational
frequency �x ≈ 0.8–1.0 MeV).
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rigid-body value) are seen in the case of normal deformation
(Fig. 5).

Microscopic origin of these features can be traced back to
the underlying shell structure. The analysis within the periodic
orbit theory [32] shows that the single-particle orbits that
cause shell structure of prolate superdeformed nuclei do not
carry rotational flux if the axis of rotation is perpendicular
to the symmetry axis. Therefore, the moments of inertia
of the SD bands in such nuclei should be equal to the
rigid-body value [32]. Such conclusion is in general supported
by our microscopic calculations which show that the calculated
moments of inertia are typically within 5% of the rigid-
body value. The experimental deviations (obtained under spin
assignments of Refs. [10,35]) from the rigid-body values are
about 6% or less in the A ∼ 150 region of superdeformation
(see Fig. 5 in Ref. [32]). We also expect that similar mechanism
is also responsible for the observed features of the moments of
inertia at HD. However, the periodic orbit theory analysis of
such features is not available and it goes beyond the scope
of the current article.

V. CURRENTS IN INTRINSIC (ROTATING) FRAME OF
COLLECTIVELY ROTATING NUCLEI

Current distributions in the intrinsic (rotating) frame have
been studied earlier in several publications. It is well known
that there are no currents in the intrinsic frame if the rigid
nonspherical body rotates uniformly (rigid rotation) (see
Sec. IV A-V in Ref. [36]). The general aspects of the velocity
(current) fields have been discussed in detail in the framework
of single-particle Schrödinger fluid [37], which exhibits a
remarkably rich variety of fluid dynamical features, including
compressible flow and line vortices. Nuclear intrinsic vorticity
and its coupling to global rotations have been studied within
the so-called Routhian approach both in the semiclassical
approach [38,39] and in fully self-consistent cranked Hartree-
Fock and Hartree-Fock-Bogoliubov approaches based on the
Skyrme force [40]. The current distributions in rotating frame
have been studied in phenomenological cranking approaches
based on harmonic oscillator [38,41–43] and Nilsson [44]
potentials and in self-consistent cranking approaches based
on the Skyrme force [40,45]. Note that the intrinsic cur-
rent field (as any vector field according to the Hemholtz’s
theorem) can be split into irrotational and intrinsic vortical
fields [39].

Figure 8 shows typical current distributions obtained in
the CRMF calculations for selected normal-, super-, and
hyperdeformed nuclei. Despite the fact that the moments
of inertia of the SD and HD configurations are very close
to the rigid-body values (Sec. IV), the presence of strong
vortices1 demonstrates the dramatic deviation of the currents
from rigid rotation. For example, the HD configurations in
92Mo [Fig. 8(a)] and 108Cd [Fig. 8(b)] show two strong
vortices centered at z ≈ ±2 fm. Note that the vortices

1The existence of vortices at these points implies nonvanishing
current circulations which are defined as C(r) = ∇ × j (r) [43].

(i.e., the curl) of the current fields are aligned or antialigned
along a principal x axis of the ellipsoid because of the use of
one-dimensional cranking approximation. On the other hand,
the HD configuration in 118Te [Fig. 8(c)] shows one very
strong vortice centered at z = 0 fm, and 2 weaker vortices
centered at z ≈ ±4.5 fm. All three vortices rotate clockwise.
The currents in the rotating frame of reference that is fixed
to the body are caused by quantized motion of the fermions.
Thus, the differences between the currents in 92Mo and 108Cd
on one hand and the ones in 118Te on the other hand are
caused by the differences in the underlying single-particle
configurations. Contrary to the HD configurations, the current
distributions in the SD configurations of 142Sm, 148Gd, and
152Dy are characterized by a single very strong central vortice
[Figs. 8(d)–8(f). Current patterns in normal deformed nuclei
100Sn and 118Ba look more disordered than in the SD and HD
nuclei [Figs. 8(g) and 8(h)]. This is because three (four) large
vortices in 100Sn (118Ba) are spread out over the volume of the
nucleus. On the other hand, the current pattern is dominated
by a single large central vortice in the ND configuration of
136Nd [Fig. 8(i)].

Note that all considered configurations are characterized
by the weak current in the surface area. On the contrary, the
average intrinsic current flows mainly in the nuclear surface
in the semiclassical description of currents in normal and
superfluid rotating nuclei [38]. This underlines the importance
of quantum mechanical treatment of the currents.

The total current is the sum of Coriolis-induced and mag-
netic potential–induced currents. Total current is dominated
by the Coriolis-induced currents; magnetic potential–induced
currents represent approximately 5–20% (30%) of total current
in the HD and SD [ND] nuclei shown in Fig. 8. The only
exception is 92Mo, in the central region, of which magnetic
potential–induced currents are larger than Coriolis-induced
currents by a factor close to 2. The spatial distribution of
Coriolis-induced and magnetic potential–induced currents is
similar in the majority of nuclei shown in Fig. 8. However,
the spatial distribution of these two types of currents differ
substantially in 92Mo, 146Gd, and 118Ba.

Comparing current patterns shown in Fig. 8, one can
conclude that for a system of noninteracting fermions, the
total current, being the sum of the single-particle currents
[see Eq. (17)], is, in general, quite complicated. This is a
consequence of the fact that the localization, the strength, and
the structure of the current vortices created by a particle in
a specific single-particle state depend on its nodal structure
(see Ref. [43] and Sec. III C in Ref. [5]). In this respect it is
important to mention the results of Ref. [43] which showed
that Coriolis-induced current for a single-particle in a slowly
rotating anisotropic harmonic oscillator potential has, in fact,
a rather simple structure. It exhibits a number of localized
circulations with precisely predictable centers and sense of
rotation. The centers of the circulations are found at the nodes
and peaks of the oscillator eigenfunctions, thus, forming a
rectangular array somewhat similar to a crystal lattice.

The wave function of the CRMF approach is more compli-
cated than that of a rotating anisotropic harmonic oscillator
because of the presence of spin-orbit interaction and the
split of the wave function into large and small components.
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FIG. 8. (Color online) Total neutron current distributions jn(r) in the intrinsic frame in the y-z plane for several normal-deformed (ND)
(upper row), superdeformed (SD) (middle row), and hyperdeformed (HD) (bottom row) configurations in different nuclei. They are shown at
x ≈ 0.48 fm in the case of ND and SD configurations and at x ≈ 0.42 fm in the case of HD configurations. The results of calculations are shown
at rotational frequencies �x = 0.3 MeV and �x = 0.5 MeV for the ND and SD configurations, respectively, and at the spin (�x ∼ 1.0 MeV)
at which the HD configurations become yrast (see Ref. [18] for details) in the case of HD configurations. The currents in panels (d)–(g) and
(i) are plotted at arbitrary units for better visualization. The currents in other panels are normalized to the currents in panels (d)–(g) and (i)
by using factor F. This factor is chosen in such way that the current distribution for every nucleus is clearly seen. The shape and size of the
nucleus are indicated by density lines which are plotted in the range 0.01–0.06 fm−3 in step of 0.01 fm−3.

Moreover, there are magnetic potential–induced currents in
addition to Coriolis-induced ones. However, the analysis of
single-particle vortices in rotating nuclei in general confirms
the observations made in Ref. [43]. The typical features of the
single-particle currents in the CRMF approach are considered
below on the example of three neutron single-particle states
occupied in the yrast SD configuration of 152Dy. The current
and density distributions of these states are shown in Fig. 9.
Let us first consider the ν[642]5/2+ state. The comparison
of Figs. 9(c) and 9(d) reveals that the rotation of a nucleus
considerably increases the currents in this state. On the other
hand, the density distribution is almost unaffected by rotation.
The rotation of a nucleus also leads to a change in the
structure of the circulations. At �x = 0.0 MeV, there are three
weak circulations centered around the nodes at (y = 0 fm,

z = 0 fm) and (y = 0 fm, z ≈ ±4 fm); they are due to mag-

netic potential. Only two much stronger circulations are
visible at �x = 0.5 MeV: they are centered around the
nodes located at (y = 0 fm, z ≈ ±2.5 fm). This change of
the structure of vortices can be attributed to additional
currents produced by the Coriolis term as well as to the
change of the structure of wave function with increasing
rotational frequency. The wave function in terms of two
largest components has the 86%[642]5/2+5%[633]5/2 and
63%[642]5/2+13%[651]3/2 structure2 at �x = 0.0 MeV and
�x = 0.5 MeV, respectively.

2The percentage points show the weights of respective components
of the wave function in the total structure of the wave function. Note
that only two largest components of the wave function are displayed.

034329-9



A. V. AFANASJEV AND H. ABUSARA PHYSICAL REVIEW C 82, 034329 (2010)

Symmetry axis Z(fm)

Y
(f

m
)

152
Dy

[411]1/2+
Ω  x = 0.0

(e)

F=1.0

−10 −5 0 5 10
−10

−5

0

5

10

Symmetry axis Z(fm)

152
Dy

[411]1/2+
Ω  x = 0.5

(f)

F=1.0

− 10 −5 0 5 10
0

1

2

3

4

5

Y
(f

m
)

152
Dy

[642]5/2+
Ω  x = 0.0

(c)

F=15.0

− 10

−5

0

5

10

152
Dy

[642]5/2+
Ω  x = 0.5

(d)

F=15.0

0

1

2

3

4

5

Y
(f

m
)

152
Dy

[770]1/2−
Ω  x = 0.0

(a)

F=5.0

− 10

−5

0

5

10

1 2 3 4 5 

152
Dy

[770]1/2
−

Ω  x = 0.5

(b)

F=5.0

0

1

2

3

4

5

FIG. 9. (Color online) Current distributions jn(r) produced by single neutron in indicated single-particle states of the yrast SD configuration
in 152Dy at rotational frequencies �x = 0.0 MeV (left panels) and �x = 0.5 MeV (right panels). The shape and size of the nucleus are indicated
by density line which is plotted at ρ = 0.01 fm−3. The currents in panels (e) and (f) are plotted at arbitrary units for better visualization. The
currents in other panels are normalized to the currents in panels (e) and (f) by using the factor F. The currents and densities are shown in the
intrinsic frame in the y-z plane at x = 0.48 fm. The single-neutron density distributions due to the occupation of the indicated Nilsson state are
shown by the colormap. Note that slightly different colormap is used in panel (a) for better visualization of densities.

034329-10



TIME-ODD MEAN FIELDS IN COVARIANT DENSITY . . . PHYSICAL REVIEW C 82, 034329 (2010)

Even much large changes are induced by rotation into
the structure of the ν[411]1/2+ state. The wave function
in terms of two largest components has the 57%[411]1/2 +
23%[651]1/2 and 84%[411]1/2 + 13%[411]3/2 structure at
�x = 0.0 MeV and �x = 0.5 MeV, respectively. One can
see that the �N = 2 interaction, leading to a considerable
admixture of the [651]1/2 component into the structure of
wave function, plays a very important role at no rotation. The
change in the wave function induced by rotation leads to a
considerable changes both in the nodal structure of density
distribution and in the current distribution [compare Fig. 9(e)
with Fig. 9(f)].

The wave function of the ν[770]1/2− state is changed
considerably by the rotation: Its structure in terms of
two largest components is 62%[770]1/2 + 17%[761]1/2 at
�x = 0.0 MeV and 39%[770]1/2 + 28%[761]3/2 and �x =
0.5 MeV. The increase of rotational frequency does not lead
to appreciable modifications in the density distribution but
considerably decreases the strength of the currents and changes
the shape of the circulations [see Figs. 9(a) and 9(b). The latter
is a consequence of additional Coriolis-induced currents. It
is interesting that for this state the currents show maximum
strength at the densities far below the maximum densities.
This most likely explains relative weakness of the currents
in this state as compared with those in the ν[411]1/2+ state.
On the contrary, for many single-particle states the strongest
currents are seen at or close to local increases in the densities
[see Figs. 9(c), 9(d), 9(f), and 9(g) in the current article and
Fig. 8 in Ref. [5]].

Our calculations show that the moments of inertia of the
SD and HD configurations are very close to rigid-body values
(Sec. IV). However, the intrinsic currents show the dramatic
deviations from rigid rotation. Usually the deviations from the
rigid-body moment of inertia imply that the flow pattern must
substantially deviate from the current of a rigidly rotating mass
distribution, i.e., there are strong net currents in the body-fixed
frame [32]. However, the opposite is not true: the closeness of
the moments of inertia to rigid-body value does not necessary
imply that the current distribution should correspond to rigid
rotation. On a microscopic level, the building blocks of the
total current, namely the single-particle currents, certainly do
not have a rigid-flow character; on the contrary, they have
vortex-flow character (see Fig. 9).

Earlier nonrelativistic studies also point to the above-
discussed relations between currents and rigid-body moments
of inertia. For example, it was shown in Ref. [42] for the
Schrödinger equation that single-valuedness requirement for
the wave function implies nonexistence of rigid flow in
a quantum fluid. Furthermore, it was demonstrated for a
system of independent particles employing cranked harmonic
oscillator potential that the current is not of the rigid-flow type
even when the moment of inertia assumes the rigid-body value
(Ref. [42]; see also Ref. [41]).

Current distributions shown in Figs. 8 and 9 are typical
for collective rotation around the x axis perpendicular to
the symmetry axis. Note that the alignment of the angular-
momentum vector of a particle is specified along the x axis
in the one-dimensional cranking approximation (see also
discussion in Sec. IIIC of Ref. [5]). The � = 1/2 orbitals

are aligned with the axis of rotation (x axis) already at no
rotation. As a result, the single-particle angular-momentum
vector of the � = 1/2 orbitals performs the precession around
the x axis, thus orienting the currents predominantly in the
y-z plane. In addition, the � = 1/2 orbitals show vortices
which are concentrated in the central region of nucleus. For
the configurations with � �= 1/2, this mechanism of alignment
becomes active only when the rotation sets up. Moreover, with
increasing �, the densities and currents are pushed away from
the axis of symmetry of the nucleus toward the surface area
[Figs. 9(c) and 9(d) and Fig. 8 in Ref. [5]].

VI. FREQUENCY AND CONFIGURATION
DEPENDENCIES OF THE IMPACT OF NUCLEAR
MAGNETISM ON THE MOMENTS OF INERTIA

In this section, the frequency dependence of the impact of
NM on the moments of inertia is studied using considerable
number of SD and highly deformed configurations in 60Zn
obtained in unpaired CRMF calculations. The properties of
yrast SD band in this nucleus were well described in this
formalism above band crossing which takes place at �x ∼
1 MeV [11,46], while the CRHB + LN formalism gave a
good description of this band in the band crossing region [31].
The neutron Routhian diagram for this configuration obtained
in the calculations with the NLSH parametrization [48] is
shown in Fig. 1 of Ref. [11]; the results with the NL1
parametrization are similar to the ones obtained with NLSH.
All proton and neutron states below the Z = 30 and N = 30
SD shell gaps are occupied in this configuration (note that
proton Routhian diagram is similar to the neutron one). The
configurations are labeled by the shorthand notation [n,p],
where n (p) is the number of occupied g9/2 neutrons (protons).
In this notation, the yrast SD band has the [2,2] configuration.
Excited configurations under consideration are built by means
of proton or/and neutron particle-hole excitations across the
Z = 30 and N = 30 SD shell gaps.

The results of calculations for contributions of NM into
dynamic [�J

(2)
NM−contr] and kinematic [�J

(1)
NM−contr] moments

of inertia are shown in Fig. 10. At low frequencies, the
average contribution of NM into kinematic moment of inertia
is slightly larger than 20% [Fig. 10(a)] and the �J

(1)
NM−contr

quantities show considerable dependence on configuration.
The origin of the latter observation can be traced back to
the specific features of some occupied single-particle orbitals.
Let us consider as an example the [2,2] configuration. At
low frequencies, the �J

(1)
NM−contr values for this configuration

are considerable higher than the �J
(1)
NM−contr values averaged

over all calculated configurations. This is due to the fact
that upsloping branches of the proton and neutron [440]1/2+
orbitals (in the �x = 0.0–0.7 MeV range, see Fig. 1 in
Ref. [11]), characterized by the expectation values of the
single-particle angular momentum 〈ĵx〉i strongly affected by
NM, are occupied at �x � 0.6 MeV. At frequencies �x ∼
0.8 MeV, these orbitals strongly interact with proton and
neutron [431]3/2+ orbitals and exchange the character of
the wave function. This leads to unpaired band crossing (see
Ref. [11]) which is seen in considerable changes of �J

(1)
NM−contr
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groups of configurations characterized by the occupation of g9/2

protons and neutrons.

and �J
(2)
NM−contr quantities. The band crossing process is

completed above �x = 1.1 MeV, where the orbital labeled as
[440]1/2+ is downsloping as a function of rotational frequency
(see Fig. 1 in Ref. [11]). At these frequencies, the �J

(1)
NM−contr

quantity for the [2,2] configuration is slightly below the value
of �J

(1)
NM−contr averaged over all calculated configurations

[Fig. 10(a)]. Note that this unpaired band crossing is not active
in the [1] configurations because neither proton nor neutron
[440]1/2+ orbitals are occupied. The calculations also suggest
that it is considerably suppressed in the [3,3] configurations
due to the changes in the deformations and currents induced by
the occupation of third g9/2 orbital both in proton and neutron
subsystems. However, the presence of this crossing is still
visible [especially, in the �J

(2)
NM−contr quantity] in some [2,3]

configurations.
With increasing rotational frequency, the average contribu-

tion of NM into kinematic moments of inertia decreases and
falls below 15% at �x ∼ 2.5 MeV [Fig. 10(a)]. In addition,
the configuration dependence of the �J

(1)
NM−contr quantities is

weaker than the one at low frequencies. At these frequencies,
the majority of occupied single-particle orbitals are either
completely aligned or very close to complete alignment.
However, NM do not modify the expectation values of the
single-particle angular momenta 〈jx〉i of completely aligned
orbitals [14]. As a result, only remaining orbitals, which
are still aligning, contribute into �J

(1)
NM−contr. The combined

contribution of these orbitals into �J
(1)
NM−contr is smaller than

the one at lower frequencies because the alignment of these
orbitals is not far from complete.

The impact of NM on the dynamic moments of inertia
is shown in Fig. 10(b) and it clearly displays much more
complicated pattern as compared with the impact of NM
on the kinematic moments of inertia. The irregularities in
the �J

(2)
NM−contr quantities are related to the band crossings.

For example, the dip in the �J
(2)
NM−contr values of the [2,2]

configuration at �x ∼ 0.9 MeV is caused by the unpaired
band crossings which take place at different frequencies in
the calculations with and without NM. Similar deviations
from smooth trend as a function of rotational frequency are
visible in other configurations. However, one can see that
for some configurations the contribution of NM into dynamic
moment of inertia is a smooth function of rotational frequency
over extended frequency range. In this frequency range, the
configurations remain unchanged. It is interesting that for some
of these configurations the contributions of NM into dynamic
moments of inertia are either close to zero or even negative;
such features have not been seen in the previous analyses of
the impact on time-odd mean fields on the dynamic moments
of inertia [3,4,8,9].

The impact of NM on other physical observables of interest
is shown in Fig. 11, in which the results of the NM and
WNM calculations are compared as a function of total angular
momentum. One can see that the quadrupole deformations β2

[Fig. 11(a)] obtained in the calculations with and without NM
differ by less than 3%. The only exception is configuration B,
for which this difference reaches 7%. The difference in mass
hexadecapole moments Q40 obtained in the calculations with
and without NM is larger but typically below 10% [Fig. 11(c)];
the only exception is configuration B, for which this difference
reaches 20% at I ∼ 20h̄. The γ deformations obtained in the
calculations with and without NM differ by less than 1.5◦

[Fig. 11(b)]. The only significant difference is seen in the total
binding energies [Fig. 11(d)], where the NM solution is more
bound than the WNM solution. This effect, which is due to the
modifications in the moments of inertia induced by NM, is very
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large: additional binding due to NM reaches 7–8 MeV at spin
I = 30h̄. These systematic results are consistent with the ones
obtained in the previous studies of single SD configurations
in 152Dy [4] and single terminating configurations in 20Ne
[14]. They also give a hint why the cranked models based
on the phenomenological potentials like Woods-Saxon or
Nilsson, which do not include time-odd mean fields [3], are
so successful in the description of experimental data. When
considered as a function of spin the deformation properties of
the rotating system are only weakly affected by time-odd mean
fields, and the proper renormalization of the moments of inertia
[26] takes care of the E versus angular-momentum curve.

VII. PARAMETRIZATION DEPENDENCE
OF THE CONTRIBUTIONS OF NM TO THE

MOMENTS OF INERTIA

It was shown in Ref. [5] that additional binding due to
NM in one-particle states only weakly depends on the RMF
parametrization; this is also seen in the analysis of terminating
states in Ref. [14]. In this context, it is important to understand
how the contributions of NM to the kinematic and dynamic
moment of inertia depend on the RMF parametrization.

The dependence of the dynamic moments of inertia on
the RMF parametrization has earlier been analyzed on the
example of the SD bands in 151Tb and 143Eu in Ref. [10] and
in 58Cu and 60Zn in Ref. [11] employing the NL1, NL3 [47],
and NLSH [48] parametrizations of the RMF Lagrangian.
The latter study includes also the results of calculations for
kinematic moments of inertia. Additional calculations for these
nuclei have also been performed with NL3* [33] and NLZ [49]
parametrizations for the current article. As follows from these
results, the kinematic and dynamic moments of inertia depend
only weakly on the parametrization of the RMF Lagrangian.
Indeed, at a given frequency all the results for kinematic
(dynamic) moments of inertia fit into the window which have
a width equal to approximately 5% (≈8%) [approximately
6% (≈10%)] of the value of kinematic (dynamic) moment of
inertia in the A ∼ 150 (A ∼ 60) region of superdeformation.
The larger spread of calculated values in the A ∼ 60 mass
region are most likely due to (i) larger softness of potential
energy surfaces in these nuclei as compared with the ones in the
A ∼ 150 region of superdeformation and (ii) to larger relative
importance of each particle and, thus, model uncertainties in
the description of their single-particle energies.

Figure 12 shows the dependence of the contributions of
NM to the kinematic and dynamic moments of inertia on the
parametrization of the RMF Lagrangian. For simplicity of
comparison, these quantities are normalized to those obtained
in the calculations with the NL1 parametrization. Very weak
dependence (within 5% window with respect of the NL1
results) of the contribution of NM to the kinematic moment of
inertia on the RMF parametrization is seen in whole frequency
range in 152Dy [Fig. 12(c)] and at frequencies �x � 0.75 MeV
in 60Zn [Fig. 12(a)]. In the latter nucleus the deviation from the
NL1 results reaches 10% at lower frequencies. The possible
reasons for the larger dependence of calculated quantities on
the parametrization in 60Zn has been discussed above. On the
other hand, the deviations from the NL1 results are larger for
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FIG. 12. (Color online) The contribution of NM to the physical
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(the [ONM − OWNM]param quantity) normalized to the one obtained in
the NL1 parametrization. The results of calculations are shown for
yrast SD configurations in the 60Zn and 152Dy nuclei. Note that band
crossing region is excluded in (b).

the dynamic moments of inertia. These deviations can be as
large as 8% at highest frequencies in the yrast SD configuration
of 152Dy [Fig. 12(d)] and as large as 20% in the yrast
SD configuration in 60Zn [Fig. 12(b)]. Considering that the
dynamic moment of inertia is related to the second derivative
of the total energy with respect of spin, a larger dependence
of the dynamic moment of inertia on the parametrization is
expected.

These values can be used to estimate the uncertainty in the
definition of the moments of inertia in the CRMF calculations
due to the uncertainty in NM. The latter is related to the
dependence of the [ONM − OWNM]param quantities (Fig. 12)
on the RMF parametrization discussed above. Dependent on
nuclear system and configuration, the NM contribution to the
total kinematic and dynamic moments of inertia is approxi-
mately 10–25% (Secs. IV and VI). Thus, the uncertainty of
the definition of the absolute value of the total dynamic and
kinematic moments of inertia due to the uncertainty in the
definition of NM is modest, being in the range of 0.5–5.0%.
The fact that the moments of inertia of rotational bands of
different structure in the unpaired regime are well described
(typically within 5% of experimental data [1,9–12,50]) in the
CRMF calculations strongly suggests that NM and its impact
on the moments of inertia is reasonably well defined in the
CDFT theory.

VIII. TERMINATING STATES

The majority of rotational bands which do not have large
deformation at spin zero will terminate in a noncollective
terminating state at Imax [26,51,52].3 The regime of nuclear

3Only recently the evidences for nontermination of some rotational
bands at Imax have been found [53].
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FIG. 13. (Color online) Neutron current distributions jn(r) in the intrinsic frame in the y-z plane (at x = 0.416 fm) (left panel), in the
x-z plane (at y = 0.416 fm) (middle panel), and in the x-y plane (at z = 0.457 fm). These distributions are shown for the state of 47V terminating
at I = 17.5+. The currents are plotted at arbitrary units for better visualization. The shape and size of the nucleus are indicated by density lines
which are plotted in the range 0.01–0.06 fm−3 in increments of 0.01 fm−3. The vertical and horizontal lines in the left panel show the cross
sections at which the currents in the z-x plane (middle panel) and in the y-x plane (right panel) are plotted, respectively.

motion in terminating state is usually referred as “non-
collective rotation” [26,54]. This is because of the fact that
for an axially symmetric potential, the nucleon orbitals are
not influenced by the rotation around the symmetry axis of
this potential; thus, collective rotation about that axis is not
possible. Non-collective rotation is also realized in the aligned
states such as “yrast traps” (or “yrast isomers”) [55–57]. The
study of terminating states in the context of understanding
of time-odd mean fields is of considerable interest because
of several reasons. First, time-odd mean fields provide an
additional binding to the energies of the specific configuration,
and this additional binding increases with spin and has its
maximum exactly at the terminating state [14]. This suggests
that the terminating states can be an interesting probe of
time-odd mean fields [14,27,58] provided that other effects
can be reliably isolated [14]. Second, at the band termination,
the NM does not modify either total angular momentum or
the expectation values of the single-particle angular momenta
〈ĵx〉i [14]. Third, terminating state is a (multi-)particle +
(multi-)hole noncollective state in which the angular momenta
of all particles and holes outside the core are aligned along the
symmetry axis.

We will consider in this section the π (d3/2)−1
1.5(f7/2)4

8 ⊗
ν(f7/2)4

8 terminating state in 47V, which has Imax = 17.5+, as
an example. The structure of this state is given with respect of
the 40Ca core. This state is characterized by the largest impact
of NM on the binding energies among terminating states
studied in Ref. [14]. It is nearly spherical with the quadrupole
deformation β2 ∼ 0.03 (Fig. 6 in Ref. [14]). Our goal is to
understand the impact of NM on the current distribution and
microscopic origin of additional binding due to NM.

In terminating states, the angular momenta of valence
particles and holes are aligned along the symmetry axis
(x axis). As a consequence they perform precession around
this axis, generating azimuthal currents with respect to the
symmetry axis. This is illustrated in Fig. 13. One can see two
azimuthal circulations in the y-z plane: the circulation in the

central region of nucleus is directed counterclockwise while
the one in the surface region is directed clockwise. Figure 14
shows total (left panel), Coriolis-induced (middle panel), and
magnetic potential–induced (right panel) currents. One can
see that surface circulation is generated by the Coriolis term,
while the central circulation by the magnetic potential. The
currents in the x-z and x-y planes are perpendicular to the x axis
(Fig. 13). This clearly shows that the currents are azimuthal.

In Ref. [5], the polarization effects induced by NM have
been investigated in one- and two-particle configurations
of odd and odd-odd nonrotating nuclei. Terminating states
differ significantly from these configurations. First, they
are multiparticle+multihole configurations. For example, the
π (d3/2)−1

1.5(f7/2)4
8 ⊗ ν(f7/2)4

8 terminating state in 47V has eight
particles and one hole outside the 40Ca core. Second, the
alignment of the angular momenta of these particles and holes
generates considerable total angular momentum (I = 17.5h̄ in
the discussed terminating state of 47V) aligned along the axis
of symmetry; this momentum is much larger than the one in
odd and odd-odd nuclei studied in Ref. [5]. Third, terminating
states are characterized by the azimuthal currents with respect
to the symmetry axis, while the states in nonrotating nuclei are
characterized by the currents shown in Figs. 7-9 of Ref. [5].
Thus, it is interesting to see how these differences affect
the polarization effects induced by NM and whether these
polarization effects are similar in nature for these two classes
of noncollective states, namely low-spin one- and two-particle
configurations of nonrotating nuclei and high-spin terminating
states.

In order to facilitate the discussion, we split the total energy
of the system (Refs. [6,9]) into different terms as4

Etot = Epart + ECor + Ec.m. − Eσ − EσNL − ETL
ω

−ETL
ρ − ESL

ω − ESL
ρ − ECoul, (22)

4We follow Refs. [5,59] in the selection of the signs of the energy
terms.
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FIG. 14. (Color online) Neutron current distributions jn(r) in the intrinsic frame in the y-z plane (at x = 0.407 fm). These distributions
are shown for the state of 47V terminating at I = 17.5+. The left, middle, and right panels show total, Coriolis-induced, and magnetic
potential–induced currents, respectively. See the caption for Fig. 13 for other details.

where Epart, ECor, and Ec.m. represent the contributions from
fermionic degrees of freedom, whereas the other terms are
related to mesonic (bosonic) degrees of freedom. In Eq. (22)

Epart =
A∑
i

εi (23)

is the energy of the particles moving in the field created by the
mesons (εi is the energy of i-th particle and the sum runs over
all occupied proton and neutron states),

ECor = �x

A∑
i

〈i|ĵx |i〉 (24)

is the energy of the Coriolis term,

Eσ = 1

2
gσ

∫
d3rσ (r)

[
ρp

s (r) + ρn
s (r)

]
(25)

is the linear contribution to the energy of isoscalar-scalar
σ field,

EσNL = 1

2

∫
d3r

[
1

3
g2σ

3(r) + 1

2
g3σ

4(r)

]
(26)

is the nonlinear contribution to the energy of isoscalar-scalar
σ field,

ETL
ω = 1

2
gω

∫
d3rω0(r)

[
ρp

v (r) + ρn
v (r)

]
(27)

is the energy of the time-like component of isoscalar-vector
ω field,

ETL
ρ = 1

2
gρ

∫
d3rρ0(r)

[
ρn

v (r) − ρp
v (r)

]
(28)

is the energy of the time-like component of isovector-vector
ρ field,

ESL
ω = −1

2
gω

∫
d3rω(r)[ jp(r) + jn(r)] (29)

is the energy of the space-like component of isoscalar-vector
ω field,

ESL
ρ = −1

2
gρ

∫
d3rρ(r)[ jn(r) − jp(r)] (30)

is the energy of the space-like component of isovector-vector
ρ field,

ECoul = 1

2
e

∫
d3rA0(r)ρp

v (r) (31)

is the Coulomb energy, and

Ec.m. = − 3
4h̄ω0 = − 3

4 41A−1/3MeV (32)

is the correction for the spurious center-of-mass motion ap-
proximated by its value in a nonrelativistic harmonic oscillator
potential.

Polarization effects induced by NM are investigated by
considering NM impact on different terms of the total energy
[Eq. (22)]. The results of this study are shown in Table I.
Similarly to Ref. [5], the ETL

ρ and ESL
ρ terms are only weakly

influenced by NM, and, thus, they will not be discussed in
detail. A somewhat stronger impact of NM is seen in the
ECoul, EσNL, and ESL

ω terms. Note that only last term was
appreciably affected in low-spin configurations of odd and
odd-odd nuclei in Ref. [5]. Much larger polarization effects
are seen in the Epart, Eσ , and ETL

ω terms. The Eσ and ETL
ω

terms depend only indirectly on time-odd mean fields through
the polarizations of time-even mean fields induced by NM [5].
One should keep in mind that only the Eσ + ETL

ω quantity has
a deep physical meaning, as it defines a nucleonic potential;
this sum is modified by NM on −5.9 MeV.

Comparing these results with those presented in Ref. [5],
one can conclude that polarization effects for different total-
energy terms in the terminating state under study are stronger
by at least one order of magnitude than in low-spin one- and
two-particle configurations of nonrotating nuclei. This is a
consequence of the fact that all particles (eight) and holes (one)
outside the 40Ca core participate in building the total angular
momentum and currents in the terminating state, while only
one (two) particle(s) participate in generating the currents in
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TABLE I. Impact of NM on different terms of the total energy
[Eq. (22)] in the state of 47V terminating at I = 17.5+. Column 2
shows the absolute energies (in MeV) of different energy terms in
the case when NM is neglected. Columns 3 and 4 list the changes
�Ei = ENM

i − EWNM
i (in MeV) in the energies of these terms induced

by NM in self-consistent (column 3) and perturbative (column 4)
calculations. Note that only nonzero quantities are listed in column 4.
The results of calculations are obtained at rotational frequency
�x = 2.4 MeV. The energies of the Coriolis term ECor and particle
energy Epart depend on frequency. The latter takes place through the
modifications of the energies of single-particle states with frequency
(see, for example, Sec. 3.8 and Fig. 6a in Ref. [26] for more details on
a construction of terminating state). However, the sum ECor + Epart

does not depend on frequency. Other remaining quantities shown in
column 1 and the �Ei quantities shown in columns 3 and 4 are
frequency independent.

Quantity EWNM
i �Ei �E

pert
i

1 2 3 4

Epart −1217.668 −15.5 −7.296
ECor 42.0 0
Eσ −6381.875 −85.231
EσNL 109.368 −2.815
ETL

ω 5371.721 79.291
ESL

ω 0.0 −3.51 −3.51
ETL

ρ 0.549 −0.002
ESL

ρ 0.0 −0.038 −0.038
ECoul 102.168 0.515 0.240
Ec.m. −8.521 0.0
Etot −386.121 −3.704 −3.983

nonrotating odd (odd-odd) nuclei [5]. Despite this, the relative
impact of NM on different terms of the total energy is, in gen-
eral, similar in these two classes of noncollective states (com-
pare Table I in the present article with Tables I, II, and IV in
Ref. [5]).

Total modifications of the energies due to NM in the
mesonic sector are −11.79 MeV. Only one-third of these
modifications comes from the terms (ESL

ω , ESL
ω ) which directly

depend on nucleonic currents, whereas the rest are from the
modifications of time-even mean fields induced by NM.

It is interesting to compare the results of self-consistent
and perturbative calculations.5 The �E

pert
i = ENM

i − EWNM
i

quantities will be used for simplicity in further discussion.
These quantities are shown in columns 3 and 4 of Table I.
The �Eσ , �EσNL, �ETL

ω , and �ETL
ρ quantities are zero in

5Fully self-consistent calculations with NM provide a starting point
for perturbative calculations. Using their fields as input fields, only
one iteration is performed in the calculations without NM: this
provides perturbative results. Time-even mean fields are the same
in both (fully self-consistent and perturbative) calculations. Then, the
impact of time-odd mean fields on calculated quantities (for example,
different terms in the total energy [Eq. (22)] is defined as the difference
between the values of this quantity obtained in these two calculations.
In this way, the pure effects of time-odd mean fields in fermionic and
mesonic channels of the model are isolated because no polarization
effects are introduced into time-even mean fields [5].

perturbative calculations because time-even fields are fixed
in these calculations. The �ESL

ω and �ESL
ρ are the same

in self-consistent (column 3) and perturbative (column 4)
calculations because the ETL

ω and ETL
ρ terms depend only

on time-odd mean fields, which are the same in the parts
of the calculations that include NM. Particle energies Epart

are strongly modified by NM in self-consistent calculations;
they change by −15.5 MeV. Perturbative calculations show
that only one half of �Epart is coming directly from time-odd
mean fields (see Sec. IVB of Ref. [5] for more details on this
mechanism); the rest is due to polarization effects in time-even
fields induced by NM. The same is true for the Coulomb energy
term ECoul.

It is evident from Table I that

�Eself−const
tot ≈ �E

pert
tot . (33)

Note that the superscripts self-const and pert refer to fully self-
consistent and perturbative results. The analysis of polarization
effects in other terminating states of the A ∼ 40 mass region
shows the same relation. These results clearly indicate that
the additional binding due NM (the ENM − EWNM quantity)
is defined mainly by time-odd fields and that the polarization
effects in fermionic and mesonic sectors of the model cancel
each other to a large degree. The same result has been earlier
obtained in the analysis of nonrotating nuclei in Ref. [5].

IX. SIGNATURE-SEPARATED CONFIGURATIONS

Signature separation phenomenon induced by time-odd
mean fields has been found earlier in excited four-particle SD
configurations of 32S [31,60] and, very recently, in two-particle
configurations of nonrotating odd-odd nuclei in Ref. [5]. It
reveals itself in a considerable energy splitting of the rtot = +1
and rtot = −1 branches of the configurations which have
the same structure in terms of occupation of single-particle
states with given Nilsson labels. Such a signature separation
could not have been obtained in phenomenological cranking
models, such as the ones using the Woods-Saxon or Nilsson
potentials, since time-odd mean fields are absent in these
models.

However, the description of rotating N ≈ Z nuclei requires
isospin projection [61] which can modify above mentioned
results. Since this projection is beyond the current framework,
we concentrate at the nuclei away from the N = Z line. The
analysis of Ref. [5] shows that signature separation is expected
also in such nuclei, but it is weaker as compared with the
one seen in the nuclei around the N = Z line. Unfortunately,
the survey of odd-odd A = 20–52 nuclei (some of which were
studied in Ref. [5]) does not reveal experimental bands in the
nuclei away from the N = Z line in which signature separation
is expected.

Figure 15 shows that signature separation phenomenon can
also be present in heavier nuclei. This figure shows the results
of calculations for odd-odd Eu isotopes in which odd proton
occupies fixed π [532]5/2+ state, and odd neutron occupies
different neutron states of the r = ±i signatures along the
isotope chain. Additional binding due to NM (the ENM −
EWNM quantity, see Ref. [5] for more details) is shown for total
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FIG. 15. The impact of NM on binding energies of the con-
figurations in odd-odd Eu (Z = 63) nuclei at �x = 0.0 MeV. The
ENM − EWNM quantity is shown for different total signatures r .
Proton configuration has blocked π [532]5/2+ state for all isotopes,
while the neutron configuration changes as a function of mass number.
Configurations are labeled with the Nilsson labels of blocked odd
neutron state; configurations at and to the right of the Nilsson label
up to the next Nilsson label have the same blocked neutron state.

proton-neutron configurations with different total signatures
rtot = ±i. Significant signature separation (on the level of
100–150 keV) is seen in the π [532]5/2 ⊗ ν[523]5/2 (156Eu),
π [532]5/2 ⊗ ν[642]5/2 (158,160Eu), π [532]5/2 ⊗ ν[633]5/2
(196Eu), and π [523]5/2 ⊗ ν[752]5/2 (204Eu) configurations.
Either r = −1 or r = +1 states can be more bound in signature
separated configurations of Eu isotopes (Fig. 15). This depends
on mutual orientation of proton and neutron currents induced
by odd proton and odd neutron; the state with the same
orientation of these currents is more bound.

Figure 16 illustrates that four rotational sequences (two with
total signature rtot = +1 and two with rtot = −1) can be built in
the two-particle configurations π |a〉(r = ±i) ⊗ ν|b〉(r = ±i)
(where |a〉 and |b〉 indicate the blocked proton and neutron
Nilsson states, respectively) of odd-odd nuclei. For the case
of 158Eu we consider two-particle configurations based on
the |a〉 = [532]5/2 and |b〉 = [642]5/2 states. In the WNM
calculations, the rtot = +1 and rtot = −1 configurations are
almost degenerate in energy up to spin I ∼ 10h̄ (Fig. 16).
On the contrary, there is a considerable signature separation
(≈150 keV) due to time-odd mean fields between these
configurations in the calculations with NM. This feature is
a strong spectroscopic fingerprint of the presence of time-odd
mean fields. Note that rotational sequences A and B undergo
unpaired band crossings at I ∼ 20h̄.

Unfortunately, the experimental data on odd-odd Eu nuclei
also do not reveal the configurations discussed above in
which the signature separation is expected. This situation may
be resolved by a systematic search of signature separated
configurations both in the experimental data on odd-odd
rare-earth nuclei and in the model calculations. The best way to
confirm the existence of this phenomenon would be to find in
model calculations the configurations of odd-odd nuclei which
show no signature splitting in the absence of time-odd mean
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FIG. 16. (Color online) The energies of calculated bands in 158Eu
based on the π [532]5/2± ⊗ ν[642]5/2± two-particle configurations
as a function of angular momentum with rigid rotor reference
subtracted. The results of the calculations with and without NM are
shown.

fields and measurable signature separation in the presence of
time-odd mean fields and then to find their experimental coun-
terparts which show signature separation. However, such an
investigation is definitely beyond the scope of the current study.
The difficulty of such a study is also underlined by the fact that
existing interpretations of two-quasiparticle configurations in
odd-odd nuclei are based on Woods-Saxon or Nilsson poten-
tials. In these potentials, the signature degeneracy is considered
to be a strong fingerprint of specific configurations. However,
time-odd mean fields in EDF provide additional mechanism of
breaking the signature degeneracy, so the experimental data on
such configurations has to be reanalyzed in density functional
calculations.

Although the model calculations clearly indicate the im-
portant role of time-odd mean fields in creating signature sep-
aration phenomenon in odd-odd nuclei, the direct comparison
with experiment will be complicated by the number of model
limitations which are related to (a) the presence of residual
proton-neutron interaction of unpaired proton and neutron
and (b) the coupling scheme of angular momenta vectors of
unpaired proton and neutron at low spin.

In odd-odd nuclei the angular momenta of unpaired proton
and unpaired neutron in two-quasiparticle configurations can
be coupled either in parallel or antiparallel fashion, namely into
K> = �p + �n, and K< = |�p − �n|, where �p(n) repre-
sents the projection of single quasiparticle angular momentum
of proton (neutron) on the axis of symmetry. For example, in
158Eu this will lead to rotational sequences with K< = 0 and
K> = 5. The degeneracy of the bandheads of the K>< doublet
pair (called Gallagher-Moszkowski doublet [62]) is lifted by
inclusion of the residual proton-neutron interaction and also
by the zero-point rotational energy. Relative energy ordering
of the K> and K< bands is determined by the empirical
Gallagher-Moszkowski (GM) rule which places the spin-
parallel band lower in energy than its spin-antiparallel counter-
part [62] in odd-odd nuclei (and vice versa in even-even nuclei
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[63]) and has only few exceptions [64,65]. Another important
consequence of the residual interaction of unpaired nucleons
is the observed shift of the odd- and even-spin rotational levels
relative to each other in the K = 0 bands; this feature is
generally referred to as the Newby or odd-even shift [66].

Residual proton-neutron interaction of unpaired nucleons
is neglected in the cranking models; we are not aware of
any publication which includes it. So neither Gallagher-
Moszkowski splittings nor Newby shifts can be described
in the current calculations. It is also necessary to recognize
that two-quasiparticle configurations in odd-odd and even-
even nuclei show a daunting complexity due to the high
density of states and the large number of couplings and
interactions possible. The problem of the description of the
Gallagher-Moszkowski splittings and Newby shifts is far from
being settled even in the framework of conventional parti-
cle + rotor model [63–65,67,68]. For example, the residual
interaction of unpaired proton and neutron in odd-odd nuclei
shows pronounced dependence on the mass region under
study [64,65]. It is even more difficult to understand why
in two-quasiparticle configurations of the rare-earth region
different residual interactions are required to describe the
interaction between unpaired proton and neutron in odd-odd
nuclei and between unpaired protons (neutrons) in even-even
nuclei [63] despite the expectations that they should be the
same due to isospin symmetry. To our knowledge, a self-
consistent description of Gallagher-Moszkowski splittings and
Newby shifts has been attempted only in the framework
of the rotor + two-quasiparticle model based on Skyrme
Hartree + Fock approach in Ref. [69].

At zero rotational frequency the angular momenta of odd
proton and odd neutron are aligned (parallel or antiparallel)
with the symmetry axis which leads to bandhead states
with K> = �p + �n and K< = |�p − �n|. However, in one-
dimensional cranking approximation nuclear configuration on
top of which rotational sequence is built does not depend
on coupling of �p and �n. This is a well-known (although
seldom stressed) deficiency of the one-dimensional cranking
approximation. However, with increasing rotational frequency
the angular momenta of odd protons and odd neutrons start
to align with the axis of rotation, which is perpendicular to
the axis of symmetry. Although it is tempting to employ the
tilted axis cranking (TAC) approximation for the description
of the combination of these two angular-momenta coupling
schemes at low spin, this does not resolve the problem of
the description of signature separation since signature is no
longer a good quantum number in the TAC approximation [70].
On the contrary, the one-dimensional cranking approximation
used in the current article has a clear advantage that it properly
accounts for the alignments of valence particles and holes
along the axis of rotation at medium and high spins where
I � K [57] and thus provides correct description of signature
separation at these spins.

X. CONCLUSIONS

Time-odd mean fields (nuclear magnetism) have been
studied in rotating nuclei in a systematic way within the

framework of CDFT. The main results can be summarized
as follows:

(i) NM can considerably modify the band crossing features
(crossing frequencies and the properties of kinematic
and dynamic moments of inertia in the band crossing
region). In the calculations without pairing, these
modifications depend on the underlying changes in
the single-particle properties such as alignments and
energies induced by NM. These effects are also active
in the calculations with pairing. In addition, in the
calculations with pairing the gradual breaking of high-
j pairs proceeds faster in the presence of NM, which is
reflected in a faster decrease of pairing with increasing
�x . Thus we can specify this effect as an antipairing
effect induced by NM.

(ii) Outside the band crossing regions, the contribution of
NM to the kinematic and dynamic moments of inertia
only weakly depends on the RMF parametrization.

(iii) It is shown for the first time within the self-consistent
approach that the moments of inertia of super- and
hyperdeformed configurations in unpaired regime come
very close to the rigid-body values. Despite this, the
presence of strong vortices demonstrates the dramatic
deviation of the currents from rigid rotation. On the
contrary, the moments of inertia of normal-deformed
nuclei deviate considerably from the rigid-body value
in the calculations without pairing.

(iv) The complicated structure of the currents in the rotating
systems of independent fermions is the consequence of
the fact that total current is the sum of the single-particle
currents. The single-particle currents show vortices
(circulations), the strength and localization of which
depend on the single-particle state.

(v) Within specific configuration the impact of NM on the
binding energies reaches its maximum at the terminat-
ing state [14]. Underlying microscopic mechanism for
additional binding due to NM at such states has the same
features as those seen in low-spin one- and two-particle
configurations of odd and odd-odd nuclei [5]. However,
the magnitude of the effects is significantly larger.
The perturbative results clearly indicate that additional
binding due NM at terminating states is defined mainly
by time-odd fields and that the polarization effects in
fermionic and mesonic sectors of the model cancel each
other to a large degree.

(vi) The signature-separation phenomenon in odd-odd nu-
clei has been analyzed in detail. It is shown that the
effects neglected in the current approach, such as the
residual interaction of unpaired protons and neutrons
and the coupling scheme of angular-momenta vectors
of these particles at low spin, considerably complicate
the quantitative description of the spectra of odd-odd
nuclei. The best way to confirm the existence of this
phenomenon would be to find (both in experiment
and in calculations) the configurations of odd-odd
nuclei which show no signature splitting in the absence
of time-odd mean fields and measurable signature
separation in the presence of time-odd mean fields.
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Although time-odd mean fields affect different physical
observables (see the Introduction in Ref. [5] for details),
this investigation clearly shows that rotating nuclei still offer
one of the best probes of this channel of density functional
theories. This is because the impact of time-odd mean fields
is significant, representing on average 20% of kinematic and
dynamic moments of inertia. In addition, it shows appreciable
variations with configuration, particle number, and rotational
frequency; these variations provide a useful tool for a better
test or definition of time-odd mean fields. A significant amount
of the data on different types (normal- [12], superdeformed
[1,9–11,35,71], and smooth terminating [1,26]) of rotational
bands in an unpaired regime available in different mass
regions offers a testing ground for time-odd mean fields.

These data are also extremely useful for fitting the parameters
of time-odd mean fields as needed, for example, in Skyrme
energy density functionals, in which these fields are not well
defined (Refs. [3,29]). Our investigation, however, suggests
that such fit has to be performed to a significant set of rotational
structures representing different mass regions and different
configurations and spanned over significant frequency range
in order to minimize the dependence of the fit parameters on
the choice of experimental data.
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