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Analytical description of odd-A nuclei near the critical point of the spherical
to axially deformed shape transition
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A coupling scheme for even-even nuclei with the X(5) critical point symmetry coupled to a single valence
nucleon in a j orbit is proposed to approximately describe the critical point phenomena of spherical to axially
deformed shape (phase) transition in odd-A nuclear systems. The corresponding scheme, which can be solved
analytically, is called the X(5/(2j + 1)) model. A special case with j = 1/2 is analyzed in detail to show its
level structure and transition patterns. It is further shown that 189Au and 155Tb may be possible X(5/(2j + 1))
symmetry candidates with j = 1/2 and j = 3/2, respectively.
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I. INTRODUCTION

Recently, quantum phase transitions in nuclei [1–17] have
attracted a lot of interest. A new class of symmetries, called
critical point symmetries [18,19], were introduced by Iachello
nearly a decade ago to describe shape (phase) transitions
properties of even-even nuclei. Most importantly, the critical
point of spherical to γ -unstable shape transition [18], called
E(5), and the critical point from spherical to axially deformed
shape [19], called X(5), that were proposed have been
confirmed by experiment. Very recently, the concept of critical
point symmetry has also been applied to odd-A systems. The
first case of a critical point Bose-Fermi symmetry [20], called
E(5/4), was developed by Iachello to analytically describe
a γ -soft critical point E(5) even-even system coupled with
a particle in a j = 3/2 orbit. 135Ba was suggested as an
empirical example of the E(5/4) symmetry [21]. Another
critical point Bose-Fermi symmetry, called E(5/12), was
developed by Alonso, Arias, and Vitturi [22], which provided
a systematic way to describe criticality in odd-A nuclei since
it extended the case of a single-j orbit into a multi-j case
with j = 1/2, 3/2, 5/2. Both the E(5/4) and E(5/12) models
were developed to describe odd-A nuclei near the critical point
of the spherical to gamma unstable shape (phase) transition.
Most notably, systems with critical point symmetries, such as
E(5/4) or E(5/12), can be studied analytically in these two
models.

To analyze odd-A nuclei adjacent to even-even nuclei
with the X(5) critical point symmetry, such as even-even
nuclei with N = 90 that have already been confirmed by
experiment [23,24], in this article, in a manner similar to
what is used in the E(5/(2j + 1)) scheme, we propose the
X(5/(2j + 1)) critical point symmetry model to describe odd-
A nuclei near the critical point of spherical to axially deformed
shape (phase) transitions. In Sec. II, a coupling scheme of
an even-even system with the X(5) symmetry coupled to a
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single valence particle in a j orbit is proposed, which leads to
the X(5/(2j + 1)) model. In Sec. III, as a typical example, a
j = 1/2 case is analyzed in detail. Two possible X(5/(2j + 1))
symmetry candidates are also suggested. A short summary is
given in Sec. IV.

II. THE X(5/(2 j + 1)) MODEL

As shown in Refs. [20,25], the E(5/4) model is constructed
by considering the case of a collective core with the E(5)
symmetry coupled with a single particle in a j = 3/2 orbit
via five-dimensional “spin-orbit” interaction �̂ · L̂, which
is a scalar of the Spin(5) or SO(5) group [20,25]. The
corresponding Hamiltonian can be written as

HE(5/4) = HE(5) + g(β) [2�̂ · L̂ + 5/2], (1)

where g(β) is the interaction strength and the constant 5/2 is
added to simplify the results. As is well known, the E(5) model
describes a system within a five-dimension infinite well and
the eigenfunctions of the Hamiltonian HE(5) of the E(5) model
correspond to a set of half-integer order Bessel functions. It
follows that the spectrum of the E(5) model is determined
by zeros of those Bessel functions. As for the E(5/4) model,
the interaction g(β)[2�̂ · L̂ + 5/2] included in HE(5/4) only
changes the orders of the Bessel function associated with
eigenfunctions of the Hamiltonian (1) as compared to those
of the E(5) model if one takes g(β) ∼ 1/β2 as adopted in
Ref. [20].

To establish an X(5/(2j + 1)) model in a way that is
similar to the coupling scheme leading to the E(5/4) model,
we introduce a physically relevant spin-orbit interaction
f (β) (L̂ · ĵ ) into the model Hamiltonian when the even-even
core is near the X(5) critical point, where L̂ is the angular
momentum operator of the X(5) model, ĵ is the total angular
momentum operator of the single particle, and f (β) is the
coupling strength. Thus, the Hamiltonian of the X(5/(2j + 1))
model is

H = HX(5) + f (β)L̂ · ĵ , (2)
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where HX(5) is the Hamiltonian of the X(5) model. Hence, the
explicit form of the Hamiltonian (2) is given by

H = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂
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4β2
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3πk
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]

+ V (β, γ ) + f (β)L̂ · ĵ ,

(3)

with V (β, γ ) = V (β) + V (γ ), in which the potential V (β) is
taken to be an infinite square well with V (β) = 0 for β �
βW and V (β) = ∞ for β � βW , whereas the potential V (γ )
is assumed to be harmonic around γ = 0. As was shown in
Ref. [19], since the potential V (γ ) has a minimum around γ =
0, the rotational energy term in Eq. (3) can be approximated
with the following form:

∑
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− 4
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)
. (4)

The spin-orbit coupling strength in Eq. (2) is also assumed to
be f (β) = h̄2f

Bβ2 , where f is a parameter. In a similar manner
to what was done in Ref. [19], the eigenfunctions of Eq. (2)
can be obtained by coupling the even-even core part to the
single-particle wave function χjmj

(η) with

�K
JLj (β, γ, ϑ, η)

= F (β, γ )
∑

MLmj

〈LMLjmj |JMJ 〉DL
MLK (ϑ)χjmj

(η), (5)

where DL
MLK (ϑ) is the Wigner function of the Euler angles

ϑi(i = 1, 2, 3), and η represents coordinates of the spin-j
particle. Further, the spin-orbit interaction term can be ex-
pressed as

h̄2f

Bβ2
L̂ · ĵ = h̄2f

2Bβ2
[Ĵ · Ĵ − L̂ · L̂ − ĵ · ĵ ], (6)

with Ĵ = L̂ + ĵ . One can solve the eigenvalue equation H� =
E� to get the the energy spectrum of the X(5/(2j + 1))
model. By introducing the reduced energy ε = 2BE/h̄2 and
reduced potential u(β, γ ) = 2BV (β, γ )/h̄2, the correspond-
ing Schrödinger equation can be simplified as

{
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F (β, γ )

= εF (β, γ ). (7)

Since u(β, γ ) = u(β) + υ(γ ) is assumed, the above equation
can be approximately separated as{
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ξJLj (β) = εβξJLj (β), (8)
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]
φK (γ ) = εγ φK (γ ), (9)

with F (β, γ ) = ξ (β)φ(γ ), where ε = εβ + εγ , and 〈β2〉 is the
average of β2 over ξ (β).

It can be seen that Eq. (9) is the same as the γ part of the
differential equation in the X(5) model. We also take υ(γ ) =
2B

h̄2 V (γ ) to be the harmonic potential adopted in Ref. [19],
in which the corresponding analytical solution is given with
eigenvalues

εγ = E0 + Anγ + CK2, (10)

where E0, A, and C are constants depending on the concrete
form of υ(γ ), the related quantum numbers nγ , K , and L may
take the following values:

nγ = 0, K = 0; nγ = 1, K = ±2,
(11)

nγ = 2, K = 0, ±4, . . . ,

and L = 0, 2, 4, . . .when K = 0, while L = K,K + 1,K +
2, . . .when K �= 0. More details about solutions of Eq. (9) are
shown in Ref. [19]. Furthermore, since u(β) is an infinite well
potential, Eq. (8) is also analytically solvable. Inside the well,
one can transform Eq. (8) into the Bessel equation

ϕ′′ + ϕ′
z

+
[

1 − v2

z2

]
ϕ = 0, (12)

with

v =
[(

1

3
− f

)
L(L+ 1) + f J (J + 1) − fj (j + 1) + 9

4

]1/2

,

(13)

where we have taken ϕ = β3/2ξ (β) and z = β
√

εβ . Consider-
ing the boundary condition ϕ(βW ) = 0, one can determine the
relevant eigenvalues

εβ ≡ εs,JLj = (ks,JLj )2, ks,JLj = xs,JLj

βW

, (14)

for given j , L, and J , where xs,JLj is the sth zero of the Bessel
function Jv(ks,JLjβ). While the eigenfunctions of Eq. (8) are

ξs,JLj (β) = cs,JLjβ
−3/2Jv(ks,JLjβ), (15)

where cs,JLj is the normalization constant.
E2 transition rates can be calculated by taking the transition

operator with T E(2) = TB(αu) + TF (η), where TB(αu) only
operates on the collective part, and TF (η) operates on the
single-particle part [20,25]. In the following, we set the
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FIG. 1. Some low-lying energy levels and interband E2 transition rates of the X(5/2) model for f = 1/30 (left panel) and f = 1/3
(right panel), respectively. Only states with nγ = 0 are shown.

single-particle part TF (η) = 0 for simplicity. The explicit form
of TB(αu) is

TB = tβ

[
D

(2)
u,0 cos γ + 1√

2

(
D

(2)
u,2 + D

(2)
u,−2

)
sin γ

]
, (16)

where t is the effective charge. As a result, E2 transition rates
within the same K band are mainly determined by ξs,JLj (β)
under the condition that γ ≈ 0 as shown in Ref. [19] because
the eigenfunctions in γ only contribute a δnγ n′

γ
to matrix

elements of the E2 operator for �K = 0 transitions due to
the orthonormality condition [26].

III. LEVEL AND E2 TRANSITION PATTERNS AND
COMPARISONS WITH EXPERIMENTAL RESULTS

In a manner similar to the E(5/4) model, and as shown
in the previous section, the X(5/(2j + 1)) model—where the
X(5/(2j + 1)) notation does not imply any special group
theoretical significance, is built from an even-even core with
the X(5) symmetry coupled to a particle in a j orbit with
mj = −j,−j + 1, . . . , j − 1, j .

To show the level and E2 transition patterns in the
X(5/(2j + 1)) model, in the following, we consider the case
with j = 1/2 as a typical example. Energy levels and E2
transition rates in a weak (f = 1/30) as well as a strong
(f = 1/3) spin-orbit coupling situation are calculated, which
are shown in Fig. 1. It should be noted that both the energy
levels and E2 transition rates can be calculated analytically
up to an overall scaling factor. In Fig. 1, the energy levels are
normalized to the energy of the first 5/2+

1 excited state, while
B(E2) values are normalized to B(E2; 5/2+

1 → 1/2+
1 ).

As is shown in the left panel of Fig. 1, there are two
obvious features in the weak spin-orbit coupling case, namely,
energy levels with the same L are nearly degenerated, and
the B(E2) values of the transitions with �J = 2 are much
larger than those of the transitions with �J = 1 except for
B(E2; 3/2+

1 → 1/2+
1 ), which takes the same value as that of

the nearest 5/2+
1 → 1/2+

1 transition. In the strong coupling
case shown in the right panel of Fig. 1, the degeneracy in
energy levels with the same L is broken since the Bessel

function orders in this case are mainly determined by the
total angular momentum quantum number J , especially for
the case with f = 1/3. The contribution of the quantum L to
the Bessel function order in this case is completely canceled as
clearly shown in Eq. (8). This is similar to the corresponding
situation in the E(5/4) model [20], in which the contribution of
the SO(5) quantum number τ to the order of Bessel function is
also canceled in the case with k = 1 given in Ref. [20]. B(E2)
transition rates seem to be almost spin-orbit coupling strength
independent. As a result, whether E2 transitions between states
with �J = 2 are much stronger than those with �J = 1, and
whether strengths of the first two transitions are comparable
can be regarded as important signals of the X(5/2) symmetry
in odd-A nuclei near the X(5) critical point.

Examples of odd-A nuclei with the X(5/(2j + 1)) symme-
try may be found near the X(5) critical point, where the single
valence nucleon outside an even-even core is mainly confined
to a single j orbit. Specifically, since the 186Pt nucleus lies near
the X(3) symmetry point [27], a γ -rigid version of the X(5)
symmetry, it seems reasonable to assume that 187Au and 189Au
may be good candidates for this critical symmetry in odd-A
nuclei. However, since parities of low-lying states in the 187Au
nucleus have not all been assigned in the experiment [28],
we can only check for consistency to see whether the known
results are consistent with the X(5/(2j + 1)) scheme. And
indeed, we found that 189Au seems to be a possible X(5/2)
symmetry candidate with f = 1/7 since the valence proton
outside the even-even core in this case occupies the 3s1/2

orbit, and the ground state of 189Au is just 1/2+
1 . As is well

known, spectra of odd-A nuclei are much more complex
and difficult to describe than those of even-even nuclei.
In the following, we only choose the lowest states with
J = |L − j |, |L − j + 1|, . . . , |L + j − 1|, |L + j | and L =
0, 2, 4, 6 to be compared with the theoretical calculation since
the X(5/(2j + 1)) model can only be used to describe the
collective states satisfying the angular momentum coupling
rule according to the interaction f (β)L̂ · ĵ in Eq. (2). For
example, the ground-state band of 189Au just satisfies the
previous condition, which is compared with the X(5/2) model
results with f = 1/7 and shown in Fig. 2. As can be seen
from Fig. 2, the theory agrees quite well with the experimental
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FIG. 2. The ground-state bands of 189Au [29] and spectrum of the
X(5/2) model with f = 1/7.

results [29], except for the 3/2+
1 state. The experimental

3/2+
1 state is nearly degenerate with the 1/2+

1 ground state.
A possible reason is that the 3s1/2 orbit is near the adjacent
2d3/2 orbit in this nucleus since the two orbits are generally
adjacent in both spherical and deformed cases [22,30]. As a
consequence, the 3/2+

1 state may be a single-particle excitation
of the 2d3/2 orbit, while the 3/2+

2 state may come from a
collective excitation based upon the 1/2+

1 level. Therefore,
the 3/2+

2 state confirmed in the experiment is recognized to
be the 3/2+

1 state in the X(5/2) model, while the 3/2+
1 state

from the experiment is regarded as an intruder state due to
a single-particle excitation from the 2d3/2 orbit. It should be
noted that there are some other low-lying levels of 189Au below
the 13/2+

1 level not shown in Fig. 2, such as 5/2+
2 , 7/2+

2 , 9/2+
2 ,

and 11/2+
2 . These levels lie higher but close to the 5/2+

1 , 7/2+
1 ,

9/2+
1 , and 11/2+

1 levels, respectively, as shown in Ref. [29].
They may belong to an excited band built on the 3/2+

1 state
similar to the ground-state band built on the 1/2+

1 state, which
seems another experimental signal showing the 3/2+

1 state
possibly being a single-particle excitation. Further verification
of our interpretation needs more experimental results, such as
E2 transition rates, and so on. Actually, a similar situation
also occurs in 135Ba according to the analysis shown in
Ref. [21], where the 1/2+

1 state assigned in the experiment
is considered to come from a single-particle excitation based
on the 2d3/2 orbit while the 1/2+

2 state is taken as a collective
excitation to be compared with the lowest 1/2+ state in the
E(5/4) model [20]. Moreover, a complete description of the
low-lying spectrum including negative parity states, which
are also not shown in Fig. 2, and some other positive parity
states, which cannot be arranged in the X(5/(2j + 1)) model
confined to a single j orbit, requires us to enlarge the model
space. Further extension to include either spherical multi-j
or deformed single-particle orbits may be necessary to fully
describe this odd-A nucleus, but such schemes will become
more complicated. In addition, 185Ir was described by coupling
an odd proton hole to the even-even 186Pt [31], which is a

FIG. 3. The low-lying structure of 155Tb [34] and spectrum of
the X(5/4) model with f = 1/7, where the lowest positive parity
states with J = |L − 3/2|, |L − 1/2|, |L + 1/2|, |L + 3/2| and L =
0, 2, 4, 6 are shown.

typical nucleus with the X(5) symmetry [27] as mentioned
previously. However, it is more difficult to realize the highly
irregular low-lying levels of 185Ir [32] in the X(5/2j + 1)
model with such a simple coupling scheme as used in this
article. Furthermore, the quadrupole-type interaction may also
need to be considered to describe the low-lying spectrum of
185Ir as analyzed in Ref. [31]. These possible issues will be
studied further in our future work.

Since 154Gd is another nucleus with the X(5) symme-
try [33], the nearest odd-A nucleus 155Tb is then considered
as a candidate for the X(5/4) model because the last valence
proton in 155Tb occupies the 2d3/2 orbit. As shown in Fig. 3,
the X(5/4) model agrees generally well with the experimental
results [34], but there are two obvious exceptions. First, the
collective 3/2+

2 and 1/2+
1 levels are not observed in the

experiments. Second, the 9/2+
1 and 13/2+

1 levels from
the X(5/4) model are noticeably high relative to those observed
in the experiment. An improvement may be possible by
including additional single-particle orbits resulting in a multi-j
model, but that also goes beyond the scope of the present
analysis. The first three E2 transition rates of 155Tb were also
calculated, with the effective charge fit to the experimental
value of the B(E2; 5/2+

1 → 3/2+
1 ). As is shown in Fig. 3,

the values of the first three B(E2) values, which are the only
experimentally available results [34], are also fitted well by
the X(5/4) model. It should be noted that we have fixed the
coupling strength f = 1/7 in the X(5/(2j + 1)) model for
both j = 1/2 and j = 3/2 cases when comparing with the
experimental data. Similar to 189Au, the explanation of some
other low-lying positive parity levels lying between the 9/2+

2
and 15/2+

1 levels in 155Tb not shown in Fig. 3 also needs
to extend the model to include multi-j orbits. Anyway, most
low-lying levels of 155Tb can be regarded as those built from
angular momentum coupling of the single-particle in the 2d3/2

orbit with the X(5) core in the X(5/4) model.
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IV. SUMMARY AND CONCLUSION

In summary, the proposed simple X(5/(2j + 1)) model
seems suitable for approximately describing most low-lying
levels in odd-A nuclei near the X(5) critical point symmetry
associated with spherical to axially deformed phase (shape)
transitions in neighboring even-even systems. Typical level
structures and E2 transition patterns in the model is provided
with j = 1/2. It was also shown that 189Au and 155Tb
may be approximate X(5/(2j + 1)) symmetry candidates
with j = 1/2 and j = 3/2, respectively. However, additional
experimental B(E2) data and more accurate adopted level
schemes for these nuclei are needed to confirm the predictions.
In addition, our analysis suggests that a multi-orbit scheme,
similar to the E(5/12) model, may be necessary to improve
and extend the theory. The latter, which can be constructed

similarly, will be the topic of our future work. It seems a
comparison of the X(5/(2j + 1)) model with a transitional
description based on the interacting boson-fermion model [30]
may also be interesting, with the same angular momentum
coupling scheme adopted for the case with an X(3) even-even
core [27]. Related work on this is also in progress.
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