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Self-consistent Skyrme quasiparticle random-phase approximation for use in
axially symmetric nuclei of arbitrary mass
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We describe a new implementation of the quasiparticle random-phase approximation (QRPA) in axially
symmetric deformed nuclei with Skyrme and volume-pairing energy-density functionals. After using a variety
of tests to demonstrate the accuracy of the code in **2°Mg and '°O, we report the first fully self-consistent
application of the Skyrme QRPA to a heavy deformed nucleus, calculating strength distributions for several K™
in '72Yb. We present energy-weighted sums, properties of y-vibrational and low-energy K™ = 07 states, and the
complete isovector E1 strength function. The QRPA calculation reproduces the properties of the low-lying 2*
states as well or better than it typically does in spherical nuclei.
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I. INTRODUCTION

The quasiparticle random-phase approximation (QRPA)
[1,2] has a long history in nuclear physics. Its virtues
include applicability to many types of excitation across the
isotopic chart, preservation of energy-weighted sum rules,
and elimination of spurious motion. In addition, the QRPA
has several appealing interpretations; it is both a boson
approximation for collective modes and the small-amplitude
limit of the time-dependent Hartree-Fock-Bogoliubov (HFB)
approximation. Its downside, traditionally, has been a limited
ability to describe large-amplitude motion and complicated
noncollective states, deficiencies that prompted the devel-
opment of several more complicated methods, as, e.g., in
Refs. [3,4].

Recent years, however, have seen a revival of the QRPA,
despite its drawbacks. The primary reason is the increasing
connection between nuclear mean-field theory and density-
functional theory (DFT) [5,6]. The notion that Hartree-Fock
or HFB calculations can be relevant beyond their naive range
of validity has motivated attempts to describe a wide range
of nuclear properties in mean-field theory and extensions.
The QRPA is the most straightforward extension that fits into
the DFT paradigm; to the extent that the energy functional
used in HFB calculations is exact, the QRPA provides the
exact linear (i.e., small-amplitude) response function in the
adiabatic limit [6]. Combined with its other features, its
connection with DFT makes the QRPA an important tool in
attempts both to develop a universal nuclear energy-density
functional (UNEDF) and to apply the functional to, e.g.,
nuclear astrophysics [7].

The prototype energy-density functional is of Skyrme form,
corresponding roughly to effective interactions that have zero
range, with derivatives simulating finite-range effects. In the
last five or ten years, a number of groups have developed
self-consistent (Q)RPA codes for use with these functionals or
similar finite-range and relativistic versions, first in spherical
nuclei (see Ref. [8] and references therein), and then in axially
symmetric deformed nuclei [9-13]. Heavy deformed nuclei
are still problematic, however. Though the deformed RPA,
without pairing, is now tractable in heavy nuclei [14], a
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separable approximation to the Skyrme-QRPA equations has
been applied in such nuclei [15,16], and efficient new methods
for solving the full QRPA equations are promising [14,17], the
numerical complexity of deformed systems has so far limited
fully self-consistent Skyrme-QRPA calculations to nuclei
with A < 40. In this paper, we present a highly parallelized
version of the Skyrme QRPA that we are beginning to apply
to heavy deformed nuclei. After discussing the structure
of the code and demonstrating its accuracy, we present a
preliminary application to the nucleus '7>Yb. We focus on
results here, postponing most of the formalism to a later
publication.

Our QRPA code comes in several versions, developed
successively and checked against one another as we progressed
from tests in light nuclei to full-fledged calculations in
heavy nuclei. All versions treat the entire Skyrme + Coulomb
functional in a way that is completely consistent with HFB
calculations (restricted for the time being to “volume” pair-
ing). In addition, all the versions preserve axial and parity
symmetries and the time-reversal invariance of the ground
state, and therefore require an HFB code that produces
single-quasiparticle wave functions of the two variables r =
Vx2+y? and z, with M = (j;) a good quantum number.
Finally, all diagonalize the traditional QRPA A, B matrix [1]
in the “M scheme,” and use the rigid-rotor approxima-
tion [18,19], with the deformed QRPA solutions as intrinsic
states, to calculate transition strength. The versions differ,
however, in the basis in which the HFB equations are solved, in
the basis in which the QRPA matrix is constructed, and in the
way wave functions are represented numerically. Version (a)
takes quasiparticle-basis wave functions from the transformed-
oscillator code HFBTHO [20] (though we use the ordinary
harmonic-oscillator basis), represents the wave functions on an
equidistant mesh, and constructs the QRPA matrix in the quasi-
particle representation. Version (b) substitutes the Vanderbilt
“cylindrical-box” B-spline-based HFB code [21] for HFBTHO.
Version (c) modifies the QRPA part of version (b) by using the
canonical-quasiparticle basis, represented with B splines, in
place of the quasiparticle basis to speed calculation and save
memory.
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The vast majority of the computing time in all versions
is in the construction of the QRPA matrix, each element of
which requires a series of two-dimensional integrals for the
Skyrme interaction, and an additional multipole expansion
for the Coulomb interaction. The set of matrix elements can
be divided among many thousands of processors so that the
calculation is manageable on fast supercomputers.

Section II describes tests in relatively light systems, with
pairing strengths chosen so that most gaps are between 1 and
2 MeV. Section III presents an application to heavy nuclei.
Section IV contains conclusions.

II. TESTS

To display the accuracy of our codes, we show the results
of several tests in nuclei with A < 40. We start with spurious
states. A fully self-consistent and numerically perfect QRPA
will completely separate spurious states from physical ones
and put them at zero energy. Small numerical errors can spoil
the treatment of spurious states, however; so any calculation
that separates them well has passed a serious test.

Figure 1 shows transition strengths produced by the two
number operators

Sf = [{O|N, |k)|?, (1)

with k labeling excitations and t indicating protons and
neutrons, to states with K™ = 0% in a calculation of *Mg.
To obtain these results, we use version (a) of our code; we
expect it to do best in this kind of test because it allows
strict control of the single-particle space, the contents of
which often determine how well spurious motion is separated
from physical excitations. Here we restrict ourselves to three
spherical harmonic oscillator shells and use the the Skyrme
interaction SkP [22]. The HFB calculation yields pairing gaps
of A, =1.681 MeV (protons), A, = 1.426 MeV (neutrons),
and no quadrupole deformation in this small single-particle
space. This result does not imply that a calculation in a
larger space also gives B = 0 [23]. At the QRPA level, we
keep the full two-quasiparticle basis; a complete separation
of the spurious J™ = 0" strength associated with the particle-
number violation requires no less. And we indeed achieve
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FIG. 1. (Color online) Transition strength for the proton and
neutron number operators to K™ = 0 states in Mg with the Skyrme
functional SkP (see text), from version (a).
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essentially perfect separation. The figure shows negligible
strength to all excitations except the two spurious states, which
come out at £ = 0.008 and 0.024 MeV.

With versions (b) or (c), we cannot select a subspace
of states that is invariant under the action of the number
operator; we must truncate the space at the quasiparticle
level during and after the HFB calculation rather than at the
single-particle level before that calculation. When the pairing
gap is nonzero, version (c), for example, employs two cutoff

parameters, which we call (vEh)? and (vf:t)z. The code omits
from the QRPA matrix all two-canonical-quasiparticle states
(labeled by i and j) with occupation probabilities vi2 and
v? such that v, v? > 1 — (W2)? or v2, v2 < (V)2 It also
J ir7j ir7j

omits configurations for which v? /v < (W2 (where 12 is
the smaller of the two). The first condition omits states that
are nearly entirely two-particle or two-hole in nature; these
are in a different nucleus than the ground state. The second
condition omits high-energy particle-hole excitations; in those,
one quasiparticle lies at much higher energy than the other and
is thus nearly unoccupied. If a pairing gap is zero, an explicitly
energy-based truncation scheme replaces this one.

When version (c) is applied to the excitation mode as in
Fig. 1, the separation of spurious motion is very good, though
not quite at the same level as that produced by version (a). We
reach this conclusion by applying version (c) to the nucleus
24Mg, with the Skyrme interaction SLy4 [24]. The Vanderbilt
HFB code, working in a cylindrical box with rp,x = Zmax =
10 fm and with a cutoff quasiparticle energy of 60 MeV, yields
A, =1914 MeV, A, =2.164 MeV, and 8 = 0.433. In the
QRPA calculation, to obtain a Hamiltonian matrix of easily
manageable size, we use truncation parameters (vor)? = 107°

and (vf;l;t)2 = 107°. The resulting spurious state energies are
0.654 and 2.012 MeV, and the maximum S} of real states is less
than 0.5% of the spurious strength. Changing the truncation
parameter (vih)? to 107> makes little difference.

Next, we turn to spurious rotation, arising in the K* = 17
channel. Here the nucleus must be deformed. With version (a)
and SkP as before but in 2*Mg, our HFB solution with four
spherical oscillator shells, yields 8 = 0.28, A, = 0.034 MeV,
and A, = 0.131 MeV. Figure 2 displays the resulting transi-
tion strengths for the operator J_; = J, —iJ,. Most of the
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FIG. 2. (Color online) Transition strength for the operator J_; to
K™ = 17 states in 2*Mg with SkP obtained by version (a).
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strengths are four orders of magnitude smaller than that of the
spurious state at £ = 0.045 MeV.

For this one mode, version (c) does not give good results.
We use the same box-HFB solution of **Mg as for K™ =

0" just discussed, and choose truncation parameters (vih)? =

10~* and (v(]fl?t)2 = 1073, The resulting spurious state energy
is 1.731 MeV, a rather large value, and although nearly all
physical states have negligible strength, a few around E = 10
and 20 MeV have significant strength. The poor performance
is due to the rotationally asymmetric quasiparticle space that
the cylindrical-box boundary conditions create; changing the
truncation parameters has little effect. The space of spherical
oscillator states we use with version (a) is invariant under
rotation and therefore far better able to separate collective
rotation.

Finally, we examine spurious translational motion. Here, an
oscillator basis for HFB is far from optimal. With version (a) in
160, the spurious state energy was nearly 2.5 MeV even when
40 oscillator shells were included. We therefore choose here
to test versions (b) and (c), which turn out to give identical
strength functions. We choose the nucleus *Mg, the same
box as in the tests already discussed, the Skyrme functional
SLy4, and a pairing strength V = —140.348 MeV fm?, with
the quasiparticle cutoff in the HFB code increased to 300 MeV.
These parameters yield g = —0.27, A, = 1.365 MeV, and
A, = 0.002 MeV. Figure 3 shows isoscalar (IS) E'1 transition
strengths, for which the excitation operator is Z,‘A=1 ”53 Y1, (€2),
to states with K™ = 0~. The figure contains two sets of lines,
the second of which adds a correction term to the IS operator
(via the prescription of Ref. [12]) to remove residual spurious
strength from physical excitations. The difference between the
two sets is very small in all the physical states shown, and
completely negligible in higher-energy states. In addition, the
smoothed version of the spectrum proves to be stable against
changes in the truncation parameters. This test and those
presented earlier show that we can handle spurious motion
in this mass region without trouble.

Since we have done extensive calculations with a spherical
J-scheme code over the past few years [25], we can test our
current codes further by comparing their results with those
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FIG. 3. (Coloronline) IS E1 transition strength to K™ = 0~ states
in 2Mg with SLy4, from version (b). Solid lines represent strength
that is corrected to eliminate residual spurious contributions.
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TABLEI Comparison of energies and (corrected) IS E'1 strengths
for the three lowest-lying J™ = 1~ states in '°O, calculated with
spherical (J-scheme) code and the current (M-scheme) code and
SLy4. The correction barely changes the strength for the two physical
excited states, but reduces that of the spurious (lowest) state by many
orders of magnitude.

J scheme, J* = 1~ M scheme, K™ =0~

E SISEI E SISEI
(MeV) (fm®) (MeV) (fm®)
0.323 7.051x1073 0.472 1.298 x 10~*
7.500 1.461 x 10 7.440 1.433 x 10
10.610 5.739 x 1072 10.681 4.283 x 1072

obtained in the J scheme. Table I shows energies and IS E'l
transition strengths (with the correction mentioned above) for
the three lowest J* = 17 levels, along with the corresponding
K™ =07 energies and strengths from version (b) of our
current code, in the spherical nucleus '°0. The two codes take
wave functions from entirely different HFB codes: a slightly
modified version of HFBRAD [22] called HFBMARIO for the
spherical QRPA and the Vanderbilt HFB code for the deformed
QRPA. The first state on each side of the table is the spurious
state, with very small strength because of the correction. The
next two, both genuine excitations, are nearly the same in both
energy and strength in the two calculations. The full strength
function, folded with a Lorentzian of width 3 MeV [see in
Eq. (1) in Ref. [8]] displayed in Fig. 4, shows the same level
of agreement. The very small differences in the continuum
are due to differing box boundary conditions: the spherical
calculation is in a spherical box with radius 20 fm and the
deformed calculation is in the same cylindrical box we used
for 2°Mg.

Before moving to heavy nuclei, we display the results of one
more test—this time simultaneously checking the Vanderbilt
HFB code [21] underlying our deformed QRPA, and our
procedure for constructing the canonical basis for version (c)
by diagonalizing the density matrix (which is the same as
in Ref. [8]). Figure 5 displays the proton Op3,, (j, = 3/2)
canonical basis wave function in >0 produced by both the
spherical and deformed procedures. The agreement is perfect
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FIG. 4. (Color online) Full IS E 1 strength function corresponding
to Table I. The letters J and M denote the J- and M-scheme
calculations.
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FIG. 5. (Color online) Comparison of proton Op3, (j. = 3/2)
canonical-basis wave function produced by J- and M-scheme codes
for 220 at z = 0. The labels s-dn and s-up denote the spin-down and
spin-up components in the M-scheme calculation. In the J scheme,
the spin-down component is identically zero. See, e.g., Ref. [22]
for details on the spin-specific components of J-scheme wave
functions.

and far from trivial. Though A, =0 in this calculation, we
still construct the density matrix from the Vanderbilt-HFB
output and diagonalize it to obtain the canonical wave function.
(There is no arbitrariness in this wave function because only
one proton p3, state is occupied in oxygen.) The neutron
bound-state wave functions produced by the two procedures,
though we do not display them, agree equally well.

III. HEAVY NUCLEI

Having thoroughly tested several versions of the deformed
QRPA, we apply version (c) to the nucleus '"?Yb. The use of
the canonical basis makes version (c) faster than version (b),
and the use of box boundary conditions makes it better able
to represent the continuum than version (a). Though we may
pay a price in the K™ = 17 channel, we should be better off
everywhere else.

We set up the HFB calculation as follows: we use a “box”
with 7max = Zmax = 20 fm, cut off the quasiparticle spectrum
at 60 MeV, and take the maximum z component of the
quasiparticle angular momentum to be 19/2; these parameters
define a single-quasiparticle space with 4648 proton states and
5348 neutron states. We use the Skyrme functional SkM* [26]
with volume pairing strengths V, = —218.521 MeV fm?
and V, = —176.364 MeV fm> (determined from measured
odd-even mass differences). The calculation yields A, =
1.248 MeV, A, = 0.773 MeV, and 8 = 0.34 .

In the QRPA, we truncate two-canonical-quasiparticle con-
figurations by choosing (v2)? = 10~¢ and (v/%)% = 10~1°.
The values of these parameters are designed to yield a
manageable calculation (a QRPA matrix whose size, while
depending on multipolarity, is typically about 160 000 by
160 000) while inducing only small errors. (The accuracy with
which we treat canonical wave functions results in a very close
correlation between the cutoff parameters and the dimension
of the resulting QRPA matrix. When changing (vf:t)2 from 0 to
10~" and then 10~ '3, the dimension decreases from 356 126
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FIG. 6. (Color online) Comparison of isovector (IV) E1 strength
functions in a fictitious spherical > Yb nucleus, with particle-hole
cutoffs (vP")? of 1071° and zero. We assume a spherical nucleus in
order to set (vf,l:l)2 to zero while keeping the calculation manageable.
We use the J-scheme code [8] with a box radius of 20 fm, the Skyrme
functional SkM*, and (v™)? set to (v2})%. The self-consistent pairing
gaps are between 1.3 and 1.4 MeV for both protons and neutrons, and
we use a folding width of 1 MeV to produce the figure. Changing the
box size to 15 or 17.5 fm makes almost no difference in the strength
function.

to 303 996 and then to 233 314 for K™ = 17.) Our experience
with accurate calculations in spherical nuclei [8,25] and in a
fictitious spherical version of '”>Yb with no occupation cutoff,
see Fig. 6, suggests that the calculations here will be accurate
as well; the only way in which they are slightly inferior is
through the parameter (vih)?, which in spherical nuclei we
took to be 107!2 for channels with spurious states and 103
otherwise. Calculations of similar size in deformed nuclei with
WPy =104 and W*")? = 10~'3 in the K™ = 0" and 1~
channels give nearly the same results as those reported here,
indicating that neither truncation causes significant errors.
Table II shows energy-weighted sums, alongside values

obtained from sum rules, for IS and isovector (IV) electric

TABLE II. Energy-weighted sums for strength functions, in our
QRPA calculations and from analytical sum-rule expressions. We
include QRPA states with up to 90 MeV of excitation energy. The
units of the IS E1 sum are MeV fm®, and those of the IV E1 sum are
MeV fm?. Those of all E2 sums are MeV fm*. The IS E1 strength
has been corrected to remove spurious components. Contribution of
—K is not included in K # 0.

Transition K™ QRPA Analytical
operator of solution

ISE1 1~ 104 356 0 104 241 3
IVEIL 1~ 289.819 285.764
IS E1l 0~ 2015266 201946 5
IV E1 0~ 291.859 285.764
IS E2 2+ 64 700 63 877
IV E2 2+ 20284 20076
IS E2 1t 76 159 88 197
IV E2 1" 28 517 28 174
ISE2 ot 97 886 96 867
IV E2 0* 31271 30 874
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TABLEIIL. Energiesand B(E2;0" — 2%)’s for the y -vibrational
and “B-vib.” states of '7>Yb. Experimental data are from Ref. [27]
(see also Ref. [28]). For the definition of B(E?2), see, e.g., Ref. [29].

Expt. Calc.
y-vib. E (MeV) 1.466 2.261
B (E2) (¢* b?) 0.043+5—15 0.041
“B-vib.” E (MeV) 1.117 1.390
B (E2) (¢* b?) 0.008 117 0.00495

operators in all !72Yb channels that we calculate. The differ-
ences between the QRPA sums and the sum rules are less
than about 2% except in the IS K™ = 1" channel, where as
seen earlier, we are unable to adequately separate the spurious
rotational state in our deformed box. In other channels, the
spurious mode is under better control. In the IS 0~ and
1~ channels, we have some contamination at low energies, but
it is weak enough that the subtraction procedure of Ref. [12]
restores the sum rule nearly exactly. In the 0" channel, as
the table shows, the separation is quite good even without
subtraction. The 11 channel can be corrected as well, but
doing so requires a numerical procedure that we have not yet
implemented.

The energies of the spurious states, for completeness, are
0.318 and 1.078 MeV for K™ = 0%, 0.963 MeV for K* =17,
1.480 MeV for K™ =07, and 1.506 MeV for K™ =1".

The accuracy of the energy-weighted sums in the K™ = 0
and 2 channels indicates that our approach is reliable for low-
lying quadrupole shape vibrations. Table I1I shows the energies
and B(E2;0" — 2%)’s of both the y-vibrational K =27
state and a low-energy K™ = OV state with a significant B(E2)
that we denote by “B-vib.” The quotation marks indicate that,
unlike the clear-cut y-vibrational state, the 01 state has a
somewhat smaller B(E?2) than is typical of vibrational modes.
Both states have been studied experimentally, e.g., in Ref. [27].
The particle-number strength of the “B-vib.” state is 0.04% of
that of the spurious state, indicating that we need not worry
about contamination.

The agreement of both the energies of these low-lying
states and their transition strengths with measured values is
at a level that is typical of QRPA calculations in spherical
nuclei. In Ref. [30], we investigated a large set of such
nuclei, characterizing the quality of the QRPA by two
quantities:

Rg = ln(Ecalc/Eexpt), ()
Ro = In/B(E2)cuic/ B(E2)expr,

where suffixes calc and expt denote calculated and experi-
mental. The results in Table III correspond to Rp = 0.43
and Ry = —0.03 for the y vibration, and Rg = 0.22 and
Rp = —0.25 for “B-vib.” The histograms in Figs. 4 and 9
of Ref. [30] show these values to be near the most common
values in spherical nuclei.

Figure 7 displays the IV E'1 strength function. The thick
curve is the sum of strengths in all channels and can be
compared with experimental data. The peaks of the K™ = 0~
and 1~ distributions in Fig. 7 lie at different energies, as is
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FIG. 7. (Coloronline) Predicted IV E1 strength functionin '"2Yb,
with a folding width of 0.5 MeV (0.1 MeV for discrete states).

0~ and 1™ indicate K™ components (the curve for K* = 1~ includes
contributions from K™ = —17).

often the case in deformed nuclei. Though an experimental
group reports a pygmy resonance at 3-4 MeV [31], we
see no indication of one in our calculation. It has been
suggested that in spherical Sn isotopes such resonances involve
configurations beyond the natural ambit of the QRPA [3,4], but
the issue is unresolved; and in deformed nuclei, it has not been
systematically investigated.

IV. CONCLUSIONS

In summary, we have developed three related Skyrme-
HFB + QRPA codes, aimed at calculations in axially sym-
metric even-even nuclei throughout the isotopic chart. We
rigorously tested the accuracy of the codes in Mg isotopes,
paying particular attention to spurious states. In heavier nuclei,
version (c) appears to perform as well as in light systems,
provided we work in larger but still manageable spaces. The
agreement of energy-weighted sums with sum rules indicates
that (1) in channels with no spurious modes (e.g., K™ = 21),
our code is quite accurate, (2) in the K™ = 0% channel,
spurious admixtures are negligible, and (3) in the IS K* =07,
and 1~ channels [and perhaps the 17 channel as well with
version (a)], admixtures can be effectively removed. Our
immediate plans are to systematically investigate the ability
of modern density functionals, together with the QRPA, to
describe 8 and y vibrations in rare-earth nuclei.

ACKNOWLEDGMENTS

This work was supported by the UNEDF SciDAC Col-
laboration under DOE Grant No. DE-FC02-07ER41457 and
by the National Science Foundation through Teragrid re-
sources provided by the National Institute for Computational
Sciences. We are indebted to Profs. V. E. Oberacker and
A. S. Umar for giving us their HFB code and for technical
support. We used computers at the National Energy Research
Scientific Computing Center, the National Center for Com-
putational Sciences, and the University of North Carolina at
Chapel Hill.

034326-5



J. TERASAKI AND J. ENGEL

[1] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, New York, 1980).

[2] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems
(MIT, Cambridge, MA, 1986).

[3] N. Tsoneva, H. Lenske, and Ch. Stoyanov, Phys. Lett. B 586,
213 (2004).

[4] D. Sarchi, P--F. Bortignon, and G. Colo, Phys. Lett. B 601, 27
(2004).

[5] I. Z. Petkov and M. V. Stoitsov, Nuclear Density Functional
Theory (Clarendon, Oxford, 1991).

[6] A Primer in Density Functional Theory, edited by C. Fiolhais,
F. Nogueira, and M. Marques (Springer, Berlin, 2003).

[7] M. Arnould and S. Goriely, Phys. Rep. 384, 1 (2003).

[8]J. Terasaki, J. Engel, M. Bender, J. Dobaczewski,
W. Nazarewicz, and M. Stoitsov, Phys. Rev. C 71, 034310
(2005).

[9] M. Yamagami and N. Van Giai, Phys. Rev. C 69, 034301 (2004).
[10] D. Pena Arteage and P. Ring, Phys. Rev. C 77, 034317 (2008).
[11] S. Péru and H. Goutte, Phys. Rev. C 77, 044313 (2008).

[12] K. Yoshida and N. V. Giai, Phys. Rev. C 78, 064316 (2008).

[13] C. Losa, A. Pastore, T. Dgssing, E. Vigezzi, and R. A. Broglia,
Phys. Rev. C 81, 064307 (2010).

[14] T. Inakura, T. Nakatsukasa, and K. Yabana, Phys. Rev. C 80,
044301 (2009).

[15] V. O. Nesterenko, W. Kleinig, J. Kvasil, P. Vesely, P.-G.
Reinhard, and D. S. Dolci, Phys. Rev. C 74, 064306 (2006).

PHYSICAL REVIEW C 82, 034326 (2010)

[16] A. P. Severyukhin, V. V. Voronov, and N. V. Giai, Phys. Rev. C
77, 024322 (2008).

[17] J. Toivanen, B. G. Carlsson, J. Dobaczewski, K. Mizuyama,
R. R. Rodriguez-Guzmén, P. Toivanen, and P. Vesely, Phys.
Rev. C 81, 034312 (2010).

[18] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,
Reading, 1975), Vol. 1.

[19] V. G. Soloviev and N. Yu. Shirikova, Z. Phys. A 334, 149 (1989).

[20] M. V. Stoitsov et al., Comput. Phys. Commun. 167, 43 (2005).

[21] A. Blazkiewicz, V. E. Oberacker, A. S. Umar, and M. Stoitsov,
Phys. Rev. C 71, 054321 (2005).

[22] J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A 422,
103 (1984).

[23] M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, and
D. J. Dean, Phys. Rev. C 68, 054312 (2003).

[24] E. Chabanat et al., Nucl. Phys. A 635, 231 (1998).

[25] J. Terasaki and J. Engel, Phys. Rev. C 74, 044301 (2006).

[26] J. Bartel et al., Nucl. Phys. A 386, 79 (1982).

[27] C. Fahlander et al., Nucl. Phys. A 541, 157 (1992).

[28] [http://www.nndc.bnl.gov].

[29] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,
New York, 1969), Vol. 1.

[30] J. Terasaki, J. Engel, and G. F. Bertsch, Phys. Rev. C 78, 044311
(2008).

[31] A. Voinov, M. Guttormsen, E. Melby, J. Rekstad, A. Schiller,
and S. Siem, Phys. Rev. C 63, 044313 (2001).

034326-6


http://dx.doi.org/10.1016/j.physletb.2004.02.024
http://dx.doi.org/10.1016/j.physletb.2004.02.024
http://dx.doi.org/10.1016/j.physletb.2004.09.019
http://dx.doi.org/10.1016/j.physletb.2004.09.019
http://dx.doi.org/10.1016/S0370-1573(03)00242-4
http://dx.doi.org/10.1103/PhysRevC.71.034310
http://dx.doi.org/10.1103/PhysRevC.71.034310
http://dx.doi.org/10.1103/PhysRevC.69.034301
http://dx.doi.org/10.1103/PhysRevC.77.034317
http://dx.doi.org/10.1103/PhysRevC.77.044313
http://dx.doi.org/10.1103/PhysRevC.78.064316
http://dx.doi.org/10.1103/PhysRevC.81.064307
http://dx.doi.org/10.1103/PhysRevC.80.044301
http://dx.doi.org/10.1103/PhysRevC.80.044301
http://dx.doi.org/10.1103/PhysRevC.74.064306
http://dx.doi.org/10.1103/PhysRevC.77.024322
http://dx.doi.org/10.1103/PhysRevC.77.024322
http://dx.doi.org/10.1103/PhysRevC.81.034312
http://dx.doi.org/10.1103/PhysRevC.81.034312
http://dx.doi.org/10.1016/j.cpc.2005.01.001
http://dx.doi.org/10.1103/PhysRevC.71.054321
http://dx.doi.org/10.1016/0375-9474(84)90433-0
http://dx.doi.org/10.1016/0375-9474(84)90433-0
http://dx.doi.org/10.1103/PhysRevC.68.054312
http://dx.doi.org/10.1016/S0375-9474(98)00180-8
http://dx.doi.org/10.1103/PhysRevC.74.044301
http://dx.doi.org/10.1016/0375-9474(82)90403-1
http://dx.doi.org/10.1016/0375-9474(92)90640-6
http://dx.doi.org/10.1103/PhysRevC.78.044311
http://dx.doi.org/10.1103/PhysRevC.78.044311
http://dx.doi.org/10.1103/PhysRevC.63.044313

