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Critical temperature for α-particle condensation in asymmetric nuclear matter
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The critical temperature for α-particle condensation in nuclear matter with Fermi surface imbalance between
protons and neutrons is determined. The in-medium four-body Schrödinger equation, generalizing the Thouless
criterion of the BCS transition, is applied using a Hartree-Fock wave function for the quartet projected onto zero
total momentum in matter with different chemical potentials for protons and neutrons.
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I. INTRODUCTION

Clustering in nuclei and nuclear matter has become an
increasingly studied subject recently [1–14]. Because the
α-particle is the smallest doubly magic nucleus, it is thus
very stable, and excited heavier nuclei may exist in weakly
bound states consisting of nucleons, pairs, α particles, etc.
[6,7,12]. Recently, excited states of 12C and 16O, like the Hoyle
state in 12C, have been described as so-called α-condensation
states, which can be pictured by three or four α particles
occupying the lowest s state in an effective quartet mean-field
potential [1,11].

On the other hand, α clustering in nuclear matter has also
been investigated as a possible phase in compact stars or as a
precursor of α clustering in finite nuclei. The critical tempera-
ture for the α condensation was previously calculated with the
momentum-projected Hartree-Fock approximation, yielding
results consistent with that of the Faddeev-Yakubovsky method
[14]. The critical temperature is an important quantity with
respect to stellar nucleosynthesis and star formation [15,16].
However, in comparison with our previous studies, bulk
nuclear matter, like that in neutron stars and other compact
objects, is imbalanced with respect to the particle numbers
of the protons and neutrons, implying different chemical
potentials. In the present article, we investigate the critical
temperature in asymmetric nuclear matter.

The applied method is the same as in our previous work
[14], where the in-medium four-body Schrödinger equation
is computed employing Hartree-Fock wave functions under
the constraint of total momentum equal to zero. Whereas
we used four equal single-particle wave functions in the
previous article for symmetric nuclear matter, we employ
different wave functions for protons and neutrons in the present
case because of the population imbalance with the different
chemical potentials for protons and neutrons.

In the next section, we briefly describe the formulation that
we use to compute the critical temperature. In Sec. III, we show
the numerical results for the critical temperature as a function
of density and chemical potential for various population ratios
of protons versus neutrons. In addition, we display and discuss

the quartet wave function at the critical temperature. Finally,
in Sec. IV we summarize.

II. FORMULATION

For the asymmetric nuclear matter case, we closely follow
the formulation given in our previous paper [14] for symmetric
nuclear matter.

The Hamiltonian is represented by

H = H0 + V =
∑

1

ε1c
†
1c1 + 1

4

∑
1234

v̄12,34c
†
1c

†
1c4c3, (1)

where indices represent momentum, spin, and isospin, v̄12,1′2′ is

the antisymmetric two-body interaction matrix, and εi = k2
i

2m∗ .
We formally introduce an effective mass m∗ to account ap-
proximately for the exchange term of the mean field, whereas
the direct term is incorporated into the chemical potential.
However, because in the following we consider mostly only
systems at very low density, we disregard mean-field effects
and take the bare mass value.

The four-body Schrödinger equation in the medium with
the eigenvalue E is given by (see Refs. [14,17–19] for details)

ε1234ψ1234 +
∑

1′2′3′4′
V1234;1′2′3′4′ψ1′2′3′4′ = Eψ1234, (2)

where ε1234 = ∑4
i=1 εi and V1234;1′2′3′4′ is of the form

V1234;1′2′3′4′ = (1 − f1 − f2) 1
2 v̄12,1′2′δ33′δ44′

+ (1 − f1 − f3) 1
2 v̄13,1′3′δ22′δ44′ + permutation,

(3)

where fi is the Fermi-Dirac distribution with different chem-
ical potentials for protons and neutrons. Otherwise, formally
the in-medium four-body equation is exactly the same as
in the symmetric case. The condition of the transition to
condensation, known as the Thouless criterion, is satisfied
with E = 2µp + 2µn at T → Tc [20], where µp (µn) is the
proton (neutron) chemical potential.
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For simplicity, we consider also for proton-neutron im-
balanced nuclear matter a spin-isospin-independent two-body
interaction as was considered already in the case of symmetric
nuclear matter [14]. We again employ for the four-body wave
function ψ1234, the Hartree-Fock ansatz, projected on zero total
momentum:

ψ1234 → ϕp(�k1)ϕp(�k2)ϕn(�k3)ϕn(�k4)χ0

× (2π )3δ(�k1 + �k2 + �k3 + �k4), (4)

where ϕτ (�ki) = ϕτ (|�ki |) is the s-wave single-particle wave
function for protons (τ = p) and neutrons (τ = n), respec-
tively; χ0 is the spin-isospin singlet wave function.

Substituting the ansatz of Eq. (4) into Eq. (2), and
integrating over superfluous variables, we obtain

ϕτ (k) = −Bτ (k)

Aτ (k) + Cτ (k)
(τ = p, n), (5)

where

Ap(k) =
∫

d3k2

(2π )3

d3k3

(2π )3

d3k4

(2π )3

×
(

k2

2m
+ k2

2

2m
+ k2

3

2m
+ k2

4

2m
− 2µp − 2µn

)

× [ϕp(�k2)]2[ϕn(�k3)]2[ϕn(�k4)]2

× (2π )3δ(�k + �k2 + �k3 + �k4), (6)

Bp(k) =
∫

d3k2

(2π )3

d3k3

(2π )3

d3k4

(2π )3

d3k′
1

(2π )3

d3k′
2

(2π )3

× [1 − fp(k) − fp(k2)]v�k�k2,�k′
1
�k′

2

×ϕp(�k′
1)ϕp(�k2)ϕp(�k′

2)

× [ϕn(�k3)]2[ϕn(�k4)]2(2π )3δ(�k + �k2 + �k3 + �k4)

+ 2
∫

d3k2

(2π )3

d3k3

(2π )3

d3k4

(2π )3

d3k′
1

(2π )3

d3k′
3

(2π )3

× [1 − fp(k) − fn(k3)]v�k�k3,�k′
1
�k′

3

×ϕp(�k′
1) [ϕp(�k2)]2ϕn(�k3)ϕn(�k′

3)

× [ϕn(�k4)]2(2π )3δ(�k + �k2 + �k3 + �k4), (7)

Cp(k) =
∫

d3k2

(2π )3

d3k3

(2π )3

d3k4

(2π )3

d3k′
3

(2π )3

d3k′
4

(2π )3

× [1 − fn(k3) − fn(k4)]v�k3�k4,�k′
3
�k′

4

× [ϕp(�k2)]2ϕn(�k3)ϕn(�k′
3)

×ϕn(�k4)ϕn(�k′
4) (2π )3δ(�k + �k2 + �k3 + �k4)

+ 2
∫

d3k2

(2π )3

d3k3

(2π )3

d3k4

(2π )3

d3k′
2

(2π )3

d3k′
3

(2π )3

× [1 − fp(k2) − fn(k3)]v�k2�k3,�k′
2
�k′

3

×ϕp(�k2)ϕp(�k′
2)ϕn(�k3)ϕn(�k′

3)

× [ϕn(�k4)]2(2π )3δ(�k + �k2 + �k3 + �k4), (8)

with the symmetric two-body vertex v�k2�k3,�k′
2
�k′

3
. The correspond-

ing expressions for the neutrons An, Bn, and Cn are obtained

by exchanging indices p ↔ n for Ap, Bp, and Cp in Eqs. (6),
(7), and (8). The Fermi distribution functions are

fτ (k) = 1

e( k2
2m

−µτ )/T + 1
(τ = p, n). (9)

Here, comparing with symmetric nuclear matter [14], in
the imbalanced nuclear matter case, two coupled equations
are obtained for protons and neutrons.

III. NUMERICAL CALCULATION

As seen from Eqs. (6)–(8), because the wave functions
ϕp,n(k) are mixed up inAp,n,Bp,n, and Cp,n, Eq. (5) constitutes
in fact two coupled nonlinear equations to be solved self-
consistently by iteration. The critical temperature is derived
from the condition

∫
d3k

(2π )3
ϕp(k){[Ap(k) + Cp(k)]ϕp(k) + Bp(k)} = 0, (10)

∫
d3k

(2π )3
ϕn(k){[An(k) + Cn(k)]ϕn(k) + Bn(k)} = 0. (11)

Given a set of chemical potentials µp and µn, one can solve
the two coupled equations (10) and (11) in adjusting the
temperature, to be identified with the critical temperature Tc,
as the single parameter.

For the vertex v�k1�k2,�k′
1
�k′

2
in Eqs. (7) and (8), we again take

the separable potential of Ref. [14]:

v�k1�k2,�k′
1
�k′

2
= λe

− (�k1−�k2)2

4b2 e
− (�k′

1−�k′
2)2

4b2

× (2π )3δ(�k1 + �k2 − �k′
1 − �k′

2). (12)

The parameters λ and b are adjusted to the binding energy
(−28.3 MeV) and to the rms radius (1.71 fm) of the isolated
α particle; λ = −992 MeV fm3 and b = 1.43 fm−1. As already
mentioned, in the symmetric case our procedure to solve
the in-medium four-body equation with our ansatz (4) and
the separable interaction (12) gave excellent agreement with
a full Faddeev-Yakubovsky solution using the Malfliet-Tjon
interaction [14]. Therefore, we think that our procedure is
valid in the present case as well.

Figure 1(a) shows the critical temperature of α condensation
as a function of the total chemical potential µtotal = µp +
µn. We see that Tc decreases as the asymmetry, given by the
parameter

δ = nn − np

nn + np

, (13)

increases. This is in analogy with the deuteron case (also
shown), which already had been treated in Refs. [21,22].
However, in Fig. 1(b), it is also interesting to show Tc as a
function of the free density, which is

ntotal = np + nn, (14)

np = 2
∫

d3k

(2π )3
fp(k), (15)
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FIG. 1. Critical temperature as functions of (a) the total chemical
potential µtotal = µp + µn and (b) the total free density ntotal. Thick
(thin) lines are for α particles (deuterons). Solid, dashed, and dotted
lines denote δ = 0.0, δ = 0.5, and δ = 0.9, respectively, where the
density ratio δ is in Eq. (13).

nn = 2
∫

d3k

(2π )3
fn(k), (16)

where the factor 2 in front of the integral comes from the
spin degeneracy, and fp,n(k) is as in Eq. (9). It should be
emphasized, however, that in the preceding relation between
density and chemical potential, the free gas relation is used
and correlations in the density are neglected. In this sense the
dependence of Tc on density only is indicative and is more
valid at the higher-density side. The very low density part
where the correlations play a more important role is treated in
a future publication. It should, however, be stressed that the
dependence of Tc on the chemical potential, as in Fig. 1(a),
stays unaltered.

The fact that the transition temperature decreases for more
asymmetric matter is natural, because as the Fermi levels
become more and more unequal, the proton-neutron correla-
tions are suppressed. For small δ (i.e., close to the symmetric
case), α condensation (quartetting) breaks down at smaller
density (smaller chemical potential) than deuteron condensa-
tion (pairing). This effect was already discussed in our previous
work for symmetric nuclear matter [14,17]. For large δ (i.e.,
strong asymmetries), the behavior is opposite; that is, deuteron
condensation breaks down at smaller densities than α conden-
sation, because the small binding energy of the deuteron cannot
compensate for the difference of the chemical potentials.

More precisely, for small δ, the deuteron with zero center-
of-mass momentum is only weakly influenced by the density or
the total chemical potential, as can seen in Fig. 1. However, as
δ increases, the different chemical potentials for protons and

neutrons very much hinder the formation of proton-neutron
Cooper pairs in the isoscalar channel for rather obvious
reasons. The point to make here is that, because of the much
stronger binding per particle of the α particle, the latter is much
less influenced by the increasing difference of the chemical
potentials. For the strong asymmetry δ = 0.9 in Fig. 1, then
finally α-particle condensation can exist up to ntotal = 0.02
fm−3 (µtotal = 9.3 MeV), whereas the deuteron condensation
exists only up to ntotal = 0.005 fm−3 (µtotal = 6.0 MeV).

Overall, the behavior of Tc is more or less as can
be expected. We should, however, remark that the critical
temperature for α-particle condensation stays quite high,
even for the strongest asymmetry considered here, namely
δ = 0.9. This may be of importance for the possibility
of α-particle condensation in neutron stars and supernova
explosions [23,24].

We also show the single-particle wave functions of protons
and neutrons, entering the quartet wave function (4), for vari-
ous ratios of Fermi surface imbalance and chemical potentials
in Fig. 2. In most cases of Fig. 2, the momentum-space wave
functions with negative chemical potentials are monotonically
decreasing, whereas the ones with positive chemical potentials
have a dip at k = 0. However, the momentum-space wave
functions also develop a dip at k = 0 even at a negative
chemical potential as the asymmetry takes on stronger values.
This can be seen in Figs. 2(a3) and 2(c2). Furthermore, the
neutron wave function in k-space with large positive chemical
potential develops a node. This behavior is similar to the wave
functions in Ref. [14]. As shown in Fig. 2, the dissymmetry
of proton and neutron wave functions increases as δ increases.
As a consequence, the critical temperature decreases, and the
α condensation breaks down at a more dilute density (see
Fig. 1). We also present in Figs. 2(a4), 2(b4), and 2(c4)
the proton and neutron wave functions in real space. In
spite of the sometimes strong dissymmetry in momentum
space, the proton and neutron wave functions are relatively
more similar to one another in r-space. The neutron wave
function develops a node as the total chemical potential
µtotal = µp + µn increases, but the negative values of the wave
function remain rather moderate.

IV. SUMMARY

We reported on the critical temperature for the α-particle
condensation as a function of the density and chemical
potential in asymmetric nuclear matter. The four-body wave
function in the medium is calculated with Hartree-Fock
wave functions projected onto zero total momentum, a pro-
cedure that was already very successful in the symmetric
case. Not unexpectedly, the transition temperature decreases
with increasing asymmetry. However, it was shown that Tc

stays relatively high for very strong asymmetries, a fact of
importance in the astrophysical context. The single-particle
wave functions of protons and neutrons were also shown and
discussed. The neutron wave function in momentum space
develops a node for strong asymmetries and high densities,
a fact familiar from ordinary pairing. It also was shown
that asymmetry affects deuteron pairing more strongly than
α-particle condensation. Therefore, at high asymmetries, if
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FIG. 2. The momentum-space single-particle wave functions for proton ϕp (solid line) and for neutron ϕn (dashed line) at the critical
temperature Tc as function of k for δ = 0.0, 0.5, and 0.9, and the real-space wave functions for proton ϕ̃p (solid line) and for neutron ϕ̃n

(dashed line) as a function of r for δ = 0.9 derived from the Fourier transform of ϕp,n(k) with ϕ̃p,n(r) = ∫
d3kei�k·�rϕp,n(k)/(2π )3. The top,

middle, and bottom rows are for µtotal = µp + µn ∼ −11 MeV, ∼0.0 MeV, and ∼9.0 MeV, respectively. The wave functions are normalized by∫
d3kϕ2

p,n(k)/(2π )3 = 1. The detailed data for respective parts of the figure are as follows: (a1) δ = 0.0, µtotal = −11.1 MeV, µp = −5.53 MeV,
µn = −5.53 MeV, Tc = 4.52 MeV; (a2) δ = 0.5, µtotal = −11.5 MeV, µp = −8.18 MeV, µn = −3.35 MeV, Tc = 4.07 MeV; (a3, a4) δ = 0.9,
µtotal = −11.0 MeV, µp = −10.8 MeV, µn = −0.163 MeV, Tc = 3.35 MeV; (b1) δ = 0.0, µtotal = 0.028 MeV, µp = −0.014 MeV, µn =
−0.014 MeV, Tc = 7.46 MeV; (b2) δ = 0.5, µtotal = 0.11 MeV, µp = −4.65 MeV, µn = 4.76 MeV, Tc = 6.74 MeV; (b3, b4) δ = 0.9,
µtotal = −0.02 MeV, µp = −8.18 MeV, µn = 8.16 MeV, Tc = 4.29 MeV; (c1) δ = 0.0, µtotal = 8.80 MeV, µp = 4.40 MeV, µn = 4.40 MeV,
Tc = 8.44 MeV; (c2) δ = 0.5, µtotal = 8.93 MeV, µp = −1.12 MeV, µn = 10.0 MeV, Tc = 7.16 MeV; (c3, c4) δ = 0.9, µtotal = 8.94 MeV,
µp = −4.21 MeV, µn = 13.2 MeV, Tc = 3.72 MeV.

at all, α-particle condensation dominates over pairing at all
possible densities.

The condition of Eqs. (10) and (11) corresponds to
calculating the critical temperature at the point where the α

particles in nuclear matter dissociate into four free particles
(i.e., at the Mott transition temperature). In the higher densities
considered here, this temperature is consistent with the phase-
transition temperature between superfluid and normal phases.
In the strong-coupling limit, this is not the case, because
the Bose-Einstein condensation (BEC) breaks down at lower

temperature than that of dissociation of a bound state to free
particles. This problem in the BCS-BEC crossover can be
solved by the Nozières and Schmitt-Rink theory, where the pair
fluctuations are systematically included beyond the mean-field
approximation [25]. The extension of this theory to the quartet
condensation is difficult but will be attempted in future work.
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