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The Woods-Saxon-Strutinsky method (the microscopic-macroscopic method) combined with the Kruppa
prescription for positive-energy levels, which is necessary to treat neutron-rich nuclei, is studied to clarify the
reason for its success and to propose improvements for its shortcomings. The reason why the plateau condition
is met for the Nilsson model but not for the Woods-Saxon model is understood in a new interpretation of the
Strutinsky smoothing procedure as a low-pass filter. Essential features of the Kruppa level density is extracted
in terms of the Thomas-Fermi approximation modified to describe spectra obtained from diagonalization in
truncated oscillator bases. A method is proposed, which weakens the dependence on the smoothing width by
applying the Strutinsky smoothing only to the deviations from a reference level density. The BCS equations are
modified for the Kruppa spectrum, which is necessary to treat the pairing correlation properly in the presence
of a continuum. The potential depth is adjusted for the consistency between the microscopic and macroscopic
Fermi energies. It is shown, with these improvements, that the microscopic-macroscopic method is now capable
to reliably calculate binding energies of nuclei far from stability.
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I. INTRODUCTION

Understanding the properties of unstable nuclei is one of
the most interesting subjects of nuclear physics [1]. It is
also important for astrophysics; for example, determination
of the precise position of a neutron drip line is crucial for
the r-process nucleosynthesis [2]. A characteristic feature
of unstable nuclei, among others, is the weak binding of
nucleons so that the proper treatment of continuum (scattering)
states is very important for the two basic ingredients of the
nuclear structure, the shell effect and the pairing correlation
[3]. In recent years, the most popular method to treat this
problem was the self-consistent mean-field theory, especially
the Hartree-Fock-Bogoliubov (HFB) theory [4], with suitably
chosen (density-dependent) zero- or finite-range effective
interactions [5]. Such self-consistent mean-field models can
reproduce the very basic quantities, such as the nuclear
mass rather well [6], and can be used to investigate the
detailed deformation properties of a nucleus. On the other
hand, a non-self-consistent semiphenomenological method
of the Strutinsky shell correction approach [7–10], or often
called the microscopic-macroscopic method, has been used
for more than 40 years to calculate nuclear masses, defor-
mations, and fission paths. In such an approach, the part
of binding energy which smoothly varies as a function of
nucleon (proton and neutron) number is represented by the
liquid-drop or the droplet model with parameters adjusted to
reproduce the experimental binding energy, on top of which
is added the rapidly varying shell energy correction eval-
uated by assuming some non-self-consistent single-particle
potential.

It is known that there is a close relationship between the
two, the self-consistent mean-field and the shell correction
approaches [11,12], but the actual calculational procedures
differ considerably, and their own merits are quite different.
The number of adjustable parameters is generally fewer, and
the range of applicability is believed to be wider in the
self-consistent mean-field models, whereas the shell correction
approach requires much less computational power. Thanks
to recent progress of computer power, the root-mean-square
deviation between the calculated and experimental masses, as
an example, in some of the self-consistent mean-field models
[13,14], is approaching the same level of accuracy as that
in the state-of-the-art model of the shell correction approach
[15] (or even better). However, its ease of computation and
its flexibility to choose the single-particle potential are still
great merits of the shell correction approach. For example,
the various effects of the single-particle orbits can be more
directly studied in the shell correction approach. On the
contrary, in self-consistent mean-field models, a clear-cut
picture is sometimes lost because of the complicated self-
consistency between the nuclear mean field and the effective
interaction.

Although the qualities of the mass fit are similar in
the two approaches in stable nuclei, they often give quite
different predictions for very heavy nuclei and unstable
nuclei near the neutron drip line, where no experimental data
are available [6,13,14]. It should be noticed that the shell
correction approach has several difficulties for the calculation
of unstable nuclei, which are mainly related to the problem
of unbound (continuum) states characteristic to weakly bound
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systems. The difficulties were carefully examined one by one
in Ref. [16].

The first and most crucial difficulty is that the shell
correction energy cannot be unambiguously determined for
the single-particle potential with finite depth, which is in-
dispensable for describing weakly bound states. The energy
of shell correction is defined as the difference between the
sum of single-particle energies up to the Fermi level and its
smoothed part. The conventional method of the smoothing
procedure utilizes the energy averaging of the single-particle
level density over the interval γ of the typical shell spacing
γ ≈ h̄ω = 41/A1/3 MeV, where A is the mass number. If the
absolute energy of the Fermi level is smaller than the shell
spacing, the averaging inevitably involves the unbound states.
The continuum single-particle levels are usually discretized by
using the harmonic oscillator (HO) basis expansion, but blind
inclusion of them leads to divergent results, as the basis is
enlarged even in stable nuclei [16,17]; this is simply because
the level density of continuum states itself is a divergent
quantity. It is proposed that the level density above the
threshold should be replaced [18] with the so-called continuum
level density [19,20], and the resultant smoothed energy is
shown to be convergent [21].

The evaluation of the continuum level density requires the
energy derivative of the phase shift or of the scattering matrix
in general so that the calculation is cumbersome for spherical
nuclei and is difficult for deformed nuclei. A breakthrough
was given by Kruppa [22], who proposed a powerful practical
prescription to calculate the continuum level density by using
the fact that it is written as the difference between the level
densities with and without the mean-field potential [23,24].
However, the problem remains; the so-called plateau condition
[25], which guarantees that the shell correction energy is
independent of the smoothing procedure, is not generally
well satisfied [26,27]. We reinvestigate the meaning of the
energy smoothing procedure and consider a remedy to recover
the plateau condition as much as possible by employing the
Kruppa prescription.

It is worth mentioning that there are different methods
to calculate the smoothed part. One is to perform averaging
with respect to the particle number, not to the single-particle
energy, only by employing the bound states [28,29]. However,
the resultant smoothed energy depends sensitively on how to
perform the averaging for nuclei near the drip line [30–33],
where there are no unoccupied bound states, and, thus, one
has to tackle the difficult task of estimating an average value
at a point (a particle number) by using data points only on one
side of that point (at smaller particle numbers). Also, it is a
problem that the smoothed part does not necessarily behave
like the liquid-drop model as a function of deformation [34].
See Ref. [35] for recent developments. Another method is to
apply the semiclassical Wigner-Kirkwood expansion of the
single-particle partition function [4,25,36,37]. The relation to
the Strutinsky shell correction method was discussed [38],
and the treatment of realistic potentials with the spin-orbit
term was developed [39]. This method was recommended in
Refs. [16,26] to obtain the smoothed energy unambiguously.
See Ref. [40] for recent developments. However, to achieve the
same accuracy as the conventional Strutinsky shell correction,

one has to include up to the third-order terms in h̄2. The lowest
term is nothing but the Thomas-Fermi energy. The calculation
is rather complicated, especially for the case without spherical
symmetry. Also, it should be noticed that the semiclassical
level density diverges at the threshold (or the barrier top in the
case with the Coulomb potential), which has non-negligible
effects for drip-line nuclei [26]. In this paper, we stick to the
conventional energy smoothing procedure and do not consider
these other possibilities.

The second difficulty in the shell correction approach with
the continuum states included is the treatment of the pairing
correlation, for which the simple BCS approximation is usually
used with the diagonal (seniority) pairing force. The force
strength is fixed according to the model space employed by
the smoothed pairing gap method [8,10]. Since the pairing
model space is taken to be within about the major shell spacing
above and below the Fermi level, the same problem as that
of the smoothed energy arises for unstable nuclei, where the
Fermi level is so close to the threshold that the unbound states
enter into the model space. This is a serious problem because
finite-occupation probabilities of unbound states lead to the
formation of “neutron gas”, which surrounds the nucleus. A
complete solution of this problem requires the coordinate-
space HFB method [41]. The pairing energy is also affected
by the continuum states in such an uncontrollable way that it
increases infinitely as more numbers of states are considered.
It is a major obstacle to the unambiguous prediction of the drip
line [16]. We extend the Kruppa prescription to the treatment
of the pairing correlation and try to solve this problem.

The third difficulty in the shell correction approach,
which is not particularly related to the unbound states, is
the inconsistency between the Fermi energy of the chosen
single-particle potential and that of the macroscopic part [42];
this kind of problem does not appear in the self-consistent
mean-field approach, since the single-particle potential adjusts
itself to give the correct Fermi energy. Although this problem
is negligible in stable nuclei, it becomes more severe near the
particle threshold, which easily shifts the drip line by about ten
particle numbers. In Ref. [16], parameters of a Woods-Saxon
potential are adjusted in accordance with the bulk nuclear
asymmetry of the droplet model; it is found that a fine-tuning
is necessary to obtain the coincidence of the Fermi energy of
the adjusted potential with that of the macroscopic part. In this
paper, we solve this problem with an automatic adjustment of
the potential depth in the Thomas-Fermi approximation.

The main purpose of the present paper is to solve the
difficulties of the conventional microscopic-macroscopic ap-
proach. We propose remedies to all three difficulties mentioned
previously. Although our remedies are not perfect ones, we
believe that a combined use of them gives much more reliable
results for the shell correction calculations of unstable nuclei
near the drip lines. This paper is organized as follows. In
Sec. II, the present status of the shell correction method is
reviewed, and its difficulties are discussed in detail. A new
interpretation of the Strutinsky energy smoothing is also given
there. In Sec. III, the solutions to the difficulties are presented,
and the qualities of the improvements are examined in detail.
Section IV is devoted to the conclusion.
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II. THE PRESENT STATE OF THE SHELL
CORRECTION METHOD

A. The Woods-Saxon potential

The Woods-Saxon potential is a finite-depth potential,
which has a continuum spectrum of unlocalized states as well
as a discrete spectrum of localized states. Combined with a
spin-orbit and the proton’s Coulomb potentials, it resembles
very well the potentials for a nucleon in atomic nuclei, which
have a flat central part and a short-range tail. The expression
we employ is given by

HWS = p2

2m
+ VCE + VSO + 1

2 (1 − τ3)VCO, (1)

where the central part VCE and the spin-orbit part VSO are the
standard ones [43],

VCE = VWS(r; V0CE, κCE, R0CE, aCE,β), (2)

VSO = λSO

(
h̄

2mredc

)2

[∇VWS(r; V0CE, κSO, R0SO, aSO,β)]

·
(

σ × 1

i
∇

)
, (3)

where mred = A−1
A

m with m as the nucleon mass, τ3 is the
third component of the nucleon’s isospin multiplied by 2
(1 for neutrons and −1 for protons), σ is the Pauli matrix for
the nucleon’s spin (s = h̄

2σ ), and the function VWS is defined
by

VWS(r; V0, κ, R0, a,β)

= −V0

[
1 ± κ

N − Z

A

]
1

1 + exp [D(r; R0,β)/a]
. (4)

Here, N , Z, and A are the neutron, the proton, and the mass
numbers, respectively, while ± in front of κ means + for proton
and − for neutron. D(r; R0,β) denotes the (perpendicular)
distance (with minus sign if r is inside the surface) between
a given point r and the nuclear surface so that D(r; R0,

β = 0) = r − R0 for spherical shape. The surface is specified
by the radius R0 and the deformation parameters β ≡ (βλ) as

R(θ ; R0,β) = R0cv(β)

[
1 +

∑
λ

βλYλ0(θ )

]
, (5)

where the constant cv(β) takes care of the conservation of
the volume inside the surface against deformation (cv = 1 for
β = 0). We only consider axially symmetric deformations and
take into account the quadrupole (β2) and the hexadecapole
(β4) ones in this paper. The Coulomb potential VCO acts only on
protons and is created by electric charge (Z − 1)e distributed
uniformly inside the nuclear surface given by Eq. (5) with
R0 = R0CE.

The parameters R0CE (R0SO) and aCE (aSO) are the radius
and the surface diffuseness of the central (spin-orbit) potential.
For N = Z nuclei, the depth of the central potential is V0CE,
while a dimensionless parameter λSO specifies the depth of
the spin-orbit potential relative to the central potential. The
quantities κCE and κSO describe the nuclear isospin dependence
of the two potentials. Note that the radii and the diffusenesses
of the central and spin-orbit potentials are different, in general,

but the shape of the nuclear surfaces is taken to be the same
(i.e., the common deformation parameters β are used in both of
them). The set of the values of these parameters mainly used to
obtain the results shown in this paper is the universal parameter
set of Ref. [43] (note that the parameter r0-so(P ) = 1.20 in
Table I of Ref. [43] is a misprint and should be replaced by
1.320, see Ref. [44]). It should, however, be noted that we
modify the depth of the central potential to be consistent with
the liquid-drop Fermi energy; see Sec. III H for details.

The Nilsson potential is a HO potential combined with a
spin-orbit term and an l2 term. Since its depth (or height) is
infinite, its spectrum does not have a continuum part. See, for
example, Ref. [45] for the equations to define the potential. We
employ the Nosc dependent ls and l2 parameters of Ref. [46].

We use the anisotropic HO basis to diagonalize these
single-particle Hamiltonians. The oscillator frequencies ω3

and ω⊥ along the symmetry axis and the perpendicular
axis, respectively, are determined by the two conditions; the
volume conservation and the condition that they are inversely
proportional to the root-mean-square length of each axis,
which is calculated by assuming the uniform sharp-cut density
inside the nuclear surface given by Eq. (5). Namely, the
conditions are ω3ω

2
⊥ = ω3

0 and ω3/ω⊥ =√
〈x2〉uni/〈z2〉uni , where

ω0 is the frequency for spherical shape and 〈 〉uni denotes
average value based on the uniform sharp-cut density. The
number of the basis states is specified by the total oscillator
quantum number Nosc = n⊥ + n3 (n⊥ = n1 + n2), where ni

(i = 1, 2, 3) is the number of oscillator quanta in the ith
axis. In the following discussions, we use the standard HO
energy h̄ω = 41/A1/3 MeV, and the Woods-Saxon potential
is diagonalized in the oscillator basis with a frequency ω0 =
1.2ω.

B. The shell correction method

In the shell correction method, the total energy of a nucleus
is assumed to be decomposed as

E = Emac +
∑

q=n,p

(
E

(q)
sh + E(q)

pair

)
, (6)

where Emac is the energy of a macroscopic model such as the
liquid-drop model, while E

(q)
sh and E

(q)
pair are the microscopic

corrections. Because the equations to define the contributions
from neutrons (q = n) and protons (q = p) are very similar,
we only show the terms for neutrons in the rest of this paper.
For the sake of conciseness, we omit the superscript (n) for
the most part (i.e., Esh and Epair designate E

(n)
sh and E(n)

pair,
respectively).

The term Esh is the shell correction energy, which is defined
by

Esh = Es.p. − Ẽs.p.. (7)

The first term on the right-hand side is the sum of the single-
particle energies of occupied levels,

Es.p. =
N∑

i=1

εi, (8)
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where ε1 � ε2 � · · · are the neutron single-particle energies.
Since we are going to discuss the Kruppa method (see
Sec. II D), these levels are the results of diagonalizations of
the single-particle Hamiltonian in a truncated HO basis, and,
thus, they are discrete through negative and positive energies.

By introducing the (single-particle) level density,

g(ε) =
∑

i

δ(ε − εi), (9)

the quantity Es.p. in Eq. (8) can be written as an integral,

Es.p. =
∫ λ

−∞
εg(ε) dε, (10)

up to the Fermi energy λ. Analogously, the second term on the
right-hand side of Eq. (7) is the integral of the product of the
energy and a smoothed level density g̃(ε) over a semi-infinite
energy interval up to the corresponding Fermi energy λ̃,

Ẽs.p. =
∫ λ̃

−∞
εg̃(ε) dε, (11)

with λ̃ determined to satisfy a constraint on the number of
particles,

∫ λ̃

−∞
g̃(ε) dε = N. (12)

The term Epair is the correction for the pairing energy, which
is defined by

Epair = (EBCS − Es.p.) − (ẼBCS − Ẽs.p.). (13)

EBCS and ẼBCS are the energies of the BCS solutions of
the pairing Hamiltonian with discrete and smoothed level
densities, respectively. The terms in the first set of parentheses
on the right-hand side represent the energy gain caused by the
pairing correlation. The terms in the second set of parentheses
are the part of the pairing energy gain smoothly changing as
a function of N and Z, which should be subtracted, since
it is already included in Emac. Explicit expressions for these
quantities are given in Secs. III D and III F.

Using Eqs. (7) and (13), one can simplify Eq. (6) as

E = Emac +
∑

q=n,p

(
E

(q)
BCS − Ẽ

(q)
BCS

)
. (14)

However, from a physical point of view, we discuss Esh and
Epair separately. It may be worth noticing that one often uses
simplified expressions for the smoothed part of the pairing en-
ergy in many of the existing calculations (e.g., Refs. [10,15]),
by assuming that the single-particle levels are uniformly
distributed with the smoothed level density at the Fermi energy.
In such cases, Eq. (14) does not hold exactly. In this paper, we
calculate ẼBCS consistently without such simplifications, as
discussed in Secs. III D and III F.

As for the energy of the macroscopic part, we use the liquid-
drop model of Ref. [47] in this paper; see also Ref. [48] for its
explicit form.

C. The Strutinsky smoothing method as a low-pass filter

In the conventional Strutinsky smoothing method, the
smoothed level density is obtained by a convolution integral
with respect to the single-particle energy,

g̃(ε) = 1

γ

∫ ∞

−∞
g(ε′)fp

(
ε − ε′

γ

)
dε′, (15)

where fp(x) is a smoothing function normalized as∫ ∞
−∞ fp(x) dx = 1, while γ is the width parameter. The

smoothing function is chosen as

fp(x) = 1√
π

e−x2
L1/2

p (x2). (16)

Here, L
1/2
p (x) is a polynomial of order p (the generalized

or associated Laguerre polynomial [49]), with which the
transformation Eq. (15) leaves g(ε) unchanged [i.e., g̃(ε) =
g(ε)], if g(ε) is a polynomial of order 2p. Note that the order
of polynomial is denoted by p in, for example, Refs. [16,26,27]
so that the parameter p in these references is 2p in this paper.
Figure 1(a) shows the graphs of fp(x) for several values of p.

For a discrete level density,

g(ε) =
M∑
i=1

δ(ε − εi), (17)
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FIG. 1. The Strutinsky smoothing function in panel (a) and its
Fourier transform in (b). The parameter p is half of the order of the
polynomial part of the function.
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the smoothed density is given by

g̃(ε) = 1

γ

M∑
i=1

fp

(
ε − εi

γ

)
, (18)

where M is the number of single-particle levels included in
the calculations. Owing to the Gaussian form factor in fp(x),
this transformation has a short-range character, which is a
large advantage because it makes high positive-energy levels
unnecessary to evaluate Eq. (11), since they hardly affect g̃(ε)
at negative energies.

Let us unveil another aspect of this transformation. The
Fourier transform of a convolution of two functions is pro-
portional to the product of each function’s Fourier transform.
Therefore, by denoting the Fourier transform of a function F

as F̂ , such as

F̂ (k) =
∫ ∞

−∞
F (x)e−ikx dx, (19)

one can rewrite Eq. (15) as

ˆ̃g(τ ) = f̂p(γ τ )ĝ(τ ). (20)

(A similar expression in terms of the Laplace transformation is
given in Ref. [38] in a different context.) The “wave number”
τ in Eq. (20) has a dimension of (energy)−1 and may be
regarded as a time variable (divided by h̄). Now, we show
that the function f̂p has a typical shape of a low-pass filter.
The Laguerre polynomial can be expressed in terms of the
Hermite polynomials H2l as

L1/2
p (x2) =

p∑
l=0

ClH2l(x), Cl = (−)l(22l l!)−1. (21)

By multiplying e−x2
by the generating function of Hermite

polynomials,

e−s2+2xs =
∞∑

n=0

Hn(x)
sn

n!
, (22)

one obtains

e−(s−x)2 =
∞∑

n=0

Hn(x)e−x2 sn

n!
. (23)

The Fourier transform of the left-hand side can be calculated
easily as∫ ∞

−∞
e−(s−x)2

e−ikx dx = √
πe−k2/4e−iks

=
∞∑

n=0

√
π (−ik)ne−k2/4 sn

n!
, (24)

which means that the Fourier transform of Hn(x)e−x2
is∫ ∞

−∞
Hn(x)e−x2

e−ikx dx = √
π (−ik)ne−k2/4. (25)

By using the previous results, one obtains the Fourier transform
of the Strutinsky smoothing function as

f̂p(k) =
p∑

l=0

Cl(−ik)2le−k2/4 =
[

p∑
l=0

1

l!

(
k

2

)2l
]

e−(k/2)2
.

(26)

The term in the square brackets is the Taylor series of
e(k/2)2

truncated at order 2p. For k 	 kcut
p ≡ 2

√
p, the term

is very close to e(k/2)2
and, hence, f̂p 
 1 (i.e., the filter is

almost perfectly transparent). From this fact, one may give an
alternative definition of the polynomial part of the Strutinsky
smoothing function: It is a polynomial, which minimizes the
distortion of this low-pass filter in such a way that f̂ (l)

p (0) = 0
for 1 � l � 2p + 1. For k � kcut

p , the term in the square

brackets is much smaller than e(k/2)2
and, thus, f̂p 
 0 (i.e.,

the filter is almost completely opaque).
In Fig. 1(b), the Fourier transform f̂p(k) of the smoothing

function is shown for several values of p. One sees that
they are almost a constant function near k = 0 and decrease
monotonically to zero. They become half of the maximum
around k ≈ kcut

p = 2
√

p (except p = 0). The length of the
interval where the function drops from 90% to 10% of the
maximum [f̂p(0) = 1] is ∼2.5 and almost independent of p.
One can verify these features in Table I. In this way, the usage
of higher-order polynomials lengthens the width of the filter. At
the same time, it shortens the width of the smoothing function
in Fig. 1(a) in a complementary manner.

Since the width of the filter of order p is proportional to
√

p,
it is convenient to use variables scaled with

√
p, k′ = k/

√
p. In

Fig. 2(b), we show f̂p(k′√p) versus k′ for several values of p.
As the order p is increased, the cutoff becomes sharper, while
the position of the cutoff converges to k′ = 2 independent of
p; it approaches a step function θ (2 − |k′|) in the limit of
p → ∞. Corresponding changes in the function fp can be
found by using a dimensionless variable x ′ = √

p(ε − ε′)/γ
and a rescaled smoothing function fp(x ′/

√
p)/

√
p to rewrite

Eq. (15) as

g̃(ε) =
∫ ∞

−∞
g(ε − γ x ′/

√
p)fp(x ′/

√
p) dx ′/

√
p. (27)

TABLE I. Changes in the characteristics of the low-pass filter
f̂p (i.e., the Fourier transform of the Strutinsky smoothing function,
versus the order p of its polynomial part). The normalization is chosen
as f̂p(0) = 1. f̂ −1

p denotes the inverse function of f̂p .

p f̂ −1
p (0.5) f̂ −1

p (0.5)/
√

p f̂ −1
p (0.1) − f̂ −1

p (0.9)

0 1.665 1.665 2.386
1 2.591 2.591 2.486
2 3.271 2.313 2.514
3 3.833 2.213 2.528
4 4.322 2.161 2.535
5 4.762 2.130 2.540
10 6.533 2.066 2.551
20 9.092 2.033 2.557
50 14.236 2.013 2.561
100 20.067 2.007 2.562
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FIG. 2. Rescaled Strutinsky smoothing function in panel (a) and
its Fourier transform in panel (b).

In Fig. 2(a), fp(x ′/
√

p )/
√

p is shown as a function of x ′
for several values of p. Although the convergence is slow,
for very large values of p, fp(x ′/

√
p)/

√
p 
 (sin 2x ′)/πx ′,

which can be obtained as the inverse Fourier transform of
θ (2 − |k′|). The curve for p = 50 is quite close to this function
in the interval shown in the figure. For larger x ′, however, the
rescaled smoothing function decreases much faster than x ′−1

because of the Gaussian form factor.
By using the semiclassical periodic-orbit theory, the

quantum-mechanical level density Eq. (17) for a certain class
of potentials can be represented by a sum of contributions
from classical periodic (closed) orbits, the so-called trace
formula [50–52]. It is discussed that the origin of the gross
shell structure can be well understood in terms of a few
important short periodic orbits, for example, a beating pattern
of the level density in the spherical billiard [53], the shell
structure in deformed nuclei [54], and the supershells in metal
clusters [55]. The smooth part of the energy corresponds to
the gross shell structure, to which only short periodic orbits
contribute. The low-pass filter expression Eq. (20) clearly
demonstrates that the conventional Strutinsky smoothing cuts
off the contributions of long periodic orbits with period
(divided by h̄) τ = k/γ � τ cut

p for the filter f̂p(k), where the
cutoff period is τ cut

p ≡ kcut
p /γ = 2

√
p/γ .

If one changes γ as γ ∝ √
p for different choices of order p

in the smoothing function, the cutoff period τ cut
p is independent

of p, while the cutoff becomes sharper for the larger p value
as clearly seen in Fig. 2(b). In Secs. II F and III C, we use this
fact for discussions on the plateau condition (i.e., the stability
of the smoothed energy with respect to the smoothing width

γ and the order p, which specifies the curvature correction
polynomials).

D. The Kruppa prescription for the positive-energy levels

For finite-depth potentials such as the Woods-Saxon one,
positive-energy levels appear as continuum states. They also
affect the energy of bound nuclei through Eqs. (11) and (18).
Their contribution becomes larger when λ̃ is closer to zero.
If one obtains the positive energy spectrum by diagonalizing
the Hamiltonian in a truncated oscillator basis, the positive
energy spectrum is not continuous but discrete. Thus, one
can calculate the summation in Eq. (18) straightforwardly.
However, the result depends strongly on the size of the basis
M . In fact, the smoothed level density Eq. (18) diverges in the
continuous limit and so does the smoothed energy Eq. (11); it is
monotonically increasing or decreasing as increasing the size
of the basis [16,17]. A practical way to avoid this problem is to
restrict the size of the basis; it is recommended in Refs. [15,17]
to take Nmax

osc ≈ 12 for the HO basis. However, in such small
bases, negative-energy levels may not be sufficiently accurate
as we will see in the following (see, e.g., Fig. 4).

A way to circumvent the diverging single-particle level
density g(ε) caused by the particle continuum is to replace it
with the so-called continuum level density gc(ε). In the case
of spherically symmetric potentials, it is written as [19,20]

g(ε) ⇒ gc(ε) =
∑

i:bound

δ(εi − ε)

+ 1

π

∑
lj

(2j + 1)
dδlj (ε)

dε
, (28)

where δlj (ε) is the scattering phase shift. This expression
was used for the calculation of shell correction energy, and
it was found that the contributions of the particle continuum
(the second term on the right-hand side) through Ẽs.p. are
never negligible even in stable nuclei for finite-depth potentials
[18,21].

One can roughly regard the continuum level density as the
difference between the full and the free level densities [20]. To
take the energy derivative of the phase shift in Eq. (28) means
to calculate the level density from the number of states. The
number of states is actually proportional to the phase of the
radial oscillation of the wave function because an increase in
the phase by π corresponds to the addition of one radial node
in the box boundary condition. The phase shift is the difference
of the phases between full and free solutions. Therefore, the
definition in terms of the phase shifts is actually equal to taking
the limit of infinite volume of the difference between the full
and free level densities in a finite-volume cavity.

This can be shown more rigorously. The generalization
of Eq. (28) for nonspherically symmetric potentials is given
by [22,23]

gc(ε) = 1

2πi
t̂rε

[
S†(ε)

dS (ε)

dε

]
, (29)

where S(ε) is the on-shell S matrix, which corresponds to the
single-particle Hamiltonian H with energy ε, and t̂rε means

034316-6



IMPROVED MICROSCOPIC-MACROSCOPIC APPROACH . . . PHYSICAL REVIEW C 82, 034316 (2010)

the restricted trace operation with respect to the eigenstates
with energy ε. Note that Eq. (29) contains the contributions
from the bound states because they appear as poles of the S

matrix. This quantity is related to the time delay [56] and is
shown to be identical to the trace of the difference between
the full and free single-particle Green’s functions [23]. In this
way, the level density can be written as

gc(ε) = 1

π
Im

[
tr

1

H − ε
− tr

1

H0 − ε

]
, (30)

where H0 is the free Hamiltonian (with the repulsive Coulomb
potential for the proton), and here tr is the full trace
operation. This expression clearly tells that both full and
free level densities are divergent for positive energies, but
their difference is finite. It is used for investigation of the
level density in Ref. [24] by using the Green’s function
technique [57].

Inspired by Eq. (30), Kruppa has introduced a prescription
[22], which is suitable to treat the particle continuum by the
diagonalization method with, for example, the HO basis. He
has demonstrated that results with his prescription have much
weaker dependence on the size of the basis and converge for
enough large bases. Let us call his prescription the Kruppa
method. This method changes the definition of g(ε) as the
difference of the single-particle level density between the
full Hamiltonian (including the potential) and the free-particle
Hamiltonian,

g(ε) ⇒ gK(ε) =
M∑
i=1

δ(ε − εi) −
M∑

j=1

δ
(
ε − ε0

j

)
, (31)

where εi and ε0
j are the eigenvalues of the full and free

Hamiltonians, respectively. Here, M is the dimension of
the basis commonly used in the two diagonalizations, and
gK(ε) → gc(ε) as M → ∞ [see Eq. (30)]. Note that, for
one-body observables, such as the total single-particle energy
in Eq. (10), the free-energy terms in Eq. (31) do not contribute
as long as λ < 0 (i.e., when the Fermi energy does not
exceed the particle threshold). However, they contribute to
the smoothed quantities. Now, the smoothed level density g̃(ε)
should be obtained by applying the Strutinsky smoothing to
this gK(ε):

g̃(ε) ⇒ g̃K(ε) = 1

γ

M∑
i=1

fp

(
ε − εi

γ

)

− 1

γ

M∑
j=1

fp

(
ε − ε0

j

γ

)
. (32)

The redefined level density g̃K(ε) converges to g̃c(ε) for
sufficiently large basis sizes, the reason of which is explained
transparently in Sec. II E.

The continuum level density was originally used to calcu-
late the second virial coefficient (related to the deviation of
the equation of state from that for the ideal gas), which arises
from the interaction between gas particles [19,20]. For this
purpose, one naturally has to separate the part that corresponds
to the free motion of noninteracting particles from the integral
over the continuous spectrum. Unlike this case, the reason to
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FIG. 3. Smoothed level densities for the full and free Hamiltoni-
ans and their difference (i.e., the Kruppa level density) as functions of
the single-particle energy in MeV. The smoothing parameters used are
γ = 1.2 h̄ω and p = 3. Panels (a), (b), and (c) are for Nmax

osc = 12, 20,
and 30, respectively. The nucleus is 164Er with deformation β2 = 0.27
and β4 = 0.02.

subtract the free spectrum is not so obvious in the calculation
of the shell correction. At present, we do not know whether
it can be derived rigorously from a more basic theoretical
framework. Nevertheless, it certainly seems to be the most
reasonable prescription so far to obtain physically meaningful
results.

In Fig. 3, we show three kinds of level densities [i.e., the
full (with Woods-Saxon potential), the free, and the Kruppa
for 164Er]. They are the results of the Strutinsky smoothing
with γ = 1.2h̄ω and p = 3. The potential is deformed with
β2 = 0.27 and β4 = 0.02. The number of basis states M in
Eq. (31) is specified by the maximum number of the oscillator
quanta Nmax

osc , M = 1
3 (Nmax

osc + 1) (Nmax
osc + 2) (Nmax

osc + 3). By
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FIG. 4. Neutron shell correction energies Esh [(a), (c)] and the sum of single-particle energies Es.p. [(b), (d)] for 166Er [(a), (b)] and 226Er
[(c), (d)] as functions of the oscillator basis cutoff Nmax

osc . The values of Esh obtained with and without the Kruppa prescription are designated by
filled circles and squares, respectively. The deformation parameters are β2 = 0.280 (0.255) and β4 = 0.005 (−0.033) for 166Er (226Er), while
the smoothing parameters are γ = 1.2h̄ω and p = 3.

comparing panels (a)–(c), one can see that positive energy
part of the full and free level densities are increased rapidly
as Nmax

osc is increased from 12 to 20 and to 30, while the
Kruppa level density does not change essentially. This clearly
shows the fact that continuum parts of both the full and free
densities are divergent, but their difference is convergent. The
energy range of the most influential part is ε � λ for the
smoothed single-particle energy Ẽs.p. and |ε − λ| � � ∼ h̄ω

for the smoothed BCS energy ẼBCS. Although the difference in
this part between the calculated level density with Nmax

osc = 12,
20, and 30 is much smaller than that in positive energy
(e.g., at ε ∼ 10 MeV), it brings about significant differences
to the resulting nuclear properties, especially to the pairing
correlation (see Sec. III G).

All the smoothed quantities in the Kruppa method are
obtained by replacing g̃(ε) with g̃K(ε). The shell correction
energy Esh by this prescription is investigated in Ref. [27],
and is shown to also be convergent when increasing the size
of the basis. Examples are depicted in Fig. 4 as functions
of the basis cutoff Nmax

osc . Without the Kruppa prescription,
Esh depends on the size of the basis even in a stable nuclei
166Er, and the dependence is much stronger in a neutron-rich
nuclei 226Er. The subtraction of the continuum contributions
reduces the dependence on the model space drastically, and
the shell correction energy with the Kruppa method converges
in the large Nmax

osc limit. These examples clearly show that the
Kruppa prescription is indeed promising. We extend it for other
observables in Sec. III E.

It is also worth noting that, while the shell correction
energy Esh almost converges at Nmax

osc ≈ 12, the sum of the
single-particle energies Es.p. itself does not; especially for
the unstable nuclei 226Er, the single-particle energies are not
obtained very accurately when Nmax

osc � 20. From this fact,
one may compose a syllogism on the necessity of the Kruppa
method. (1) For large Nmax

osc , the Kruppa method is necessary to
correctly treat the dense positive-energy spectrum. For small
Nmax

osc , it is not necessary. (2) One has to use large Nmax
osc for

sufficiently accurate bound-state energies. (3) One needs the
Kruppa method.

E. Oscillator-basis Thomas-Fermi approximation
for the Kruppa level density

One can roughly reproduce the shape of the Kruppa
level density in terms of a new variant of the Thomas-
Fermi approximation within the limited phase space, which
corresponds to the truncated oscillator basis. We call it the
oscillator-basis Thomas-Fermi (OBTF) approximation in this
paper. One can also demonstrate the independence of the
results of the Kruppa method from Nmax

osc (if it is sufficiently
large) in this approximation.

We study only spherically symmetric potentials without
spin-orbit couplings. Lifting these restrictions is possible but
does not seem to be very meaningful because it turns out that
the OBTF approximation is not sufficiently accurate to be
used as a replacement for the smoothed energy in the realistic
Strutinsky calculations. This corresponds to the known fact
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FIG. 5. A schematic to explain the convergence of the Kruppa level density in the OBTF approximation. The abscissa represents the radius
r from the center of the nucleus, while the ordinate is the kinetic energy εkin = ε − V (r) of a single nucleon. Hatched areas A, B, and C are
the domains of integrations to obtain �OB, �0

OB, and �K
OB, respectively. Parabolas drawn with dashed and dotted lines stand for the maximum

kinetic energy εmax
kin (ε) in the oscillator basis with Nmax

osc and Nmax
osc

′ (>Nmax
osc ), respectively. Filled areas A and B are the areas to be acquired

by domains A and B, respectively, if one increases Nmax
osc to Nmax

osc
′.

that, to obtain the Strutinsky smoothed energy, one has to
include up to the third-order terms in the semiclassical h̄2

expansion [38,39] in which the Thomas-Fermi approximation
is the lowest.

Hence, we express the Hamiltonian for a nucleon as

H (p, r) = p2

2m
+ V (r),

(33)

V (r) = VCE(r) + 1

2
(1 − τ3) VCO(r),

where VCE(r) and VCO(r) are the central and Coulomb poten-
tials in Sec. II A with spherical shape (i.e., with the deformation
parameters β = 0). The states are assumed to be doubly
degenerated for the two spin states sz = ± 1

2 . In the Thomas-
Fermi approximation, the number of particles in the potential
well for a given single-particle energy ε is given by

�(ε) = 4π

∫ ∞

0
ρTF (r, ε)r2dr, (34)

where ρTF (r, ε) is the particle density at position r for Fermi
level ε expressed as (by using the Heaviside function θ ),

ρTF (r, ε) = (2m)3/2

3π2h̄3
|ε − V (r)|3/2 θ [ε − V (r)] . (35)

The level density is related to the number of particles �(ε) as

gTF (ε) = d�(ε)

dε
= 4π

∫ ∞

0

dρTF (r, ε)

dε
r2dr. (36)

This level density diverges above the particle threshold ε > 0
for finite-depth potentials because of the infinite volume of the
space.

The idea of OBTF is to extend the Thomas-Fermi ap-
proximation in such a way that the phase space is limited
within a subspace spanned by a truncated HO basis, which
can be specified by the maximum kinetic energy as a function
of position as in the following. By replacing V (r) with the
oscillator potential VHO(r) = 1

2mω2r2 in Eq. (35), one obtains

�HO(ε) = 1

3

(
ε

h̄ω

)3

, (37)

which is always finite. A truncated oscillator basis is usually
defined by the maximum oscillator quantum number Nmax

osc . By

equating the right-hand side of Eq. (37) to the number of states
with Nosc � Nmax

osc leads to the cutoff energy of the truncated
basis ε = εcut(Nmax

osc ),

εcut = h̄ω
[(

Nmax
osc + 1

)(
Nmax

osc + 2
)(

Nmax
osc + 3

)]1/3
. (38)

We also define Rmax by a condition VHO(Rmax) = εcut, that is,

Rmax =
√

2εcut

mω2
, (39)

and the local maximum kinetic energy expressed as

εmax
kin (r) = [εcut − VHO(r)] θ [εcut − VHO(r)]

= 1
2mω2

(
R2

max − r2
)
θ (Rmax − r) . (40)

Now, we define the level density in OBTF, similar to Eq. (36),
as

gOB (ε) = 4π

∫ ∞

0

dρOB (r, ε)

dε
r2 dr, (41)

where ρOB (r, ε) is equal to the right-hand side of Eq. (35) with
an additional restriction that the energy ε should be smaller
than εmax

kin (r) + V (r). Its derivative is given by (note that the
δ-function contribution from the Heaviside function has no
effects),

dρOB (r, ε)

dε
= (2m)3/2

2π2h̄3
|ε − V (r)|1/2 θ [ε − V (r)]

× θ
[
εmax

kin (r) + V (r) − ε
]
. (42)

In this way, the finite level density gOB (ε) is obtained for a
given maximum oscillator quantum number Nmax

osc .
The Kruppa level density gK

OB
(ε) is defined as gK

OB
(ε) =

gOB (ε) − g0
OB

(ε), where g0
OB

(ε) is the free-particle level density
expressed as g0

OB
(ε) = 4π

∫
[dρ0

OB
(r, ε)/dε]r2 dr with ρ0

OB
(r, ε)

obtained by omitting V (r) on the right-hand side of Eq. (42).
(This is for neutrons, and changes necessary for protons are
described in the following paragraph.) It is readily shown that

�OB(ε) =
∫ ε

−∞
gOB (ε′) dε′ = 2(2m)3/2

πh̄3

∫
A

ε
1/2
kin r2 dεkin dr,

(43)

where εkin = ε′ − V (r), and the domain A of integration is
depicted in panel (a) of Fig. 5. By changing the domain to B
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and C shown in panels (b) and (c) gives similar expressions
for �0

OB(ε) = ∫ ε

−∞ g0
OB

(ε′) dε′ and �K
OB(ε) = ∫ ε

−∞ gK
OB

(ε′) dε′,
respectively. By enlarging the HO basis (i.e., by increasing
Nmax

osc to Nmax
osc

′ > Nmax
osc ), domains A and B acquire areas A

and B, respectively, which are almost identical because the
potential is close to zero around r = Rmax. Consequently,
domain C is left almost unchanged. The unchanged domain
results in an unchanged number of levels and, thus, an
unchanged level density. This explains pictorially why the
Kruppa level density converges for large Nmax

osc above the
particle threshold ε > 0.

It is also possible to show that gK
OB

(ε) ∝ ε−1/2 as ε → ∞
after the limit Nmax

osc → ∞ is taken. For an arbitrarily given
ε > 0, one can take sufficiently large Nmax

osc to express region
C as {(εkin, r)| 0 � r < ∞, ε � εkin � ε − V (r)} with an
approximation that V (r) = 0 for r > Rmax to obtain

�K
OB(ε) ≈ 4(2m)3/2

3πh̄3

∫ ∞

0
{[ε − V (r)]3/2 − ε3/2}r2 dr. (44)

Thus, for the level density gK
OB(ε) = d�K

OB(ε)/dε,

ε1/2gK
OB(ε) ≈ −2(2m)3/2

πh̄3

∫ ∞

0

V (r)r2 dr

1 + [1 − V (r)/ε]1/2

→ − (2m)3/2

πh̄3

∫ ∞

0
V (r)r2 dr (ε → ∞). (45)

It can be confirmed that the following expression is a very
good approximation for the Nmax

osc → ∞ limit of the Kruppa

level density in the whole range of single-particle energies:

gK
OB

(ε) ≈ 2(2m)3/2

πh̄3

×
∫ ∞

0
{[ε − V (r)]1/2θ [ε − V (r)] − ε1/2θ (ε)}r2 dr.

(46)

For protons, one can repeat the same argument if one
includes VCO(r) in the free Hamiltonian because VCO(r) is
not negligible even at r = Rmax and V (r) includes VCO(r).
In the same way, it is readily seen that the Kruppa level
density is convergent as Nmax

osc → ∞ and in a very good
approximation,

gK
OB

(ε) ≈ 2(2m)3/2

πh̄3

∫ ∞

0
{[ε − V (r)]1/2θ [ε − V (r)]

− [ε − VCO(r)]1/2θ [ε − VCO(r)]}r2 dr. (47)

In Figs. 6 and 7, the OBTF level density is compared
with the smoothed exact level density for a spherical nucleus
154Er. Figure 7 includes the proton Kruppa densities. The
spin-orbit force is neglected, and a larger smoothing parameter
γ = 1.8h̄ω is used with p = 3 for this calculation to make the
comparison more appropriate. One can see that the OBTF is a
fairly good approximation for both Nmax

osc = 12 and Nmax
osc = 20.

The proton Kruppa level density is very similar to the neutron
one except that the single-particle energy is shifted by the
Coulomb barrier, about 10 MeV in this nucleus, as shown
in Fig. 7. Threshold behaviors of the OBTF neutron- and
proton-level densities are slightly different, which reflects
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FIG. 6. The neutron’s level densities for the full and free Hamiltonians and their differences obtained in the OBTF approximation [(a), (c)]
or with the Strutinsky smoothing method [(b), (d)]. The smoothing parameters are γ = 1.8h̄ω and p = 3. The oscillator basis has Nmax

osc = 12
[(a), (b)] or Nmax

osc = 20 [(c), (d)]. The nucleus is 154Er. The potential is spherical (β2 = β4 = 0), and the spin-orbit potential is turned off.
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FIG. 7. Kruppa level densities obtained in the OBTF approxima-
tion and with the Strutinsky method for 154Er; panel (a) is for neutron,
and panel (b) is for proton. The arrows denote the particle threshold
(ε = 0). The same calculation as in Fig. 6 is used except that the
oscillator basis has Nmax

osc = 30.

the effect of the long-range Coulomb potential, while such
differences do not exist for the smoothed exact level densities.
It is worth mentioning that the approximate expressions in
Eqs. (46) and (47) are very accurate for large Nmax

osc ; the
deviation is less than 0.1% for the case of Fig. 7 in the whole
range shown for single-particle energies.

Apart from oscillations at large ε, the average behavior of
the continuum level density is well reproduced in the OBTF
approximation in Fig. 6. It can also clearly be seen how
subtracting the free-level density Eq. (31) works to diminish
the dependence on Nmax

osc in the Kruppa method. However, as
clearly shown in Fig. 7, the precise shape of the smoothed
level density cannot be obtained; especially in the peak near
the threshold (ε ≈ 0), the OBTF density shows cusp behavior,
which is characteristic of the semiclassical approximation,
while the smoothed density looks like a broad peak. To
obtain more precise level density, one has to go beyond the
Thomas-Fermi approximation.

The Kruppa OBTF level density gK
OB

(ε) becomes negative
in the range of single-particle energy εcut + V (0) � ε � εcut

[see Fig. 6(a)], and it can be shown, for a finite Nmax
osc , that

the positive and negative contributions exactly cancel out∫ ∞
−∞ gK

OB
(ε) dε = 0. This behavior is also known [24] in the

exact continuum level density gc(ε) defined by Eqs. (28)–(30)
and reflects the Levinson’s theorem [56] [

∫ ∞
−∞ gc(ε) dε = 0].

In this way, the OBTF Kruppa level density satisfies the desired
property of the continuum level density.

F. Plateau condition

It would be preferable if Ẽs.p. of Eq. (11) did not depend
on the parameters that concern the smoothing of the level
density [γ and p in Eq. (15)] because their values can be
chosen arbitrarily. Since a perfect independence is unlikely to
be satisfied, one usually demands a weaker condition that the
dependence is very weak in a certain interval of γ for a few
values of p. This is the meaning of the plateau condition in
this paper.

For the Nilsson spectrum, a long plateau appears in
most cases (see, e.g., Refs. [9,21]). On the other hand, for
finite-depth potentials, such as the Woods-Saxon potential,
the situation is subtle. If the oscillator basis is truncated at
Nmax

osc ≈ 10–12, reasonable plateaus are obtained in many cases
[17], and Nmax

osc = 12 is a recommended value as a working
prescription in Ref. [15]. However, the model space defined
by Nmax

osc = 12 is not large enough to calculate single-particle
states accurately, especially for unstable nuclei [see, e.g.,
Fig. 4(a)], and this truncation is not justified. The appearance
of the plateau obtained by the relatively small model space with
Nmax

osc ≈ 10–12 is accidental and to increase Nmax
osc drastically

changes the situation [16,17]; the shell correction energy
depends strongly on the smoothing width γ . This clearly
indicates that a naive inclusion of continuum states by the
diagonalization method does not work. Then, the continuum
level density Eq. (28) is used to calculate the shell correction
energy [18,21]. Although the dependence on γ is weaker if
the phase shift is calculated up to enough high energies, no
good plateau, such as in the case of the Nilsson potential is
obtained [26].

We show examples in Figs. 8–11. Figures 8 and 9 depict
the neutron shell correction energies Esh calculated with the
standard Strutinsky smoothing method and with the Kruppa
method, respectively, by changing the basis size specified by
the maximum oscillator quantum number Nmax

osc . The results for
the stable and unstable nuclei 166Er and 226Er are compared.
If Nmax

osc = 12 is used for the basis size, a plateaulike behavior
is observed in a reasonably long range for 166Er and in a
shorter range for 226Er. However, this is spurious because, by
using larger Nmax

osc , the shell correction energy depends more
strongly both on the smoothing width γ and on the order p

of the curvature correction polynomial, while the range of
the real plateau in the case of the HO potential grows as the
basis size increases [25]. The possible reason for this spurious
plateau is that the number of discretized continuum states with
Nmax

osc = 12 is just suitable for the smoothed level density to be
approximated by the lower-order polynomial functions across
the particle threshold ε ≈ 0. By increasing the basis size, the
curvature of the smoothed level density changes suddenly at
ε ≈ 0, as shown in Fig. 3, which no longer is approximated
by a simple polynomial, which leads to the strong dependence
of Esh on γ and p. Therefore, it is difficult to obtain reliable
shell correction energies in the standard Strutinsky method.

In contrast, the Kruppa prescription reduces the basis-size
dependence dramatically, as can be seen in Fig. 9. Compared
with the standard method, where the plateau condition is
more and more unsatisfied as the basis size increases, the
stability against the increase of Nmax

osc is a very important feature
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FIG. 8. Neutron shell correction energies without using the Kruppa prescription as functions of the smoothing parameter γ in units of h̄ω.
Each curve represents the result with different order p = 3–6 of the smoothing function Eq. (16). The diagonalization basis is Nmax

osc = 12
[(a), (b)], Nmax

osc = 20 [(c), (d)], and Nmax
osc = 30 [(e), (f)]. The nucleus is 166Er [(a), (c), (e)] and 226Er [(b), (d), (f)]. The deformation parameters

are the same as in Fig. 4.

of the Kruppa method. However, although there are almost
degenerate local minima with different order p’s, the plateau
is generally not well established. The situation is worse for
the unstable nucleus of 226Er. A possible improvement will be
discussed in Secs. III A–III C.

At first sight, the dependence of the shell correction
energy on the smoothing width γ is quite different when
the order p of the smoothing function Eq. (16) is changed.
Close inspection reveals, however, that the different curves
in each panel of Figs. 8 and 9 are almost isomorphic
if they are drawn as functions of the

√
p-scaled width

parameter,

γp ≡ γ /
√

p/3, (48)

as shown in Figs. 10 and 11. Here, we choose γp=3 = γ

because p = 3 is a standard choice for the curvature correction
polynomial. The reason for this isomorphism between the

results with different order p’s can be understood from the
discussion in Sec. II C; the range of the low-pass filter increases
when employing the larger order p, and if used with the
variable scaled with

√
p, the cutoff ranges are the same, but the

filter becomes sharper, as clearly shown in Fig. 2(b). Therefore,
the complete isomorphism means the shell correction energy
is independent of the sharpness of the filter. We have found
that, for calculation with larger Nmax

osc , better isomorphism is
generally obtained by the Kruppa smoothing method than
by the standard one; compare Fig. 10 with Fig. 11. Even
better isomorphism is obtained in the improved treatment in
Sec. III A (see Fig. 16). In the following discussions for the
plateau condition, we always use the Kruppa prescription and
show the results as functions of the

√
p-scaled width parameter

γp Eq. (48).
In the course of writing the present paper, we noticed that

a similar scaled smoothing width is used for investigating the
plateau condition in Ref. [58], where the isomorphism of the
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FIG. 9. Same as Fig. 8 but with the Kruppa prescription employed. The results with Nmax
osc = 20 are omitted, since they are very similar to

the results with Nmax
osc = 30.

smoothing width dependence between different order p’s is
not as good as in our case. This is because of a different choice
of basic smoothing function that is not Gaussian. We believe

that the Fourier transform of the smoothing function will be
useful for a more detailed comparison of our results with those
of Ref. [58].
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FIG. 10. Same as Fig. 8 but plotted as functions of the scaled smoothing width parameter γp = γ /
√

p/3. The results with Nmax
osc = 30 are

omitted.
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FIG. 11. Same as Fig. 9 but plotted as functions of the scaled smoothing width parameter γp = γ /
√

p/3. Only the results of Nmax
osc = 12

are shown, since the results with different Nmax
osc look similar. [See the results with Nmax

osc = 30 in panels (a) and (c) of Fig. 16.]

G. The reason for no good plateaus

A clue to find the origin of this difference between the
Nilsson (or the HO) potential and the Woods-Saxon (or the
finite-depth, in general) potential is the fact that the Strutinsky
smoothing is a low-pass filter as discussed in Sec. II C. In
the Fourier-transformed world, the smoothed level density is
simply the original density multiplied by the filter. Therefore,
the Fourier transform of the original level density Eq. (17) or
the Kruppa density Eq. (31),

ĝ(τ ) =
M∑
i=1

exp (−iτεi),

(49)

ĝK(τ ) =
M∑
i=1

exp (−iτεi) −
M∑

j=1

exp (−iτε0
j )

should be investigated.
In this section, we employ the units h̄ω for the energy (ε, γ ,

and σ ) and (h̄ω)−1 for the Fourier-transformed time variable
τ and regard ε and τ as if they were dimensionless.

The level density g(ε) and its Fourier transform ĝ(τ ) for the
Nilsson potential are shown in Fig. 12 for the spherical nucleus

208Pb. The single-particle states up to Nmax
osc = 9 are included

because the ls and l2 parameters are given only for them [46].
Figure 12(a) shows that the smoothed level density with γ =
1.2h̄ω is approximately a quadratic function in ε, while the
major shell oscillation is clearly seen in that with γ = 0.5h̄ω.
This indicates that the semiclassical property of the Nilsson
spectra is essentially the same as that of the HO potential;
its Thomas-Fermi level density is gHO

TF
(ε) = ε2/(h̄ω)3, see

Eq. (37). Note that the so-called iso-stretching is performed
for the neutron and proton frequencies in the Nilsson potential
[45] ωn = (2N/A)1/3ω and ωp = (2Z/A)1/3ω so that the
coefficient of ε2 is reduced by a factor 208/(2 × 126) in
Fig. 12(a).

In the behavior of ĝ(τ ) shown in Fig. 12(b), one can see
a very low-density interval (2 < τ < 5). One may probably
call its origin the harmonicity of the potential. If the cutoff
period τ cut

p = 2
√

pγ −1 of the filter f̂p(τγ ) is in this interval,
the result of the filtering ˆ̃g(τ ) hardly depends on τ cut

p (see
Sec. II C). Namely, the dependences on γ and p are weak, and
a plateau appears. This feature can be qualitatively understood
by considering the case of the anisotropic HO potential, for
which the spectra are equidistant, and the sum in Eq. (49)
with M → ∞ can be evaluated as an infinite geometric
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FIG. 12. The neutron’s level density of the Nilsson Hamiltonian in panel (a) and the absolute value of its Fourier transform in panel (b) for
208Pb. Nmax

osc = 9 is used for the basis size. In panel (a), smoothed level densities with γ = 1.2 h̄ω and with γ = 0.5h̄ω (p = 3 for both) are
included, while the Fourier transform in panel (b) has not been smoothed and calculated directly by Eq. (49). The units are h̄ω for ε, (h̄ω)−1 for
τ and g̃, and ĝ is dimensionless.
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FIG. 13. The neutron’s level densities of the Woods-Saxon Hamiltonian [(a), (b)] and their Fourier transform [(c), (d)]. The curves in panels
(a) and (b) are the results of smoothing with γ = 0.5h̄ω and p = 3, while those in (c) and (d) have not been smoothed. The HO basis for the
diagonalization is Nmax

osc = 12 in panels (a) and (c), and Nmax
osc = 20 in panels (b) and (d). The full and Kruppa spectra are shown with solid and

dashed curves, respectively. In panels (c) and (d), the Fourier transform of only negative energy levels is also shown with dotted curves. The
units are the same as in Fig. 12.

series to be

ĝHO(τ )

=
[

(2i)3 sin

(
1

2
τh̄ωx

)
sin

(
1

2
τh̄ωy

)
sin

(
1

2
τh̄ωz

)]−1

,

(50)

with ωx ≈ ωy ≈ ωz ≈ ω, which has a long low-density inter-
val between τ = 0 and τ = 2π [in units of (h̄ω)−1].

In contrast to the case of the Nilsson potential, the
Fourier transform of the Woods-Saxon level density shown in
Fig. 13 does not have this low-amplitude region, although the
smoothed level density in panels (a) and (b) clearly shows the
similar major shell oscillation as that in Fig. 12(a). In Fig. 13,
the Fourier transforms of not only the Woods-Saxon spectra
but the Kruppa spectra and the restricted spectra within the
bound states are also depicted. The Fourier transform of the
bound-state spectra is smaller than that of the Woods-Saxon
spectra but is still about a factor 2 to 3 larger than that of
the Nilsson spectra in the low-density interval (2 < τ < 5)
(note the difference of scale in ordinates in Figs. 12 and
13). Moreover, the Fourier transform of the Kruppa spectra
is larger than that of the Woods-Saxon spectra on average,
and to increase the basis size makes the situation worse.
This clearly shows that the Kruppa prescription does not help
to make a plateau in the shell correction energy, which is
already confirmed in Sec. II F. The mechanism to develop a

long plateau in the Nilsson spectrum is not functioning in the
Woods-Saxon spectrum. This seems to be the very reason for
the absence of a plateau for the Woods-Saxon spectrum.

III. IMPROVEMENTS TO THE SHELL
CORRECTION METHOD

A. Reference density method

Although the dependence of the results on the smoothing
width cannot be removed completely, it is still preferable
to make it as small as possible. In the Kruppa method, this
dependence comes principally from the diffusion of the peak
of the level density at threshold energy (ε ≈ 0). This peak is
so sharp that it is inevitably more diffused by larger widths.
Since this peak already exists in the OBTF approximation, it
should not be diffused but should be kept unchanged.

We now propose a prescription to prevent this diffusion,
which we call the reference density (Strutinsky) method. In
the method, one applies the Strutinsky smoothing procedure
not directly to the original discrete spectrum but to its deviation
from some continuous reference level density gref [i.e., to
g(ε) − gref(ε)]. Note that our concern is the Kruppa level
density gK(ε) of Eq. (31), which we write as g(ε) in this
section.

By designating the Strutinsky smoothing procedure of
Eq. (15) with S (do not confuse with the S matrix that does
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not appear in the following), we write g̃(ε) as S[g](ε). We do
not write S[g(ε)], since S is not a function but a functional. By
using this S operation, we define the result of the application
of the reference density Strutinsky method to g(ε) by

Sref[g](ε) = S[g − gref](ε) + gref(ε). (51)

Owing to the linearity of the Strutinsky smoothing procedure,
the right-hand side of Eq. (51) can be rewritten as

Sref[g](ε) = S[g](ε) − S[gref](ε) + gref(ε), (52)

which means that Sref[g] and S[g] differ only where S[gref](ε)
�= gref(ε) [i.e., where gref(ε) cannot be approximated very
well by a polynomial of order 2p over an interval of a
few γ width]. If one defines gref by oversmoothing g (e.g.,
gref = S[g] with large γ ), the reference density method and
the original Strutinsky smoothing give very close results (i.e.,
almost Sref[g] = S[g]). If one superimposes the peak at energy
zero to this reference density, one will obtain Sref[g], which is
almost equal to gref near energy zero and is very close to S[g]
anywhere else.

It should be mentioned that the new smoothing procedure is
generally more time consuming than the original one because
the integration of gref(ε) with respect to the single-particle
energy necessary to calculate S[gref](ε) cannot be performed
analytically, in general. In practice, we sample gref(ε) at an
interval of 0.15h̄ω and use a polynomial interpolation between
the sampling points.

Incidentally, before our conception of the reference density
method, we considered a method described in Appendix C
of Ref. [59], where Magner et al. observed a clear change
in the major shell interval (of a simple finite-depth potential)
between negative and positive energies, and they could remove
the difference through a transformation of the energy to obtain
a plateau behavior. Contrarily, we did not observe such a
clear change in the Woods-Saxon spectrum and failed to find
an appropriate transformation. This difference seems to be
originated mainly in the difference between solutions in an
infinite wall and those in an oscillator-basis expansion. In the
latter case, the shell structure at positive energies is thought to
be strongly connected with the basis.

B. Construction of the reference density

The remaining problem is how to determine the shape of
the peak at energy zero, which is the only important part of the
reference density gref(ε). First, we present our best method.
Second, we discuss shortcomings of some other methods,
which we have tried.

The best method is to define the reference level density as

gref(ε) =
∫ ∞

−∞
g(ε′)

1

γ (ε)
f0

(
ε − ε′

γ (ε)

)
dε′,

(53)

f0(x) = 1√
π

e−x2
.

This is the same as the Strutinsky smoothing without the
curvature correction polynomial (p = 0), except that γ is a
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FIG. 14. γ (ε) defined by Eq. (54) to be used to construct the
reference density.

function of energy ε, for which we assume

γ (ε) = γa + (γb − γa) exp

[
−

(
ε − εpeak

γc

)2]
, (54)

with parameters γa = 3, γb = 0.7, γc = 2, and εpeak = 0 in
units of h̄ω. Equation (54) is shown graphically in Fig. 14
to elucidate the roles of each parameter. The quantity γa is
chosen to be large enough so that it holds S[gref] 
 gref and,
thus, Sref[g] = S[g] at energies distant from εpeak. The quantity
γb is chosen to be small enough so that it holds S[gref] 
 S[g]
and, thus, Sref[g] = gref at energies near εpeak, but not so small
as the peak is split into more than two peaks. The quantity γc is
determined empirically to obtain smooth results. The energy
εpeak is taken as zero for neutrons, while it should be around
the Coulomb-barrier-top energy for protons. In this paper, we
employ the reference density method only to treat the neutron
spectrum, since for protons, the standard Strutinsky method
works rather well because of the fact that the peak energy is
considerably larger than the proton Fermi energy even near the
proton drip line.

In Fig. 15, smoothed level densities are shown for the
neutron spectrum of 166Er. The result with the reference density
method (Sref[g], long-dashed line) has a slightly sharper peak
at around −1 MeV than the result without using it (S[g], solid
line). Their difference g = Sref[g] − S[g] looks small but
turns out to play an important role in improving the plateau in
Sec. III C. The difference multiplied by ten (10 × g) is shown
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FIG. 15. The Kruppa level density for a neutron in the ground
state of 166Er smoothed in various ways. The basis is specified by
Nmax

osc = 20. Deformation parameters are β2 = 0.280 and β4 = 0.005.
In the Strutinsky smoothing, γ = 1.2h̄ω and p = 3 are used. See text
for explanations.
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with a short-dashed line. From Eq. (52), g = gref − S[gref],
where gref is shown with a dotted line. From the shape of
g, one can see that the Strutinsky smoothing smears the
peak of gref at −1 MeV by moving the density near the top
to its hillsides around −7 and 4 MeV and that the reference
density method cancels out this movement by using this g

as a correction term.
Incidentally, if one makes γ a function of ε, not of ε′, in

Eq. (53), one finds fake dips in both sides of the peak, as well
as an enhancement of the peak. (To change γ as a function
of ε in the ordinary Strutinsky method also leads to similar
fake dips and bumps.) Our choice does not suffer from this
problem. One should also note that, although the total number
of levels of the reference level density is not exactly equal to
that of the original discrete spectrum,∫ ∞

−∞
gref(ε) dε �=

∫ ∞

−∞
g(ε) dε, (55)

it still holds ∫ ∞

−∞
Sref[g](ε) dε =

∫ ∞

−∞
g(ε) dε. (56)

We have also examined the possibility of least-square fit-
tings of model functions, but we could not quantitatively obtain
reliable results. Let �K(ε) be the (staircaselike) cumulative
distribution function (multiplied by M) of {εi |1 � i � M}
subtracted by that of {ε0

j |1 � j � M} [i.e., �K(ε) = i − j if
εi < ε < εi+1 and ε0

j < ε < ε0
j+1 (if one defines that ε0 =

ε0
0 = −∞ and εM+1 = ε0

M+1 = ∞)]. If one plots �K, one
clearly sees a leap like a short steep slope around the threshold
energy, which indicates the existence of a peak in the level
density d�K/dε. (For spherical shape, however, such a pattern
is far from clear, since the levels are multiple degenerated
and, thus, are very sparse.) So, we have tried fitting a model

function to �K(ε) (|ε| < εfit), which is the indefinite integral
of the linear combination of a Gaussian [which contains three
fitting parameters (i.e., the location of the center, the width, and
the height)] to express the peak and a low-order polynomial
(by using the coefficients as fitting parameters) to take the
background smooth behavior into account. The result has been
found to depend on the choice of εfit in a subtle way. The
resulting values of the parameters are often very similar, even
for different values of Nmax

osc , but equally often very scattered.
The result would probably depend equally subtly on other
details of the fitting procedure, such as the choice of a function,
which can replace the Gaussian. (For spherical shape, the
least-square method often makes the Gaussian very narrow
to fit it into a single level or a few very close levels, each of
which are highly degenerated. Such a fitting is a total failure
to attain the goal of removing the quantum fluctuation.)

An alternative method to determine the reference density
gref is the semiclassical estimation. We have tried the level
density obtained with the OBTF, only to find much stronger
dependence on γ than that of the standard Strutinsky method
for a test calculation without spin-orbit force. The OBTF
approximation does not seem to be sufficiently precise to
calculate the shell correction energy. Indeed, it is known
that one should include higher-order approximation than the
Thomas-Fermi approximation in the semiclassical Wigner-
Kirkwood expansion [38,39]. For this purpose, however,
one must extend it to the case of truncated oscillator-basis
expansion. In addition, semiclassical approaches are more
difficult to use for deformed nuclei. They also have some
problems near the particle threshold (drip lines) [26].

C. Improvement of plateau condition

We show how the reference density method improves the
plateau condition in Figs. 16 and 17, where the Kruppa
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FIG. 16. The neutron shell correction energies for 166Er and 226Er calculated with the Kruppa method (left), and the Kruppa + reference
density (right) Strutinsky method as functions of the scaled smoothing width parameter γp Eq. (48) in units of h̄ω with different choices for the
order of the polynomial p = 3–6. As for the basis size, Nmax

osc = 30 is used.
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FIG. 17. Comparison of the neutron shell correction energies as functions of the scaled smoothing parameter γp calculated with the
reference density smoothing (solid curves) and with the ordinary Strutinsky smoothing (dashed curves) for 48Ca, 90Zr, 146Gd, 208Pb, 242Pb, and
the superheavy nucleus 298114, all of which are spherical nuclei (β = 0). Only the results with the Kruppa method are shown. The order of
smoothing function is p = 3, and Nmax

osc = 30 is used.

prescription is used throughout. Figure 16 depicts the depen-
dence of the shell correction energies on the scaled smoothing
width parameter γp Eq. (48) for the β stable and very neutron-
rich nuclei 166Er and 226Er considered as examples in Sec. II F.
By comparing the results with the Kruppa + reference density
method (right panels) to those with the Kruppa method (left
panels), the dependence on the smoothing width is weakened
remarkably, although it is not completely satisfactory in the
case of 226Er. The dependence on the order p of the smoothing
function is also greatly reduced, and the difference of the shell
correction energies between p = 3 and 6 is typically within
100 keV. Since this is a general tendency, we only show the
results with p = 3 in the following.

Combined with the reference density method, a better
stability against the width and the order of the smoothing
function is obtained: In most cases, the shell correction energy
has a minimum as a function of the smoothing width parameter
in the range γp = (1 − 2)h̄ω, and around the minimum, we
often find a plateaulike quite flat landscape. According to
Ref. [25], the shell correction energy at this minimum should
be adopted even in the case with no pronounced plateau (the

local plateau condition). We show examples for several test
cases from light to heavy spherical nuclei in Fig. 17, where,
in each panel, the solid curve is the result with the reference
density method, and the dashed curve is the one without it. By
comparing two curves, one can see that the plateau is always
improved by the reference density method. The improvements
are remarkable especially for 48Ca and 146Gd. It should be
emphasized that these improvements do not change when
increasing the size of the model space. However, there are some
exceptions as shown for 242Pb in Fig. 17, where no minimum
but an inflection point appears. Although the dependence is
reduced, it is not enough to obtain plateaulike behavior. Note
that the parameters of the reference density method are fixed
to be the same for all nuclei in this paper. There is still some
room for their further improvement or optimization.

D. Kruppa-BCS equation

Whether the pairing correlation is enhanced or not in
nuclei near the neutron drip line is still an open question.
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On one hand, high-level density near and above the neutron
threshold is expected to enhance the pairing [1,60]. Thicker
neutron skin is also likely to make the pairing interaction
stronger. On the other hand, the radial expansion of the
single-particle wave functions near the Fermi level will weaken
the pair-scattering matrix elements. There can be a competition
between a spatially expanded normal state and a compact
superstate [61,62] (the latter is a manifestation of the pairing
antihalo effect [63]).

To take into account all of the preceding effects, one needs
to employ at least mean-field models in the HFB formalism
[41,64]. To mimic them in the shell correction method, one
has to extend the method in many aspects by, for example,
calculating the pairing matrix elements by using the wave
functions, by replacing the BCS gap equation with the HFB
equation, and by making the radius and diffuseness parameters
(R and a) not constants but variables to be optimized like
deformation parameters (β2 and β4 in this paper), etc. Instead
of trying to consider everything, we aim at only one thing (i.e.,
the usage of the Kruppa level density in the BCS calculation).
We call this method (or the resulting equation) the Kruppa-
BCS method (equation).

Near the critical point of the transition between the normal
and the superfluid phases, it is necessary to go beyond the
mean-field treatment by, for example, the number projection
[4] and/or its approximate version, the so-called Lipkin-
Nogami method [65–67], or the random-phase approximation
method [68]. Generalizations of the Kruppa prescription to
such treatments are quite an interesting subject. We restrict,
however, to the simplest BCS treatment in the present paper.

Although some generalizations are possible (e.g., to the
state-dependent pairing interaction [69]), we consider the
simplest seniority-type pairing force for the BCS calculation
in this paper. The following matrix elements are assumed for
the pairing interaction Vpair:

〈iī ′|Vpair|j j̄ ′〉 = −Gδii ′δjj ′ fc(εi)fc(εj ). (57)

On the left-hand side, k̄ (for k = i ′, j ′) represents the label
for the time-reversal partner of the kth eigenstate of the full
or the free single-particle Hamiltonian. It holds that εk̄ = εk .
When k is a label for a free-particle state, εk should be read
as ε0

k . Scatterings from a pair of full-Hamiltonian states into
a pair of free-Hamiltonian states, and the reverse processes,
also appear in the Kruppa-BCS equation to be presented later.
On the right-hand side, G is a constant, while fc(ε) is a cutoff
factor [70], for which we use a different form from that of
Ref. [70],

fc(ε) = 1

2

[
1 + erf

(
ε − λ̃ + �l

dcut

)]1/2

×
[

1 + erf

(−ε + λ̃ + �u

dcut

)]1/2

, (58)

where the error function is defined by erf (x) = 2√
π

∫ x

0 e−t2
dt .

We use the cutoff parameters of the pairing model space �u =
�l = 1.2h̄ω and dcut = 0.2h̄ω. λ̃ is the smoothed Fermi level
defined by Eq. (12). Incidentally, if one uses λBCS [to be defined
in Eqs. (62) and (63)] instead of λ̃ in Eq. (58), one sometimes

encounters an instability caused by a positive feedback from
λBCS, a part of the solution, to the equation through fc(ε).

The energy of the BCS model for a separable interaction,
such as Eq. (57), can be expressed as [4]

EBCS =
∫ ∞

−∞
ε v2(ε)g(ε) dε − 2

G
, (59)

where the pairing gap  is given by

 = G

2

∫ ∞

−∞
fc(ε)u(ε)v(ε)g(ε) dε. (60)

(The pairing gap for state i is state dependent fc(εi) because
of the cutoff function.) In Eq. (59) and in the following, the
exchange contribution of the pairing interaction to the particle-
hole channel is neglected. The constraint on the expectation
value of the number of particles is expressed as

N =
∫ ∞

−∞
v2(ε)g(ε) dε. (61)

In the preceding formulation, which uses integrals, one regards
the BCS u and v factors as continuous functions of the single-
particle energy. One should be reminded that these equations
are not well defined because of the divergence of the level
density if the continuum states are included. One has to replace
the level density g(ε) by that of Kruppa in Sec. II D. Thus, we
naturally define the Kruppa-BCS model as a model obtained
by replacing the ordinary level density with the Kruppa one
Eq. (31) g(ε) ⇒ gK(ε) in Eqs. (59)–(61).

A similar replacement g(ε) ⇒ gc(ε), where gc(ε) is the
continuum level density defined in Eq. (28), has been for-
mally considered in the finite-temperature BCS formalism
in Refs. [71,72]. Our replacement is exactly the same as
this one in a limit Nmax

osc → ∞ because the Kruppa level
density converges to the continuum level density in the limit.
There is an important difference in practical calculations,
however, for which those earlier works chose only a small
number of resonances (the resonant continuum HF + BCS
approximation, see Ref. [73] for its assessment in terms of a
comparison with the exact HFB), while we consider all the
Woods-Saxon and free spectra as will be explained in the
following. On the other hand, the restrictions to resonances
may be an advantage to derive the equation from a more
fundamental viewpoint [74,75].

In fact, the use of the Kruppa level density makes the gap
Eq. (60) convergent without the energy cutoff function fc(ε).
This is because the integral diverges logarithmically as ε →
∞, if the level density is constant, while it is shown in Sec. II E
that the Kruppa level density gK(ε) ∝ ε−1/2, see Eq. (45).
However, the convergence is slow, and it is dangerous to rely
on it so that we use the cutoff function Eq. (58) in the following
calculations.

By considering that only values at discrete points (ε = εi

and ε0
i ) contribute in the Kruppa prescription, the equation to

be satisfied by the minimum-energy state is just the standard
gap equation [4] and the constraint on the number but with the
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additional (negative) contributions from the free spectra:

2

G
= 1

2

M∑
i=1

[
fc(εi)2√

(εi − λBCS)2 + fc(εi)22

− fc
(
ε0
i

)2√(
ε0
i − λBCS

)2 + fc
(
ε0
i

)2
2

]
, (62)

N = 1

2

M∑
i=1

[
− εi − λBCS√

(εi − λBCS)2 + fc(εi)22

+ ε0
i − λBCS√(

ε0
i − λBCS

)2 + fc
(
ε0
i

)2
2

]
. (63)

As in the case of the usual BCS equation, the pairing gap
and the chemical potential (,λBCS) are determined by these
two coupled equations for given force strength G. Note that
M is two times the number of the pairs of time-reversal
states, namely, the degeneracy is explicitly counted in the
level density. One should assume ε1 = ε2 � ε3 = ε4 � · · · �
εM−1 = εM and ε0

1 = ε0
2 � ε0

3 = ε0
4 � · · · � ε0

M−1 = ε0
M to

understand the reason for a factor 1
2 to appear in many of

the equations in this paper [e.g., on the right-hand side of
Eqs. (62) and (63)]. In the case of an odd particle number,
the blocking BCS calculation should be performed [4] (i.e.,
the single-particle level occupied by the last odd particle), for
example, i = N should be eliminated from the pairing model
space, and the resultant BCS equation with number N − 1 is
the same as in the case of the even particle number.

It is known that the BCS equation does not necessarily
have finite-pairing gap solutions if εN < εN+1 [4], namely, the
system is not in the superfluid phase but in the normal phase.
The critical force strength Gcrit ( = 0 if G � Gcrit) is given
by

2

Gcrit
= min

εN<λ′<εN+1

{
1

2

M∑
i=1

[
fc(εi)2

|εi − λ′| − fc
(
ε0
i

)2∣∣ε0
i − λ′∣∣

]}
, (64)

where the minimum value of the right-hand side is searched
with respect to λ′ [in the case of an odd particle number, it
is always εN = εN+1, and for the blocked level i = N , the
minimum value in Eq. (64) should be searched for εN−1 <

λ′ < εN+1]. Although the Fermi energy λ in the normal phase
is arbitrary within εN < λ < εN+1, it is desirable to define the
Fermi energy uniquely in the later discussion (see Sec. III H).
Therefore, we define λBCS when  = 0 as the λ′ that gives
Gcrit in Eq. (64).

In self-consistent methods, one only needs to deal with
particle-bound nuclei with negative Fermi energies. In shell
correction approaches, however, one needs some reasonable
solution for positive-energy Fermi levels. This is because
negative Fermi levels of the microscopic part do not always
mean positive separation energies calculated from the total
energies of the shell correction method, see Sec. II H.

One must be careful in applying the Kruppa-BCS method to
the particle-unbound cases. More precisely, if the Fermi energy
is higher than the lowest energy of the free spectra {ε0

i ; i =
1, . . . ,M}. For example, if εN < ε0

1 < εN+1, the right-hand

side of Eq. (64) has no minimum because of the negative
contribution of the free spectra, and Gcrit cannot be defined.
As another peculiar feature of the Kruppa-BCS equation, the
solution is not always unique for a positive Fermi level. This
nonuniqueness is easy to explain for the normal states ( = 0).
There is more than one way to fill the spectrum as normal states
(i.e., to choose the Fermi level λ such that εi � λ < εi+1,
ε0
j � λ < ε0

j+1), and i − j = N . For example, in a case ε0
4 <

εN+4 < ε0
6 < εN+6, both λ = εN+4 and λ = εN+6 have correct

numbers of particles. One has to pay attention to choose the
physically most reasonable solution (e.g., the one that gives
more continuous total energy with respect to the change of
deformation parameters).

E. Extension of the Kruppa prescription to other observables

Subtraction of the free contributions in the Kruppa level
density in Eq. (31) reminds us of the counterterm in the
renormalization procedure; both contributions diverge, but the
difference remains finite, which is independent of the cutoff.
Therefore, it may be natural to extend this idea to other
observables,

〈O〉 ⇒ 〈O〉K = 〈O〉 − 〈O〉0, (65)

where the first term is the expectation value with respect
to the wave function calculated by the diagonalization of
the Woods-Saxon potential and the second term is that of
the free Hamiltonian (or the repulsive Coulomb Hamiltonian
for protons). We only consider one-body observables in the
mean-field approximation for the many-body wave function.
In the simple independent-particle approximation (e.g., the
Hartree-Fock theory), the second (free) term does not con-
tribute as long as the Fermi energy is below the particle
threshold. If the residual interaction is included, however, the
occupation probabilities of unoccupied states become nonzero,
and then, the free-spectrum terms do contribute, which is
exactly the situation in the case of the BCS theory for the
pairing correlation.

The Kruppa-BCS gap and the number Eqs. (62) and (63) can
be regarded as examples of the foregoing extended procedure
Eq. (65) because they are derived from

 = G〈P̂ †〉 and N = 〈N̂〉, (66)

where P̂ † is the pair-transfer operator, whose matrix elements
are 〈iī ′|P̂ †|0〉 = δii ′fc(εi), and N̂ is the nucleon number
operator.

Note that the simple BCS calculation of observables com-
posed of the spatial coordinate r diverges as the basis size is
increased for nuclei near the particle threshold. This is because
the continuum states have finite-occupation probabilities;
the so-called neutron-gas problem [41,64]. Therefore, it is
impossible to obtain a reliable estimate for, for example, the
root-mean-square radii [76] or the quadrupole moments. It
can be shown, however, that with the prescription Eq. (65),
such observables also converge as Nmax

osc → ∞, by employing
the OBTF approximation in Sec. II E in the same way as
for the level density. Thus, the Kruppa method relieves the
conventional BCS method from the failure of the neutron gas
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problem in nuclei near the drip line. The results will be reported
elsewhere [77].

F. Determination of the strength of the pairing interaction

The strength of the pairing interaction G is often determined
so as to reproduce the empirical smooth trend of the pairing
gap in the continuous spectrum approximation, in which
the smoothed level density is used in the BCS calculation
[8,10,78–80]. This method is almost indispensable to treat,
say, all the nuclei in the nuclear chart on a single footing.
Consistent usage of the Kruppa level density also applies to
this procedure.

However, in most of the existing shell correction calcu-
lations (e.g., Refs. [15,81]), this procedure is not followed
rigorously: The so-called uniform level density approximation
[4,10] is additionally employed (i.e., the energy dependence of
the level density is neglected), and it is replaced by a constant
value at the Fermi energy g̃(λ̃).

As discussed in Sec. II D, the Kruppa level density has
a peak near the particle threshold. We have found that this
peak strongly affects the pairing correlation in nuclei near
the drip line. Therefore, the usual method to approximate the
level density as a constant g̃(λ̃) over the entire energy interval
where the pairing is active is inadequate. Instead, the energy
dependence of the level density should be evaluated exactly.
We solve the following continuous version of the gap equation
and the constraint on the number:

2

G
= 1

2

∫ ∞

−∞

fc(ε)2√
(ε − λ̃BCS)2 + fc(ε)2̃2

g̃(ε) dε, (67)

N = 1

2

∫ ∞

−∞

[
1 − ε − λ̃BCS√

(ε − λ̃BCS)2 + fc(ε)2̃2

]
g̃(ε) dε.

(68)

By substituting ̃ with a value from some empirical formula
for the pairing gap, one can determine the Fermi level λ̃BCS

from Eq. (68) and then the force strength G from Eq. (67) and
obtain the smoothed BCS energy,

ẼBCS = 1

2

∫ ∞

−∞

[
1 − ε − λ̃BCS√

(ε − λ̃BCS)2 + fc(ε)2̃2

]
ε g̃(ε) dε

− ̃2

G
. (69)

This completes the formula for the total energy in Eq. (14).
The force strength G determined by Eq. (67) is used in the
Kruppa-BCS (or the usual BCS) method in Sec. II D. Needless
to say, the level density should be replaced, g(ε) ⇒ gK(ε),
in Eqs. (67)–(69) for the Kruppa-BCS calculation. Although
various kinds of input ̃ can be presumed [81], we use a
standard choice ̃ = 13/

√
A MeV in this paper.

In the uniform level density approximation, the energy
integral in Eqs. (67)–(69) can be performed analytically [4]
with a sharp cutoff of a pairing model space λ̃ − �l < ε <

λ̃ + �u [dcut → 0 in Eq. (58)], and the pairing strength can be

calculated by

2

G
= 1

2
g̃(λ̃) log

{[√(
�l

̃
+ 1

)2

+ �l

̃

]

×
[√(

�u

̃
+ 1

)2

+ �u

̃

]}
≈ 1

2
g̃(λ̃) log

(
�l�u

̃2

)
.

(70)

Moreover, the smooth pairing energy is replaced by the
corresponding approximate expression:

ẼBCS − Ẽs.p. ⇒ −1

4
̃2 g̃ (λ̃)

{
1 −

[√(
�u

̃
+ 1

)2

− �u

̃

]

×
[√(

�l

̃
+ 1

)2

− �l

̃

]}
≈ −1

4
̃2 g̃ (λ̃).

(71)

In Ref. [82], the results of the continuous BCS equation
[Eqs. (67)–(69)] and of its uniform level density approximation
Eqs. (70) and (71) were compared. The difference in the
smooth pairing energy ẼBCS − Ẽs.p. was found to be smaller
than a few hundred keV in most cases. In our calculations, the
difference is even smaller, less than 100 keV both for neutrons
and for protons.

According to the sharp cutoff in the uniform level density
approximation, the number of levels included in the conven-
tional BCS calculation [which correspond to Eqs. (60) and
(61)] is often restricted from i = Nl up to Nu in the following
way [81]:

Nu = N + g̃(λ̃)�u,

Nl =
{

N − g̃(λ̃)�l + 1 for N > g̃(λ̃)�l,

1 for N � g̃(λ̃)�l.
(72)

Namely, the actual cutoff is often performed not for the
single-particle energy but for the number of levels. In contrast,
in the Kruppa-BCS method, the cutoff must be performed in
terms of energy. We use the same cutoff parameters as used in
the smooth energy cutoff factor Eq. (58) (�l = �u = 1.2h̄ω)
when we test the sharp cutoffs in Sec. III G.

G. Results of the Kruppa-BCS calculations

In this section, we compare the results of several variants
of the BCS calculations. We make a combined use of four
kinds of classifications to specify those variants. The first kind
of classification is the Kruppa-BCS method or the ordinary
BCS method. The second one is the smooth-energy cutoff or
the level-number cutoff. Because the level-number cutoff is not
applicable to the Kruppa-BCS method, there are three possible
combinations of the first and the second classifications, which
we call Kruppa-BCS (with energy cutoff), BCS with energy
cutoff, and BCS with number cutoff. The third classification is
whether one determines the strength G by the continuous gap
Eq. (67) or by its uniform level density approximation Eq. (70).
We call the former continuous G and the latter uniform G. The
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FIG. 18. The neutron’s pairing force strength Gn (left) and the pairing gap n (right) as functions of the neutron number N for Z = 68
(Er) isotope chain. The top, middle, and bottom panels are for Nmax

osc = 12, 20, 30, respectively. The results with three different variants of BCS
calculations are included; A, Kruppa-BCS + continuous G with g̃K; B, Kruppa-BCS + uniform G with g̃K; and C, BCS with number cutoff
+ uniform G with g̃ (see text for a detailed explanation). The solid curves G = 20/A (1/MeV) and ̃n = 13/

√
A (MeV) are also included.

fourth is whether one uses the smoothed Kruppa level density
g̃K(ε) or the usual one g̃(ε) in determining G. There are four
possible combinations of the third and fourth classifications,
which we call continuous G with g̃K, uniform G with g̃,
etc. In total, there are 12 possible variants, among which we
choose the most reasonable three to show in Fig. 18 and three
unconventional variants to show in Fig. 20.

In Fig. 18, we show the calculated strength G and the pairing
gap  for neutrons in the Z = 68 (Er) isotope chain, which
covers a few more numbers beyond the proton and neutron drip
lines. The deformation parameters β2 and β4 are determined
to minimize the total energy Eq. (6) for each nucleus. The
basis size is changed as Nmax

osc = 12, 20, and 30. The figure
includes the results of three variants of the BCS calculation

A, Kruppa-BCS + continuous G with g̃K; B, Kruppa-BCS
+ uniform G with g̃K; and C, BCS with number cutoff +
uniform G with g̃. Choices A and B are based on the Kruppa
prescription and are new variants we introduce in this paper.
Choice C is the conventional one employed in, for example,
Refs. [15,81].

The results of the Kruppa-BCS method [A and B in
Figs. 18(a)–18(f)] are, first of all, stable against the increase
of Nmax

osc as the shell correction energy Esh is. In this way, the
microscopic quantity Epair, as well as Esh, can be calculated to
any desired accuracy by increasing the basis size. The whole
procedure is consistent and unambiguous, which is the first
and most important purpose of the present paper. Second, in
Figs. 18(a)–18(c), one sees that the continuous strength G (A)
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FIG. 19. Enlargement of the smoothed level densities with and
without Kruppa prescription shown in Fig. 3 in the energy range
of the most influential part for BCS calculations. The Kruppa
densities calculated with Nmax

osc = 20 and Nmax
osc = 30 are almost

indistinguishable.

is systematically larger than the uniform strength G (B) on the
neutron-rich side. This difference can be traced back to the
behavior of the Kruppa level density in Fig. 3, enlargement
of which in the energy range of the most influential part of
the BCS calculations is shown in Fig. 19. The Kruppa level
density decreases as the single-particle energy exceeds the
threshold, which leads to the increase of the pairing strength
compared to the case of uniform level density for nuclei near
the drip line (note that the strength is inversely proportional
to the level density at the Fermi level). This means that the
uniform level density approximation is inappropriate when
the peak at energy zero is close to the Fermi level. Third, in
Figs. 18(d)–18(f), one sees that the pairing gap of calculation
A is closer to the input value ̃ = 13/

√
A MeV than that of

B, which means that the continuous G choice is preferable
to the uniform G choice. We propose method A (i.e., the
Kruppa-BCS method with the strength G calculated by the
continuous gap equation with the Kruppa level density) as
the best method for reliable calculations of, for example,
nuclear masses.

Let us also examine the results of the conventional BCS
calculation. When the basis is as small as Nmax

osc = 12, the
pairing gap of the conventional BCS calculation [C in
Fig. 18(d)] agrees very well with that of the Kruppa-BCS
with continuous G (A). This agreement is, again, accidental,
since to increase the basis size changes the results considerably
[compare calculations C in Figs. 18(d)–18(f)]. Even when the
basis size is as large as Nmax

osc = 30, the pairing gap of the
conventional treatment [C in Fig. 18(f)] does not look totally
wrong [16] (e.g., is closest to the input values for N � 132).
However, the force strength G in this case [C in Fig. 18(c)]
behaves rather unnaturally. It is quite different from those of
A and B in Fig. 18(c) as well as from frequently used simple
expressions, such as G = 20/A (1/MeV). It is large in the
stable region but decreases dramatically toward the neutron
drip line. This peculiar behavior is caused by a spurious effect
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FIG. 20. Same as in the right panels of Fig. 18 but with
nonconventional choices of the BCS calculation, D, BCS with energy
cutoff + uniform G with g̃; E, BCS with number cutoff + uniform
G with g̃K; and F, BCS with energy cutoff + uniform G with g̃K (see
text for a detailed explanation).

caused by including more and more continuum states, which
come into the pairing model space when increasing the basis
size in the conventional treatment with g̃ (not with g̃K), as
clearly seen in Fig. 19.

This strong reduction in G combined with the level number
cutoff is helpful to prevent the pairing gaps from becoming
extremely large as is often the case for the other unreasonable
variants (see Fig. 20). However, this result is also unphysical, as
it is inspected from the results of nonconventional calculations
shown in Fig. 20. Here, we show three nonconventional
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choices of the BCS method, D, BCS with energy cutoff +
uniform G with g̃; E, BCS with number cutoff + uniform G

with g̃K; and F, BCS with energy cutoff + uniform G with g̃K.
Cases E and F are included to see what happens if reasonable
values of the strength G (calculated by g̃K instead of g̃) are
used. For sufficiently large basis sizes, the resultant pairing
gaps are too large if the energy cutoff [D in Fig. 20(c)] is
used in place of the level number cutoff [C in Fig. 18(f)].
Other nonconventional choices (E and F in Fig. 20) use more
reasonable pairing force strength G (the same as B in the
left panels in Fig. 18), and give reasonable values of  in
stable nuclei (N < 120), but the pairing gaps diverge when
approaching the drip line [see Fig. 20(c)]. Only with relatively
small basis sizes, such as Nmax

osc = 12, are reasonable pairing
gaps obtained; actually, all six variants, A–F in Figs. 18 and 20,
give almost the same results for stable nuclei with Nmax

osc = 12.
A lesson of these test calculations is that the conventional

BCS calculation is very dangerous if one uses the continuum
states obtained by the diagonalization with a large basis. The
subtraction procedure of the free contributions (i.e., the Kruppa
prescription) is indispensable to treat the pairing correlation in
nuclei far from the stability.

H. Readjustment of the potential depth for the Fermi
level consistency

In Strutinsky calculations, the neutron and proton Fermi
levels of the single-particle potentials are not equal to the
derivatives of the total energy ∂E/∂N or ∂E/∂Z in general,
unlike in mean-field models. As explained in Sec. II B, the
total energy is divided into the macroscopic and microscopic
parts, and they are calculated separately: The Fermi energies
that correspond to them are generally different. Since most
nuclei are in the superfluid phase, and the microscopic energy
is calculated by the BCS method [see Eq. (14)], we define the
Fermi energies,

λmac
n = ∂Emac (N,Z)

∂N
, λmac

p = ∂Emac (N,Z)

∂Z
, (73)

for the macroscopic part, and for the microscopic part,

λmic
n ≡ λ

(n)
BCS = ∂E

(n)
BCS (N )

∂N
, λmic

p ≡ λ
(p)
BCS = ∂E

(p)
BCS (Z)

∂Z
.

(74)

The total Fermi energy is directly related to the two-particle
separation energy −S2n/2 or −S2p/2, with the definition of the
separation energies,

S2n(N,Z) ≡ E(N − 2, Z) − E(N,Z),
(75)

S2p(N,Z) ≡ E(N,Z − 2) − E(N,Z).

Although the physically meaningful quantity is only the total
one, it is desirable that all the macroscopic, microscopic, and
total Fermi energies coincide with each other. As shown in
the following, however, most of the existing Woods-Saxon
parameter sets lead to λmic

n > 0 and λmic
p > 0 (i.e., particle

unbound) at the drip lines, which not only is inconsistent
conceptually, but also can be problematic for the Kruppa-BCS
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FIG. 21. Two-nucleon drip lines calculated with the universal
parameter set. Solid lines are two-nucleon drip lines, which pass
between adjacent bound and unbound even-even nuclei. The dashed
lines are the boundary between nuclei, which have the positive and
negative microscopic Fermi levels. The dotted lines are the drip lines
of the macroscopic part of the model. Nmax

osc = 20 is used.

calculation as mentioned in Sec. III D. Therefore, we consider
how to avoid this problem.

As a test calculation of the improved microscopic-
macroscopic method developed in the present paper, we have
performed global mass calculations for even-even nuclei with
8 � N � 184 and 8 � Z � 126. The basis size specified by
Nmax

osc = 20, the Strutinsky smoothing parameters γ = 1.2h̄ω

and p = 3, and the smoothed pairing gap ̃ = 13/
√

A MeV
are used for these mass calculations. In Fig. 21, we show the
two-neutron drip line (S2n = 0) and the two-proton drip line
(S2p = 0) calculated with the universal parameter set [43,44]
for the Woods-Saxon potential. The drip lines tend to fluctuate
outside the drip lines of the macroscopic part of the model,
defined by equations λmac

n = 0 or λmac
p = 0 caused by the shell

effect. On the other hand, the line in which the neutron’s Fermi
level is zero (λmic

n = 0) is located by 7 (12) neutrons inside the
line λmac

n = 0 at Z = 40 (80): The microscopic Fermi energy
λmic

n is positive and non-negligible at the neutron drip line.
Neutron drip lines for five other potentials are shown in

Fig. 22. For potentials of Blomquist and Wahlborn [83] and
Rost [84], the displacement of the line S2n = 0 from the line
λmic

n = 0 is as large as N = 6–9 (13) at Z = 40 (80). For
potentials Wyss-1 [40] and Wyss-2 [85], N = 2 (9) at Z =
40 (80). (The values of the parameters for the potential Wyss-2
can be found in Table I of Ref. [86]. The numberings for
Wyss’s two potentials are tentative.) The smallest displacement
is obtained for Chepurnov’s potential [87] for which N = 2
(5) at Z = 40 (80). These displacements clearly show that the
linear dependence of the depth of the potential on N − Z as
in Eq. (4) is oversimplified for nuclei far from stability.

As for protons, on the other hand, the situation is much
better; three lines almost coincide in Fig. 21 as well as for the
other potentials (not shown), which will be mainly because
the proton drip line is closer to experimentally known nuclei
than the neutron drip line is. However, again, the microscopic
Fermi energy λmic

p > 0 at some places on the proton drip
line.
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The reliability of shell correction energies for nuclei in
the area between lines λmic

n = 0 and S2n = 0 is not very
high because Es.p. is affected by basis-dependent discretized
continuum levels directly (not via smoothing). Thus, it is
preferable to modify the potential parameters in such a way
that the Fermi levels are consistent with the liquid-drop part
of the model. Among the parameters of the central potential
in Eq. (2), the radius R0CE and the surface diffuseness aCE are
related directly to other observables than energy. Hence, we
choose the depth,

Vdepth = −V0CE

[
1 ± κCE

N − Z

A

]
(76)

[see Eq. (4)] to modify.
Our procedure is as follows. We consider only spherical

shapes (we use the same depth for deformed shapes), and we
neglect the spin-orbit potential. The single-particle Hamilto-
nian is then given by Eq. (33). The local number density of
neutrons or protons when the Fermi level is at ε is represented
by ρTF (r, ε) of Eq. (35) in the Thomas-Fermi approximation.
Given a set of neutron and proton numbers (N,Z), we compute
λmac

n by using Eq. (73) and readjust Vdepth so as to fulfill

N = 4π

∫ ∞

0
ρTF

(
r, λmac

n

)
r2 dr. (77)

For protons, N and λmac
n are replaced with Z and λmac

p ,
respectively, and the integral is only inside the Coulomb barrier
for λmac

p > 0. It should be noted that, in our method, the depths
of the central potentials are determined by other parameters
than V0CE and κCE. We use the original parameter value of
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FIG. 23. The depths defined in Eq. (76) of the central potentials
of the universal parameter set (solid and dashed lines) and those
readjusted in the Thomas-Fermi approximation (filled markers) for
Er isotopes. For nuclei near or beyond the particle thresholds (or
the Coulomb barrier top for protons), extrapolated values are plotted
(empty markers). Nmax

osc = 30 is used.

V0CE (multiplied with λSO) only to determine the depths of the
spin-orbit potentials. We do not use κCE anywhere.

If the Fermi level of the liquid-drop model is close to zero,
the readjusted depth of the potential becomes significantly
shallower than the smooth continuation from the results
for more bound nuclei. It is because of the tail of the
Woods-Saxon potential. This deviation from the smooth trend
does not seem to be physically meaningful. Thus, we switch
to an extrapolation of the smooth trend if the Fermi level
of the liquid-drop model is higher than some predefined
energy: We take this energy as −2 MeV in this paper. For
neutrons (protons), we use a polynomial of second degree in
N (Z) determined by three heaviest even-N isotopes (even-Z
isotones) not matching the earlier condition.

This extrapolation is also indispensable to determine the
potential depth for nuclei, which are outside the drip lines
of the liquid-drop model. One has to calculate such nuclei
because they may be bound, since the shell effect can shift the
drip lines. It is also because nuclei just beyond the drip lines
are necessary to determine the drip lines themselves.

The resulting readjusted potential depths are shown in
Fig. 23 for Er isotopes. The original parameter set is the
universal one. While Vdepth is readjusted, the other parameters
are kept unchanged. For both protons and neutrons, the
changes caused by the readjustment are almost vanishing for
stable nuclei at N ∼ 100: This is totally nontrivial because
the original parameter is determined by completely different
requirements. In the neutron (proton) drip line at N = 156
(N = 76), the readjustment of the neutron (proton) potential
has non-negligible size Vdepth = −2.3 (−1.3) MeV. This

034316-25



TAJIMA, SHIMIZU, AND TAKAHARA PHYSICAL REVIEW C 82, 034316 (2010)

-35

-30

-25

-20

-15

-10

-5

 0

 5

 60  80  100  120  140  160
N

Fe
rm

i
le

ve
l[

M
eV

]

−S2n/2 (adjusted)

λmic
n (adjusted)

−S2n/2 (original)

λmic
n (original)

−S2p/2 (adjusted)

λmic
p (adjusted)

−S2p/2 (original)

λmic
p (original)

Er isotopes
the Universal parameter set

FIG. 24. Proton and neutron Fermi levels of Er isotopes cal-
culated by using the universal parameter set with and without the
readjustment of the depth of the central potentials (four kinds of
lines). Two-nucleon separation energies divided by 2 with the sign
inverted are also shown (four kinds of markers). Nmax

osc = 30 is used.

means that the original parameter set is quite reasonable near
the β-stability line but not sufficiently accurate to be applicable
to the drip lines.

Our readjusted depths look like very smooth functions of
N and Z, which seem to be fitted nicely with simple functions
that have only a few parameters. Such a fitting should be
performed when we publish an optimized parameter set in the
future. Indeed, Nazarewicz et al. introduced an extra (N,Z)
dependence for potential parameters for the same purpose [16].
At present, we make direct use of the depths determined in the
Thomas-Fermi approximation.
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central potentials.
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In Fig. 24, we show the various kinds of Fermi levels for
Er isotopes. One can see near drip lines that Fermi levels
calculated with the readjusted potential depths are in good
agreement with separation energies. This fact, as well as the
fact that the original and readjusted depths are almost equal
for stable nuclei, confirm the soundness of our prescription,
although it may slightly change the single-particle spectrum
from the optimized one of the original potentials.

The drip lines with the readjusted potential depths are
shown in Fig. 25 for the universal parameter set and in Fig. 26
for the other parameter sets. One can see that the three lines
are now quite close to each other. With this readjustment
method, one can more reliably treat nuclei near the drip lines.
Furthermore, it is worth stressing that one can control the drip
lines by changing the macroscopic part, while automatically
keeping consistency with the microscopic part.

Incidentally, the relation between the macroscopic part
and the microscopic part has already been paid attention to
by Myers [42] in 1970. He determined the droplet model
parameters in terms of a Thomas-Fermi statistical model
with a phenomenological velocity-dependent force applied
to infinite and semi-infinite nuclear matter. However, this
approach seems rather distant from what is proposed in the
present paper.

IV. CONCLUSION

We have examined the Fourier transform of the smoothing
function of Strutinsky to find that it is nothing but a low-
pass filter, which passes only short-time components. The
polynomial part of the filter is simply a truncated Taylor
expansion of e(k/2)2

, where k is the time multiplied by the
smoothing width γ and divided by h̄. It may be redefined
as a polynomial to minimize the distortion of the filter near

034316-26



IMPROVED MICROSCOPIC-MACROSCOPIC APPROACH . . . PHYSICAL REVIEW C 82, 034316 (2010)

k = 0, which seems simpler than the original definition as a
curvature correction. Also, we have derived a relation between
γ and the order of the polynomial part p, namely to change γ

proportionally to
√

p leaves the results of smoothing almost
unchanged. This picture of the Strutinsky smoothing as a
low-pass filter is general and will be useful for investigating
the other smoothing functions (e.g., those of Ref. [58]) than
the standard one considered in the present paper.

From this point of view, we have given a negative
perspective to the problem of the plateau for the Woods-Saxon
spectrum, a problem, which concerns the shell correction
energy in the microscopic-macroscopic method. It has been
known that the shell correction energy for the Nilsson spectrum
behaves like a long flat plateau as a function of γ , while that for
the Woods-Saxon spectrum does not show such a magnificent
plateau, in general. We have noticed that the Fourier transform
of the Nilsson spectrum has an interval of time components,
where the amplitude is almost vanishing, while that of the
Woods-Saxon spectrum does not have such an interval. A
plateau appears when the cutoff of the filter is in such an
interval.

Instead, we have proposed a new method to weaken the
dependence on the smoothing width γ . We call it the reference
density method, in which the smoothing is applied only to the
deviation from a reference level density, which was prepared
in such a way that the peak around energy zero of the Kruppa
level density, which is another principal subject of this paper,
is not washed away. We have demonstrated that the method
works well in the desired direction.

To apply the Woods-Saxon-Strutinsky method (the
microscopic-macroscopic method with finite-depth potentials)
to nuclei near the nucleon drip lines, it seems necessary to
employ the Kruppa prescription for positive-energy levels, in
which the spectrum is defined as the Woods-Saxon spectrum
subtracted by the free-nucleon spectrum, both of which are
obtained through diagonalizations in the same oscillator basis.
We have discussed the ground for this prescription as well as
its relation to the continuum level density.

We have also proposed the OBTF approximation, with
which one can describe spectra obtained from diagonalization
in truncated oscillator bases. We have demonstrated that
this approximation can reproduce average behaviors of the
Woods-Saxon, free, and Kruppa level densities. One can also
use this approximation to analytically show the convergence
of the results with the Kruppa prescription versus the size of
the oscillator basis.

We have also introduced the Kruppa-BCS method in which
we modified the BCS equation for the pairing correlation
so that it can be applied to the Kruppa level density by
taking negative contributions from the free-nucleon spectrum
into account. The Kruppa-BCS method is applicable to any
case, while the ordinary BCS method becomes very faulty,
especially when the diagonalization basis is not small and the
nucleus is very neutron rich.

We have also studied how to determine the strength of the
pairing interaction to be used in the Kruppa-BCS method.
An important conclusion is that, in adjusting the strength to
reproduce the empirical smooth trend of the pairing gap with
the smoothed Kruppa level density in the gap equation, one
should carry out the energy integral without using the uniform
level density approximation.

The inconsistency between the macroscopic and the micro-
scopic parts (i.e., the liquid-drop model and the single-particle
potential) is another problem for the application of the method
with nuclei near the drip lines. By calculating masses in
the whole nuclear chart with several parameter sets for the
Woods-Saxon potential by using the methods developed in
this paper, we have found that the neutron drip line of the
microscopic part is located typically more than ten neutrons
inside the drip line of the total energy. We have proposed
a method to readjust the depths of the central potentials to
achieve the consistency within the Thomas-Fermi approxi-
mation. Although the method contains two simplifications,
by assuming the spherical symmetry and by neglecting the
spin-orbit potential, the method has worked very well to shift
the microscopic drip line close to the total drip line.

We are going to apply the methods presented in this paper
to extend our studies [88,89] on the origin of the prolate-shape
dominance of the atomic nucleus from the Nilsson potential to
the Woods-Saxon potential.
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