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Cooper pair sizes in superfluid nuclei in a simplified model
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Cooper pair sizes are evaluated in a simple harmonic oscillator model reproducing the values of sophisticated
Hartree-Fock-Bogoliubov calculations. Underlying reasons for the very small sizes of 2.0–2.5 fm of Cooper
pairs in the surface of nuclei are analyzed. It is shown that the confining properties of the nuclear volume is
the dominating effect. It is argued that for Cooper pair sizes the local-density approximation idea is particularly
inadapted.
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Recent studies have revealed surprisingly small extensions
of Cooper pairs in the surface of superfluid nuclei [1–3]. Such
features are potentially very important in pair transfers in
nuclear reactions [4]. Though the reason for the small sizes was
identified in our preceding paper [5] to be from the finite size of
nuclei, it is nevertheless instructive to further elaborate on the
underlying reasons for this behavior. We, therefore, develop a
simplified model that has all the essential ingredients for the
comprehension of the effect. The model consists of a spherical
harmonic oscillator (HO) potential (without spin orbit) for the
mean field together with a realistic treatment of pairing using
the Gogny D1S force [6]. We will see that such a model quite
accurately reproduces the results for the so-called coherence
length (CL), that is, the size of Cooper pairs, of much more
sophisticated self-consistent Hartree-Fock-Bogoliubov (HFB)
calculations [1].

The questions we will try to answer are the following:
(i) What is the reason for the existence of such very

small-sized Cooper pairs with extensions 2.0–2.5 fm
in the surface of nuclei, about a factor 2–3 times
smaller than the smallest size in nuclear matter at
low densities? Those values are also much smaller
than the ones estimated from the common belief that
Cooper pair sizes in nuclei are of about the nucleus’
dimension [7], what is based on pairing in nuclei being
in the weak coupling regime. Because in weak coupling
CL > b, with b the oscillator length to be used below,
the fact that for a nucleus with, for example, nucleon
number A = 120, b ∼ 2.2 fm ∼CLmin., does it lead
to the conclusion that the surface pairing is close to
strong coupling? Those small sizes also are of similar
magnitude as that of the deuteron, that is, a bound state.
Does it mean that the neutron Cooper pairs are locally
also eventually in a bound state? Actually, this might
not be completely surprising because two neutrons are
almost bound even in free space and pairing could help
to make them truly bound. The question then is whether
the small size of the CLs is from particularly strong

pairing in the nuclear surface (local strong coupling) or
whether it is essentially from the confining constraints
from the nuclear volume? It will be shown that the small
sizes are dominantly from the latter effect.

(ii) The minimum of the CL, ξ (R), in local-density ap-
proximation (LDA) is about at the same density as the
one in the quantal case [5]. Then, is the qualitative
resemblance of ξ (R) calculated from nuclear matter in
LDA and the quantal ξ (R) a fortuitous coincidence, or
is that a manifestation of similar pairing correlations
in both cases? We will see that the quantal behavior
of ξ (R) in finite nuclei is very similar for nominal
and almost vanishing pairing. In the latter case one
should not talk about coherence length but simply of
the root-mean-square (rms) distance of uncorrelated
pairs coupled to angular momentum L = 0, which is
entirely determined by the single-particle mean-field
wave functions.

We begin our considerations with the density matrix
corresponding to one major shell of a spherical HO potential
V (R) = m

2 ω2R2 with h̄ω = 41A−1/3 MeV,

ρ̂N =
∑
nlm

′|nlm〉〈nlm|, (1)

where the prime on the sum indicates that it only runs over all
the states |nlm〉 contained in the major shell N.

We start out transforming this density matrix into Wigner
(W) space. W space, or phase space, is useful for certain
aspects and furthermore it has a well-known analytic form
for the case of an HO potential where it only depends
on the classical Hamiltonian Hcl. = p2/2m + V (R). The
corresponding W distribution is given by [8]

ρ̂N |W = fN (Hcl.) = 8(−1)Ne− 2Hcl.
h̄ω L

(2)
N

(
4Hcl.

h̄ω

)
, (2)

where L(λ)
n (x) are the generalized Laguerre polynomials.
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We are now ready to present our simplified pairing model.
We shall write the W transform [9] of the anomalous den-
sity matrix κ(r, r′) = 〈BCS|a+(r)a+(r′)|BCS〉 as (spin-singlet
wave function is suppressed),

κ(R, p) =
∑
N

κNfN (Hcl.), (3)

with κN = uNvN and uN, vN the usual BCS amplitudes. Please
note that the degeneracy factors are missing in Eq. (3). This
stems from the fact that expression (2) is not normalized to
unity but to the degeneracy of the shell N .

The gap parameters �N can be obtained from the solution
of a gap equation with matrix elements averaged over major
shells [10].

�N =
∑
N ′

DN ′VN,N ′
�N ′

2
√

(EN ′ − µ)2 + �2
N ′

, (4)

where EN = (3/2 + N )h̄ω, DN = (N + 1)(N + 2)/2 is the
degeneracy factor of major shell N , and VN,N ′ is the shell-
averaged pairing matrix element. To obtain VN,N we start from
the state-dependent pairing matrix element [9],

〈�(ν, ν̄)|v|�(ν ′, ν̄ ′)〉 = 〈ν, ν̄|v|ν ′, ν̄ ′〉 − 〈ν, ν̄|v|ν̄ ′, ν ′〉,
(5)

where the two-particle states |ν, ν̄〉 are product states |ν〉
and |ν̄〉. The states |ν〉 are represented by single-particle
wave functions φν(�r, σ ) = φnlm(�r)ψσ and the corresponding
time reversal states by φν̄(�r ′, σ ) = (−1)1/2−σ φ∗

nlm(�r ′)ψ−σ .
Averaging over the energy shells EN and E′

N , it is easy to
show that in phase space the shell-averaged pairing matrix
elements read (see [10] for more details)

VN,N ′ = 1

DNDN ′

∫
d3R

∫
d3pd3p′

(2πh̄)6
fN (Hcl.)fN ′(H ′

cl.)

×vη(p − p′), (6)

with vη(p) = ηv(p) and v(p) being the Fourier transform of
the Gogny D1S interaction in the 1S0 pairing channel [6]. The
factor η serves to adjust the pairing intensity by hand.

In Fig. 1, we give the gap at the Fermi energy �F as a
function of A. We take η = 0.85 to compensate for the fact
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FIG. 1. Pairing gap at the Fermi energy computed using the
Gogny D1S force as a function of the number of nucleons A in
an isotropic HO potential.

that we use the bare mass, m∗ = m what usually overestimates
pairing. We see that the typical arch structure is recovered.
Without any averaging, the gap values would depend on the
individual single-particle quantum numbers n, l and Fig. 1
would show an additional fine structure. In the present case
an averaging over the individual substates of one major shell
was performed not wiping out, however, the essential quantum
features.

We now proceed to the calculation of the CL. Interpreting
the anomalous density as the wave function of a Cooper pair
(we are aware of the fact that this point of view was debated
recently [11]), the local rms value of a pair is given by [1]

ξ (R) ≡
√

N (R)

D(R)
=

√∫
d3ss2κ2(R, s)∫
d3sκ2(R, s)

=
√√√√∫

d3p

(2πh̄)3 |dκ(Hcl.)/d(p/h̄)|2∫
d3p

(2πh̄)3 κ2(Hcl.)
. (7)

Here, 2R = r + r′ and s = r − r′ and κ(R, s) is the Fourier
transform of κ(R, p) of (3).

Using Eqs. (2) and (3), denominator and numerator under
the square root in Eq. (7) can be obtained explicitly in the case
of the HO potential:

D(R) = 4α3

π2

√
π

2
e−2α2R2

∑
K

∑
J

(−1)K+J κKκJ

×
min(K,J )∑

K1=0

L
(1/2)
K1 (0)L(1/2)

K−K1(2α2R2)L(1/2)
J−K1(2α2R2),

(8)

N (R) = 12α

π2

√
π

2
e−2α2R2

∑
K

∑
J

(−1)K+J κKκJ

×
min(K,J )∑

K1=0

L
(3/2)
K1 (0)

[
L

(1/2)
K−K1(2α2R2)

+L
(1/2)
K−K1−1(2α2R2)

][
L

(1/2)
J−K1(2α2R2)

+L
(1/2)
J−K1−1(2α2R2)

]
, (9)

where α = 1/b = √
mω/h̄ is the inverse HO length, K and J

are the principal HO quantum numbers of the shells, κK and
κJ the corresponding BCS amplitudes of the pairing tensor.

In the top panel of Fig. 2 we show ξ (R) for different values
of η. It is seen that ξ (R) only depends very weakly on the
pairing strength for η < 1, this happens for instance around
the minimum and the similarity with the results of the realistic
calculations presented in [1] and displayed again in the bottom
panel of Fig. 2, is striking. In particular, our model reproduces
the very small value of ξ (R) in the nuclear surface of about
2 fm. For η > 1, the CL starts to move to lower values in
the interior. However, the minimum again only is very little
affected.

In our model it is now rather straightforward to understand
where this striking independence of ξ (R) on the intensity of
pairing comes from. From Eq. (2), we can realize that the
features of fNF

(Hcl.), where NF corresponds to the major shell
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FIG. 2. (Color online) Coherence length for different strengths of
the pairing force as a function of the radial distance R for a symmetric
nucleus with A = 120. The dashed line corresponds to the no-pairing
limit (top). HFB coherence length for the nucleus 120Sn computed for
several strengths of the pairing D1S Gogny force (bottom).

at the Fermi energy, have a width of order ∼ h̄ω (one may
check this explicitly for some low-order L

(2)
N polynomials).

Because in the case of nuclei �N 	 h̄ω, the κN are essentially
only active at the Fermi level and we approximately have
from Eq. (3) that κ(R, p) is proportional to fNF

(Hcl.). In
the limit η → 0, we have the equality (strictly speaking one
should in this limit change the name and not call it coherence
length because there is no coherence any longer; however,
for convenience, we will not change the letter ξ nor the
name):

ξ (R)
limη→0=

√√√√√
∫

d3p

(2πh̄)3

[
dfNF

(Hcl.)/d(p/h̄)
]2

∫
d3p

(2πh̄)3

[
fNF

(Hcl.)
]2

= h̄2

m

√√√√∫ ∞
V (R) dHcl.k

3
Hcl.

(R)
[
dfNF

(Hcl.)/dHcl.
]2

∫ ∞
V (R) dHcl.kHcl.(R)

[
fNF

(Hcl.)
]2

=
√√√√∫

d3ss2
∣∣ρNF

(R, s)
∣∣2∫

d3s
∣∣ρNF

(R, s)
∣∣2 , (10)

where kHcl.(R) =
√

2m

h̄2 [Hcl. − V (R)] and ρNF
(R, s) is the

Fourier transform of fNF
(Hcl.) with respect to momentum p,

that is, the density matrix corresponding to the Fermi level

N = NF . The latter can be obtained from Eq. (2) as

ρN (R, s) = α3

π3/2
e−(R2+ s2

4 )
K1=N∑
K1=0

(−1)N−K1

×L
1/2
N−K1

(2α2R2)L1/2
K1

(
α2s2

2

)
. (11)

With a rescaling of the relative coordinate s → 2s, we see
the well-known fact (see, e.g., [5]) that the density matrix
for even/odd N is completely symmetric/antisymmetric with
respect to an interchange of relative and center-of-mass (c.m.)
coordinates s and R. From Eq. (10) it can be seen that the
dependence of ξ (R) on � has dropped out completely. This
stems from the fact that in our HO model with its degenerate
shells, in the limit η → 0, the chemical potential becomes
locked exactly at the Fermi level (i.e., at the shell NF ). In
general, this is not the case in a Woods-Saxon potential where
it can happen that the chemical potential becomes situated in
between two subshells. In the top panel of Fig. 2, we also
show the limiting value of the coherence length (dashed line)
when � → 0. It is clear that this asymptotic form of the CL is
very close to the other curves, in particular, at the minimum.
Therefore, in nuclear physics, in what concerns the CL, we are
always almost in the asymptotic limit of vanishing pairing.
In a sense, the closeness of the CL to the corresponding
uncorrelated value is one of the most striking manifestations
that nuclei are in the weak coupling regime of pairing. Of
course, this should not make us forget that on other quantities
nuclear pairing has a strong influence. A particularly pertinent
example, discussed recently [3,5], is the strong influence of
parity mixing on the spatial features of the (non-normalized)
pairing tensor.

Let us now try to analyze from where comes this typical
behavior of the CL [i.e., of ξ (R)]. It rises from R = 0 up
to R = 1−2 fm, followed by a longer almost linear descent,
passing through a shallow minimum of 2–2.5 fm, leveling off
at some slightly higher asymptotic value. Before coming to
this study, let us mention again that this behavior seems to be
very robust being found in realistic HFB calculations in nuclei
(see Fig. 3 in [1]) in a slab geometry [12], as well as in the
present very simplified HO model.

Let us consider the normalized square of the density matrix,
as it enters the definition of the CL. From Eqs. (10) and (11)
we obtain

|ρN (R, s)|2∫
d3s|ρN (R, s)|2

= α3

4π

√
2

π
e− α2s2

2

×
(∑K1=N

K1=0 (−1)N−K1L
(1/2)
N−K1

(2α2R2)L(1/2)
K1

(
α2s2

2

))2

∑K1=N
K1=0

(
L

(1/2)
N−K1

(2α2R2)
)2

L
(1/2)
K1

(0)
.

(12)

In the particularly simple case of N = 1, L
(1/2)
1 (x) = 3

2 − x

and L
(1/2)
0 (x) = 1, and consequently Eq. (12), after multiplying
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by s4, reads

|ρ1(R, s)|2s4∫
ds|ρ1(R, s)|2s2

= α3

√
2

π
e− α2s2

2
α4(2R2 − s2/2)2s4

4α4R4 − 6α2R2 + 3.75
.

(13)

One sees that Eq. (12) has an R-dependent node at s = 2R,
a feature that is important for interpreting the characteristic
behavior of the CL. After integrating Eq. (12) over s, one
obtains for the CL,

ξ 2(R) =
∫

ds(2R2 − s2/2)2s4e−α2s2/2∫
ds(2R2 − s2/2)s2e−α2s2/2

= 3

α2
× 4x2 − 20x + 35

4x2 − 12x + 15
, (14)

where x = 2α2R2. Minimization with respect to R implies
that

4x2 − 20x + 15 = 0, (15)

the roots of which are x1 = 2.5 − √
2.5 = 0.9189 and x2 =

2.5 + √
2.5 = 4.0818, x1 corresponding to the maximum and

x2 to the minimum.
In the case of N = 1, let us take, somewhat arbitrarily,

the symmetric open-shell nucleus A = 12 (to fix the value
of ω ∝ A−1/3). From the definition of x one obtains for the
position R and the values of maximum and minimum of the
CL,

Rmax = 1.0315 fm ξ (R)max = 4.3476 fm, (16)

and

Rmin = 2.1740 fm ξ (R)min = 2.0629 fm. (17)

The coherence length corresponding to A = 12 (N = 1)
is displayed in Fig. 3. It is very surprising that even for this
simplest case of N = 1 the essential features of the CL are
already born out. For instance, the minimal value is at about
2 fm, as in all other cases, realistic ones included [5]. On the
other hand for N = 0, no R dependence of the CL exists. The
constant value of CL for N = 0 is about 2 fm for, for example,
A = 4 (i.e., the α particle). Therefore, one needs at least to go
to P -shell nuclei (i.e., N = 1) so that in the interior the pairs
can extend beyond 2 fm. However, coming close to the edge
of the nucleus, the rms value of the pair gets (approximately)
back to its value it has in the α particle.

The coherence length for A = 28 that corresponds to a
midshell nucleus with N = 2 reads

ξ 2(R) = 3

α2

16x4 − 224x3 + 1160x2 − 2312x + 2009

16x4 − 160x3 + 616x2 − 888x + 561
,

(18)

where again x = 2α2R2. The minimization with respect to R

implies that

64x6 − 1088x5 + 7248x4 − 27168x3 + 61340x2

− 73348x + 30435 = 0, (19)

which yields the only real roots: x1 = 0.7822 and x2 = 7.5622,
x1 corresponding to the maximum and x2 to the minimum. The
other four roots of Eq. (19) are complex.
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FIG. 3. (Color online) Coherence length (fm) for systems con-
taining A = 12 and A = 28 nucleons as a function of the distance to
the center R (fm).

From the previous definition of x one obtains

Rmax = 1.0960 fm, ξ (R)max = 6.5700 fm, (20)

and

Rmin = 3.4079 fm, ξ (R)min = 2.1838 fm. (21)

The coherence length corresponding to this case is also
displayed in Fig. 3. To better understand the qualitatively
similar behavior of the CL for the A = 12 and A = 28 cases,
we show in Fig. 4 expression (12) and the corresponding one
for A = 28 as a function of s for various values of R. The area
below the curves in Fig. 4 directly yields the CL. The striking
feature is that the scenario is qualitatively much the same in
both cases, in spite of the fact that for N = 2 there are two
nodes instead of one [13]. The analysis shows that the two
nodes also move proportional to R from inside to outside in a
similar way as for the N = 1 case. We surmise that the behavior
stays more or less the same also for higher N values. There
are two asymptotic regimes where the nodal structure in s

practically does not influence the integrand in s [i.e., (12)] and
that are more or less dominated by a single bump structure.
This is the case for very small R values as well as for large
R values, approximately from the minimum point of the CL
onwards. In between, the behavior switches from one regime
to the other. This is where the CL shrinks about linearly with R.
To exhibit the linear behavior more clearly, we show in Fig. 5
the CLs for A = 12, 28, 120, and 8000. We scale in that figure
the CL and the R coordinate by the radius at the classical

turning point, Rt =
√

2µ

mω2 , given by the intersection of the
chemical potential µ = 46.933 MeV (remember that with an
HO potential, µ is independent of the nucleon number A) with
the HO potential and, thus, representing the size of the system.
It is seen that the different curves almost are superposed
averaging around a linear descent. Only the beginning and
the ends vary. The position of the minimum ranges between a
little more than half of Rt for A = 12 to about 90% of Rt for
A = 8000. In the interior, close to the origin, the pairs occupy
the whole nuclear volume; while approaching the surface they
steadily shrink to about 2–2.5 fm from the close presence of the
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FIG. 4. (Color online) Normalized square of the density matrix
ρ(R, s) multiplied by s4 as a function of the relative coordinate s. In
the top panel it is displayed for A = 12 (N = 1) and in the bottom
panel for A = 28 (N = 2).

confinement. After the minimum, that is, more or less after the
classical turning point (for very small systems the latter does
not have such a well-defined meaning), the pair wave function
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FIG. 5. (Color online) Coherence length (CL) for systems con-
taining A = 12, 28, 120, and 8000 nucleons as a function of the radial
distance R. Notice that both, coherence length and radial distance,
have been scaled by the classical turning point distance Rt (see text).

enters the evanescent region and again slightly expands before
reaching the asymptotic value. It also is worth mentioning
that the minimum of the CL is very slowly increasing with
particle number, approximately as ∼ A1/6. For A = 8000 the
minimum value is about 4 fm. Once ω → 0, the CL approaches
infinity everywhere. A generic feature also is that, independent
of A, starting from the center at R = 0, the pairs first slightly
expand up to R ∼ 1 fm before becoming smaller getting closer
to the border of the mean field. For these R values around
the origin, the nodes lie in the region that is dominated by
the phase space factors s2 and s4 in the integrals over s in
Eq. (13) (i.e., well to the left of the maximum of the bump
created by the function s4e−α2s2/2). It can easily be verified
from our “easy” example N = 1 [Eqs. (12) and (13)] that
for very small values of R, the surface corresponding to the
s integral of the denominator decreases faster than that
of the numerator. Therefore, the CL increases. However, once
the node comes into the region where the exponential regime
takes over (i.e., where the extension of the system is felt),
the CL starts its regression. These considerations may be
elaborated in all details for the case N = 1 and also further
be elucidated in considering as a complement to the density
matrix ρN (R, s) its Wigner representation Eq. (2). Not to make
the present discussion too heavy, we refrain from entering
these more detailed considerations. The case N = 1 is, as seen,
already characteristic and can be studied straightforwardly.

We also should mention that even in our averaging over
major shells, orbit mixing within the shell takes place. The
cross terms give rise to a destructive interference still lowering
the minimum of the CL by a small but definite amount of
about 0.5 fm from its nonaveraged values. This can be realized
in comparing Fig. 6 where the CL, that is, local in R rms
radii from individual HO orbits are displayed (for a precise
definition, see [5]) with the dashed line in the top panel of
Fig. 2.

Intrashell averaging, therefore, is present even in the limit
of very small pairing with gap values of the order of subshell
spacings. In Ref. [5] the same study is performed with the
self-consistent HFB orbits (see Fig. 17 in that reference). It

FIG. 6. Individual contributions to the CL in the HO model for
A = 120 corresponding to the different individual orbitals of the last
shell.
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is seen that in the self-consistent case the reduction of the
minimal value of the CL from intrashell mixing is about
30% and, therefore, somewhat stronger than in the present
simplified HO model. Though not completely negligible, this
interesting behavior is nonetheless a minor effect with respect
to the feature we are discussing in this work, namely a
surprising reduction of the minimal value of the CL by a factor
3–4 from a simple weak coupling estimate [7].

We, therefore, can say that in cases where, in finite Fermi
systems, typical values of gap parameters around the Fermi
energy are smaller than h̄ω or energy differences between
neighboring major shells in spherical nuclei, the size of Cooper
pairs in superfluid nuclei, or other finite Fermi systems, is
essentially determined by the spatial extension of the single-
particle wave functions close to the Fermi energy. Passing for
the sake of argument to a continuum version of Eq. (2) [i.e.,
κ(R, p) = ∫

dEκ(E)fE(Hcl.)], we see that in nuclei where the
width of κ(E) is much smaller than the width of fE(Hcl.), the
CL is dominated by fE(Hcl.) on the Fermi surface. Of course,
a very different situation prevails in the opposite regime where
�  h̄ω. In the extreme case of infinite matter or h̄ω → 0,
we have fE(Hcl.) → δ(E − Hcl.), and the ratio of the values
of the widths is inversed! Simple scaling arguments show that
in the latter case ξ ∼ 1/�, which also is reflected in the well-
known expression given by Pippard [14],

ξ = 1

π

h̄2

m

kF

�
, (22)

or by an equivalent formula given in the appendix of our
preceding paper [5]. Therefore, in the infinite matter case the
dependence on the gap is not at all compensated between
numerator and denominator in Eq. (6), whereas this is the case
in finite nuclei [see Eq. (9)].

As a consequence, the use of LDA, which is equivalent
to the infinite matter regime, is not valid to estimate the
coherence length in finite nuclei. For other quantities, however,
as, for example, the pairing energy, LDA gives a reasonable
good average [15]. Nevertheless, even in such favorable cases,
LDA is very much at the limit of its validity, for instance, in
what concerns a detailed description of the radius dependence
of various pairing quantities. Further considerations on this
subject will be published elsewhere [16].

In conclusion, concerning the extension of Cooper pairs
in finite superfluid Fermi systems, we have identified two
regimes: one for h̄ω  � where the coherence length is
practically independent of � and determined by the spatial
extension of the single-particle wave functions. In addition
to nuclei, such a situation may be found in ultrasmall
superconducting metallic grains [17,18]. In the second regime
with h̄ω 	 �, the coherence length is approximately inversely
proportional to the gap values. The latter situation is, in
addition to nuclear matter, for example, realized in cold
superfluid fermionic atoms in traps where typical values of
�/(h̄ω) may be of the order of 10 or even larger [19]. It would
be interesting to study the crossover from one regime to the
other in more detail.

Let us finally wrap up the situation of the CL in nuclei. We
found that a simplest spherical HO model already simulates
quite faithfully realistic HFB calculations with the Gogny

force. In what concerns the CL, the situation for nuclei is
such that there is very little difference between rms values
of uncorrelated pairs coupled to L = S = 0 calculated locally
as a function of the radius R and local Cooper pair sizes
calculated with the nominal pairing interaction. Therefore, the
small Cooper pair size of 2.0–2.5 fm in the surface of nuclei is
practically entirely a finite size effect and has not much to do
with existing enhancement of pairing in the nuclear surface.
A very characteristic and generic pattern has emerged. In the
lightest nuclei, like, for example, the α particle, their size
is so small that the extension of a pair cannot reach more
than 2 fm. Going to P shell nuclei, in the interior the pairs
can already somewhat extend but approaching the border of
the mean field they shrink until they again reach a value of
around 2 fm from the restricted space around the surface. In
the interior the pairs grow approximately with the size of the
nucleus (see Fig. 5) but toward the surface they always regress
to their very small value. In the evanescent region, the pair sizes
become slightly larger than their minimum value in the surface
region but this increase is very moderate. A characteristic
feature also is that the pairs only feel the finite size from R =
1 fm onward. Before, they slightly expand up to R = 1 fm,
independent of the mass number of nuclei and of parity of
the shell. This scenario of a first slight increase, followed
by a longer linear descent, before going through a shallow
minimum at 2.0–2.5 fm, leveling off in a slightly increased
asymptotic value is practically a generic feature of local pair
sizes in nuclei. It is seen in our schematic model, but also
in realistic calculations (see Fig. 3 of [1]), though in the latter
case some scatter exists, probably from more pronounced shell
effects. This characteristic pattern of local Cooper pair sizes,
practically independent of the strength of the pairing force as
long as it stays below the nominal value, is one of the clearest
theoretical manifestations that nuclei are in a weak coupling
regime characterized by gap values � 	 h̄ω. In the opposite
limit �  h̄ω, as prevails in infinite matter, but in the regime
where � 	 µ that is still in weak coupling [20], the coherence
length varies inversely proportional to the gap, a fact that is well
known. The fact that Cooper pair sizes are largely dominated
by geometry should, however, not make us forget that for
other quantities nuclear superfluidity has an enormous impact.
To say it again, a particularly striking example, in addition to
other more standard ones, is the effect of parity mixing on the
spatial behavior of the nonlocal (unnormalized) pairing tensor,
as revealed recently [3,5]. Indeed, this not normalized pairing
tensor κ( �R, �s) becomes very much localized in �s around the
�R axis whereas the parity projected κ( �R, �s) is completely

delocalized [3,5] However, because of normalization in the
coherence length this feature is canceled out.
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[6] J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980); J.-F.

Berger, M. Girod, and D. Gogny, Comput. Phys. Commun. 63,
365 (1991).

[7] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,
Reading, MA, 1975), Chap. 6, p. 398.

[8] M. Prakash, S. Shlomo, and V. M. Kolomietz, Nucl. Phys. A
370, 30 (1981).

[9] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, New York, 1980).
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