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Nuclear binding energies and empirical proton-neutron interactions
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By using an exponential function to simulate the residual proton-neutron interaction between valence nucleons,
we derive a new set of local mass formulas that are competitive with the Garvey-Kelson mass relations for relating
neighboring nuclear masses.
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At present there are experimental data on more than 2000
nuclear masses across the periodic table. A model that can
accurately describe these data and reliably predict unknown
masses is a key goal of nuclear structure theory. Some of
the most popular models currently in use are the finite-range
droplet model (FRDM) [1], the Duflo-Zuker (D-Z) model
[2], and models based on Skyrme-Hartree-Fock-Bogoliubov
(SHFB) theory [3]. These models have been used to describe
masses for roughly 9000 nuclei, including those for which
masses are known and those for which they are not yet
known. When applied to nuclei for which experimental masses
are known, they reproduce the masses quite well, with rms
deviations from the experimental data on ∼670 keV for the
FRDM and the SHFB model and ∼380 keV for the D-Z model.

In addition to these global models of nuclear masses,
there are also local mass formulas that relate the masses of
neighboring nuclei. Particularly well known are the Garvey-
Kelson (G-K) mass relations [4]. Recently, Barea et al. carried
out a systematic analysis of G-K mass relations [5] and have
shown that when studying nuclei with masses A � 60 and for
which 12 G-K relations can be applied, deviations between
masses predicted by the G-K relations and masses predicted
by the experimental data are ∼76 keV [6].

In this paper, we show how it is possible to use features of
the residual proton-neutron interaction to develop another set
of local mass relations that have an accuracy comparable to
the G-K relations but require a smaller number of masses to
be known to achieve this same level of accuracy.

The residual proton-neutron interaction is well known to
be an important fingerprint of the evolution of single-particle
structure and the development of nuclear collectivity and
nuclear deformation [7]. In 1989, Zhang et al. suggested
a simple approach to extract the residual proton-neutron
interaction (δVpn) between the last valence neutron and the
last valence proton by using the nuclear masses of a few
neighboring nuclei [8]. In subsequent works, it was noted that
the residual proton-neutron interaction might also prove useful
for predicting nuclear masses [9].
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Following Zhang et al. [8], the residual proton-neutron
interaction δVpn(Z,N ) can be obtained from the relation

4 × δVpn(Z,N ) = [B(Z + 1, N + 1) − B(Z + 1, N − 1)]

− [B(Z − 1, N + 1)−B(Z − 1, N − 1)],

(1)

where B(Z,N ) is the negative of the nuclear binding energy for
a nucleus with proton number Z and neutron number N . The
usefulness of this formula for δVpn has been studied extensively
in many recent papers [9–17].

In Fig. 1, we present the evolution of 4δVpn(Z,N ) versus
proton number Z, for nuclei with A � 60, excluding those
for which either the proton number or the neutron number is
magic. The binding energies are obtained from the experimen-
tal masses given in the 2003 mass table (AME2003) [18].

It is possible to obtain an accurate functional approximation
of these results by using an exponential function f (Z) of the
proton number Z and a second term, δ(Z,N ), that simulates
shell effects. The relevant formula is given by

4 × δV fit
pn (Z,N ) = f (Z) + δ(Z,N ),

f (Z) = α + β × eZ/γ ,
(2)

δ(Z,N ) = a + b × |(Z − Z0) × �N

− (N − N0)�Z,

where

α = −906.4, β = −6564.4, γ = −20.028,

a = −166.5, b = 0.8620.

Here α, β, a, and b are in units of kiloelectronvolts and γ is
a constant. Also, Z0 (N0) is the largest magic number with
respect to Z (N ), and �Z(N ) = ∑

j (j + 1/2) for the valence
proton(neutron) shells.

The rms deviation between 4δVpn obtained using Eq. (1)
and those obtained using Eq. (2) is 226 keV. If one sets
δ(Z,N ) = 0, the rms deviation goes up slightly, to 255 keV.

In what follows we in fact use the simpler functional form
obtained by ignoring the shell correction term. With this
simplifying assumption the functional form for the residual
p-n interaction depends solely on Z, and not on N . As we
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FIG. 1. (Color online) 4δVpn versus Z for A � 60 using the
AME2003 data. The solid (red) curve was plotted using f (Z) in
Eq. (2).

see shortly this leads to further useful simplifications in the
development of the formalism we present.

The basic idea of the new local mass model we present
here is to assume the simplified exponential functional form
f (Z) for 4δVp,n(Z,N ) and then to use it in Eq. (1) to predict
the binding energy of a nucleus from the other three binding
energies in that formula. The solid (red) curve in Fig. 1 shows
the approximation provided by this to the residual proton-
neutron interaction data.

There are four possible equations we can obtain, depending
on which of the four masses in Eq. (1) is to be predicted:

Bpred(Z,N ) = B(Z,N − 2) + B(Z − 2N )

−B(Z − 2, N − 2) + f (Z − 1),

Bpred(Z,N ) = B(Z,N + 2) − B(Z − 2, N + 2)

+B(Z − 2, N) − f (Z − 1),
(3)

Bpred(Z,N ) = B(Z,N + 2) + B(Z + 2, N )

−B(Z + 2, N + 2) + f (Z + 1),

Bpred(Z,N ) = B(Z,N − 2) + B(Z + 2, N )

−B(Z + 2, N − 2) − f (Z + 1).

If all of the neighboring masses are available, we can average
these four results and obtain

B
pred
n=4(Z,N ) = 1

4 [2B(Z + 2, N ) + 2B(Z,N + 2)

+ 2B(Z − 2, N ) + 2B(Z,N − 2)

−B(Z + 2, N + 2) − B(Z + 2, N − 2)

−B(Z − 2, N + 2) − B(Z − 2, N − 2)].

(4)

The subscript n = 4 is included to indicate that all four
approximations of the predicted mass (binding energy) are
possible. Note that in the n = 4 approximation the functional
for the residual proton-neutron interaction cancels out. This
is true, however, only when we ignore the shell correction
contribution to the residual proton-neutron interaction and

TABLE I. rms deviations (keV) between the AME2003 data and
the binding energies calculated using Eq. (3), Eq. (6), and the G-K
relations with A � 60 as a function of the number of predictions n.

Relation n � 1 n � 2 n � 3 n � 4 n � 12

Eq. (3) 183 137 110 97 –
Eq. (6) 110 93 80 78 –
G-K 115 – – 98 76

assume an exponential approximation with its sole dependence
on Z.

We apply Eq. (3) to the AME2003 database. The rms
deviation from experimental data for nuclei with A � 60
is summarized in Table I, where we compare it with the
corresponding results obtained using the G-K mass relations.

In the case of the G-K mass relations, however, more nearby
masses are involved and thus more mass predictions can be
made. Indeed, with the G-K relations it is, in principle, possible
to obtain up to 12 predictions, when all neighboring masses
are available.

The rms deviation using Eq. (3) is 183 keV for n � 1, in
comparison to 115 keV based on the G-K relations. For n � 4,
the rms deviation by Eq. (3) is close to that from the G-K
relations. However, as already noted it is possible to make
more predictions using the G-K relations, and when this is
possible the resulting discrepancies are reduced to just 76 keV.

The rms deviation from the AME2003 database is shown in
Fig. 2. One sees that large deviations occur when A is relatively
small, or along the border of experimentally known nuclei, for
which n = 1.

At this point, we refine Eq. (3) by assuming that the residual
proton-neutron interaction δVpn for a given nucleus is obtained
by averaging the results of the four neighboring nuclei, that is,

δVpn(Z,N ) = 1
4 [δVpn(Z + 1, N ) + δVpn(Z − 1, N)

+ δVpn(Z,N + 1) + δVpn(Z,N − 1)]. (5)

Substituting Eq. (1) into this equation, we obtain the mass
relation,

4B(Z − 1, N + 1) + 4B(Z + 1, N − 1) − 4B(Z − 1, N − 1)

− 4B(Z + 1, N + 1) + B(Z + 2, N + 1)

+B(Z + 1, N + 2) + B(Z − 2, N − 1)

FIG. 2. (Color online) Nuclide charts colored according to the
deviations (keV) of binding energies between the measured masses
in the AME2003 table and the masses calculated using Eq. (3) for all
nuclei.
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+B(Z − 1, N − 2) − B(Z − 2, N + 1)

−B(Z − 1, N + 2) − B(Z + 2, N − 1)

−B(Z + 1, N − 2) = 0. (6)

This is a relation involving the masses of 12 neighboring
nuclei. From this relation, we can make a variety of mass
predictions from those of its neighbors. Here we use it
to make predictions for up to n = 4 masses, by focusing
on the binding energies B(Z − 1, N + 1), B(Z + 1, N − 1),
B(Z − 1, N − 1), and B(Z + 1, N + 1) in the equation. When
we apply such a prescription to the AME2003 mass database,
we obtain the results given in the second row in Table I.
When all four mass predictions are made (i.e., n = 4), the
rms deviation obtained is 78 keV, close to that obtained using
n = 12 G-K relations. Of course, there are more than four
predictions that can be made with Eq. (3). Nevertheless, we
find it intriguing and thus worthy to note that in certain
circumstances this new mass relation is able to achieve such a
high level of accuracy with just the use of four predictions.

To summarize, we have shown in this paper that, by using an
exponential function to simulate the residual proton-neutron
interactions, we have been able to obtain a local mass
relation that predicts nuclear binding energies from those of

neighboring nuclei with the same level of accuracy as the well-
known G-K mass relations. More specifically, the rms devia-
tion from experimental data is 97 keV, if the binding energies
of all neighboring nuclei are known. With a further refinement
of the approach we are able to achieve the even smaller rms de-
viation of 78 keV, when an appropriate set of mass relations is
used.

Finally, it is worth noting here that it is because of the
extensive recent works [9–17] aimed at trying to understand
the properties of residual proton-neutron interactions that we
have been able to arrive at this new approach to predicting the
nuclear masses of unknown nuclei.
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