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Nucleon-nucleon scattering in a harmonic potential
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The discrete energy eigenvalues of two nucleons interacting with a finite-range nuclear force and confined to
a harmonic potential are used to numerically reconstruct the free-space scattering phase shifts. The extracted
phase shifts are compared to those obtained from the exact continuum scattering solution and agree within the
uncertainties of the calculations. Our results suggest that it might be possible to determine the amplitudes for the
scattering of complex systems, such as nd , nt, or nα, from the energy eigenvalues confined to finite volumes
using ab initio bound-state techniques.
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I. INTRODUCTION

Quantum scattering of strongly interacting few-nucleon
systems is complicated and requires careful treatment of
asymptotics, antisymmetrization effects, as well as the
dynamics generated by nuclear forces. Full treatments of
antisymmetrization with correlations have become routine
in bound-state and quasi-bound-state solutions of light
nuclei using ab initio techniques based on nucleon-nucleon
(NN ) and three-nucleon interactions (3N ). Techniques, such
as the no-core shell model (NCSM) (see, e.g., Refs. [1,2]), the
Green’s function Monte Carlo method (GFMC) (see,
e.g., Refs. [3,4]), and the coupled-cluster (CC) approach (see,
e.g., Refs. [5,6]), are used to calculate ground and excited
states of light nuclei. The precision of these calculations has
reached a point where further progress is now limited by the
fidelity of the input interactions.

In reaction calculations of scattering properties of light
nuclei, progress has been less pronounced, though nonetheless
significant. The R-matrix analysis (see, e.g., Refs. [7,8]) has
been historically the empirical workhorse, providing impres-
sive fits to a range of experimental data. More microscopic
approaches to the scattering of light nuclei are based on the
resonating group method (RGM) [9–11]. A promising avenue
for ab initio calculations of scattering of light ions comes
from the coupling of the RGM reaction method with the
NCSM bound-state technique [12]. For this method, the large
computational resources required to achieve convergence pro-
vide the limiting constraint on reliably calculating scattering
parameters for processes with A > 5. It would be significant
if existing bound-state techniques, and their accompanying
precision, could be further exploited to reliably determine
scattering amplitudes for multinucleon systems.
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During the past 20 years the general technique of ef-
fective field theory (EFT) has been developed and applied
to multinucleon systems. Effective field theory provides a
description of observables, consistent with the approximate
chiral symmetries of quantum chromodynamics (QCD), in
terms of a small number of expansion parameters within a
plane-wave basis. These expansion parameters are used to
relate the experimentally determined scattering parameters
and bound-state properties of few-nucleon systems to the
coefficients of operators at a given order in the EFT expan-
sion. In principle, this allows for systematically improvable
calculations of multinucleon observables. Applying the EFT
framework within an oscillator basis has also been investigated
[13–15]. More recently, it has been suggested that the EFT
framework might be fruitfully applied to multifermion systems
confined in a harmonic potential [16–18], and might be
usefully married with the NCSM calculational scheme. In
Ref. [19] it was suggested that the scattering properties of
certain complex nuclear systems could be calculated from
the spectrum of the same systems confined to a harmonic
potential. This was demonstrated for two confined particles at
the unitary limit in Ref. [20]. A lattice formulation of EFT
using spherical-well boundary conditions has been used to
extract phase shifts [21], and one coupled with an external
harmonic potential is currently being developed [22].

In this work we investigate the simple two-nucleon system
that is confined in a harmonic potential of the form VHO =
1
2MNω2r2 and interacts via nuclear forces in uncoupled partial
waves. Since two-body techniques are well established for both
scattering and bound states, this system is ideal for determining
the extent to which continuum scattering amplitudes can
be recovered from bound-state information. An analytic
expression that relates the eigenvalues of two interacting
particles moving in a harmonic potential to the scattering
phase shift at those energies, analogous to “Lüscher’s method”
[23–25] that is used in lattice QCD, allows for the scattering
phase shift to be determined in the limit that the oscillator
length is large compared to the range of nuclear forces. As
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the latter is characterized by the Compton wavelength of the
pion, with increasing confinement this leads to modifications
to nuclear forces due to the harmonic potential that must
be systematically removed in order to accurately predict the
scattering amplitude. This is achieved by calculating the
energy eigenvalues over a range of harmonic frequencies ω,
determining the scattering amplitude over this range of ω, and
then extrapolating to the ω = 0 limit. We verify the extracted
phase shifts by comparing them to the results of an independent
scattering calculation. The two methods are found to yield the
same phase shifts within the uncertainties of the calculations.

II. PHASE SHIFTS FROM THE ZERO-RANGE RELATION

It is well established that the energy eigenvalues of an
interacting system of particles confined to a finite volume
can be used to determine the scattering phase shift (at the
energy eigenvalues) when the size of the confining region is
much larger than the range of the interactions between the
particles. For instance, relating the scattering phase shift to the
energy eigenvalues of two-nucleons confined to a spherical
region by solving the Schrödinger equation with a Dirichlet
boundary condition is a problem that appears in standard texts
on nuclear physics (see, e.g., Ref. [26]). This method has
been successfully employed in the latticization of low-energy
EFT’s to predict (to a given level of precision) the ground-state
energies of light nuclei and their volume dependence [27].

Volume dependence is also used to determine meson-
meson, meson-baryon, and baryon-baryon elastic-scattering
phase shifts from the energy eigenvalues of these systems cal-
culated with lattice QCD1 (for a recent review, see Ref. [29]).
Lattice QCD calculations are generally performed in spatial
volumes with cubic symmetry and with periodic boundary
conditions (BC’s) imposed upon the fields at the edges. This
reduces the number of momentum modes, and hence reduces
the kinetic-energy contributions to the calculated processes.
The nonrelativistic relation between the energy eigenvalues
and the scattering amplitude (the “Lüscher relation”) has been
shown to be valid even in quantum field theory [24,25]. Given
the energy splitting, �En, between the two-hadron state and
the hadron masses, m, the real part of the inverse scattering
amplitude below inelastic thresholds is

pn cot δ(pn) = 1

πL
S

[(
pnL

2π

)2
]

,

S (x) ≡
|j|<�∑

j

1

|j|2 − x
− 4π�, (1)

where �En = 2
√

p2
n + m2 − 2m, δ(pn) is the energy-

dependent phase shift, and the limit � → ∞ is implicit. The
S function is the Green function, GHH (0, 0), for two-hadron
plane-wave eigenstates (and straightforwardly generalizes to
hadrons with different masses). The Lüscher relation between

1The Maiani-Testa theorem [28] precludes the extraction of scat-
tering matrix elements from Euclidean-space Green functions in the
infinite-volume limit except at kinematic thresholds.

the scattering amplitude and the energy eigenvalues in the finite
lattice volume, given by Eq. (1), is valid when the spatial extent
of the lattice is large compared to the range of the interaction R.
Corrections to the relation are found to behave as ∼e−L/R (see,
e.g., Ref. [30]). If, in the continuum (infinite-volume) limit, a
system contains a shallow bound state, as is the case in the NN
3S1-3D1 coupled channel, the periodic BC in a finite volume
increases the binding energy of the state. The finite-volume
corrections scale as e−γ0L [31], where γ0 is the binding
momentum in the continuum. In contrast, the continuum
scattering states have power-law dependences upon the lattice
extent for L � R, with energies that behave as ∼1/L3 for the
ground state and ∼1/L2 for the higher-energy states.

The systems that we considered in this work are comprised
of two nucleons in a harmonic potential (with oscillator
frequency ω) interacting through NN forces. We will consider
the JISP16 potential [32–34], which reproduces the low-energy
NN scattering data with a χ2/DOF ∼ 1.0 (where DOF means
degree of freedom), but our results are general and the
technique can be applied to other NN interactions. The EFT
method that was used to (re)derive the Lüscher relation in Eq.
(1) in nonrelativistic quantum mechanics [31] can be used to
(re)derive the relation between p2l+1 cot δl(p) in an uncoupled
partial wave with angular momentum l and the energy
eigenvalues of two nucleons in a harmonic potential [36–38],

p2l+1cotδl(p) = (−1)l+1 (2mω)l+1/2 	
(

2l+3
4 − ε

2

)
	

(
1−2l

4 − ε
2

) , (2)

where ε = E/ω and E = p2/m is the fully interacting energy
in the center-of-mass frame. While the EFT derivation using
the pionless EFT is valid only up to momenta associated
with the cut in the t channel from the exchange of one
pion, the relation is valid up to the inelastic threshold.
Equation (2), like the Lüscher formula, is valid in the limit
of zero-range interactions. The harmonic potential, being
nonzero everywhere, except at the origin, modifies the
interaction between the two nucleons, and the NN phase shift
at the outer range of the nuclear potential differs from that in
free space. This is a finite-range effect, and unlike the situation
encountered in lattice QCD calculations, it is not expected
to be exponentially suppressed (in ω). Equation (2), in
conjunction with the leading-order (LO) term in the effective
range expansion (ERE) of p cot δ, the scattering length a, has
been used to determine the spectrum of dilute cold atoms in
traps with essentially zero-range interactions, particularly in
the vicinity of Feshbach resonances [36–39]. On the other
hand, since Eq. (2) relates the energy-dependent phase shift
to the energy eigenvalues E of the confined system,
knowledge of the spectrum of the two-particle system allows
the extraction of the continuum scattering amplitude up to
finite-range corrections.

A. Loosely bound states in weak harmonic potentials

For attractive S-wave interactions with positive scattering
length, a0 > 0, a bound state exists and the binding energy B0

can be written in terms of the binding momentum, γ0,

B0 ≡ γ 2
0

m
,
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where γ ∼ 1/a for scattering lengths large compared to the
range of the interaction. Refining the estimate of the binding
energy gives γ as the solution to

1

a0
+ 1

2
r0γ

2
0 − γ0 = 0, (3)

where r0 is the effective range of the interaction and the ERE
of p cot δ = − 1

a0
+ 1

2 r0p
2 + · · · has been truncated at second

order, which, in the case of S-wave interactions between
nucleons, is sufficient for most purposes. The presence of
the harmonic potential, and in particular its nonzero value
throughout the volume of the bound state, gives rise to a
power-law modification to the binding energy [36], even in
the limit of zero-range interactions. The location of the state
corresponding to the free-space bound state can be found
directly from Eq. (2) in the zero-range limit, and for small ω

the shift in the energy of the bound state is perturbative in ω2,

Bω = B0 − 1

8 (1 − γ0r0)

ω2

B0
+ O(ω4)

= B0 − CZR ω2 + O(ω4), (4)

where we define CZR = [8B0(1 − γ0r0)]−1 for later reference.
Equation (4) indicates that given the bound-state energy Bω

calculated at different values of ω, the continuum binding
energy B0 could be determined by an extrapolation in ω2 to
ω = 0. This same extrapolation can also be done in the
presence of finite-range corrections since, as we show later,
these corrections occur at order ω2 for small ω. In the 3S1-3D1

coupled channels that contain the deuteron with binding
energy B0 = 2.224 575 MeV (γ0 ∼ 45.7 MeV) and with an
S-wave effective range of r0 ∼ 1.74 fm, the coefficient is
CZR = 0.0944 MeV−1.

The LO shift in the bound-state energy given in Eq. (4)
can be recovered from the bound-state wave function based on
ERE,

ψ (ER)(r) = ψshort(r) +
√

γ0

2π

1√
1 − γ0r0

e−γ0r

r
, (5)

where ψshort(r) is the short-distance component of the wave
function that has support over a radius r � γ −1

0 . The factor
of 1/

√
1 − γ0r0 in Eq. (5) is determined by the residue of the

pole in the scattering amplitude. At LO in perturbation theory,
the contribution to the energy of this state from the harmonic
potential is

�E0 = 〈ψ (ER)|1

2
mω2r2|ψ (ER)〉

= 1

8 (1 − γ0r0)

ω2

B0
+ short distance, (6)

in agreement with the result in Eq. (4).

B. Scattering states in weak harmonic potentials

It is useful to construct perturbative expansions for the
energy eigenvalues in the zero-range limit. As we show in
Sec. IV A, these relations can be used to readily extract
effective range parameters given the low-energy spectrum
of the system. Using the zero-range relation given in
Eq. (2) it is straightforward to determine the lo-
cation of the energy eigenstates in the limit that√

mω/(p cot δ) � 1, and also in the unitary limit where√
mω/(p cot δ) � 1. In the

√
mω/(p cot δ) � 1 limit, the

q-th energy level with orbital angular momentum l is
located at

E(l)
q

ω
=

(
3

2
+ l + 2q

)
+ 2

⎡
⎣(√

2

b

)2l+1
(−)l+q

	[1 + q] 	
[ − 1

2 − l − q
]
p2l+1 cot δl(E0)

+
(√

2

b

)4l+2
H

( − 3
2 − l − q

) − H (q)

{	[1 + q] 	
[− 1

2 − l − q
]
p2l+1 cot δl(E0)}2

+ · · ·
⎤
⎦ , (7)

where E0 = 1
mb2 ( 3

2 + l + 2q) with b = 1/
√

mω, and the H (x)
are harmonic numbers.2 When applied to the lowest-lying
S-wave state, one finds that for small ω,

E
(0)
0

ω
= 3

2
− 1

bp cot δ0

(√
2

π
− 2(1 − log 2)

πbp cot δ0

−π2 − 24 + 36(2 − log 2) log 2

6
√

2π3/2 (bp cot δ0)2
+ · · ·

)
, (8)

2Our definition of the oscillator parameter differs from that of
Ref. [20] by a factor of

√
2.

where p cot δ0 is evaluated at p2/m = 3ω/2.3 The first excited
S-wave state is located at

E
(0)
1

ω
= 7

2
− 1

bp cot δ0

(
3√
2π

+ 3(6 log 2 − 5)

4πbp cot δ0

−3{3π2 − 4[11 + 9 log 2(3 log 2 − 5)]}
6
√

2π3/2 (bp cot δ0)2
+ · · ·

)
,

(9)

3To recover the results of Ref. [20], p cot δ0 is replaced by the ERE
evaluated at p2/m = 3ω/2,

p cot δ0 = − 1

a0
+ 3

2

r0

2
mω + · · · ,

and Eq. (8) is then rearranged in powers of b−1.
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where p cot δ0 is evaluated at p2/m = 7ω/2. The finite range
corrections to these expressions can be introduced by replacing
p cot δ0 → p cot δ0 + Aω2 + · · · for small ω, where the finite-
range corrections depend upon the interaction, and cannot be
determined from scattering parameters alone. It makes little
sense to continue the expansion in

√
mω/(p cot δ) to higher

orders due to the appearance of the range corrections.
The same expansion can be applied to the P waves, for

which the expansion is in terms of (mω)3/2/(p3 cot δ1) � 1.
The lowest-lying continuum state is located at

E
(1)
0

ω
= 5

2
−

3
√

2
π

b3p3 cot δ1
− 6(3 log 2 − 4)

π (b3p3 cot δ1)2
+ · · · , (10)

with p3 cot δ1 evaluated at p2/m = 5ω/2, the first excited state
is located at

E
(1)
1

ω
= 9

2
−

15√
2π

b3p3 cot δ1
− 15(30 log 2 − 31)

4π (b3p3 cot δ1)2
+ · · · , (11)

with p3 cot δ1 evaluated at p2/m = 9ω/2, and the second
excited state is located at

E
(1)
2

ω
= 13

2
−

105
4
√

2π

b3p3 cot δ1
− 105(410 log 2 − 389)

128π (b3p3 cot δ1)2
+ · · · ,

(12)

with p3 cot δ1 evaluated at p2/m = 13ω/2.
The limit of large scattering length, a/b � 1, and small

range, r/b � 1, the unitary limit, can also be considered. An
expansion in powers of p cot δ0/(mω)1/2 can be performed,
and the lowest-lying S-wave state is located [by expanding
about the poles in the denominator of Eq. (2)] at

E
(0)
0

ω
= 1

2
+

√
2

π

p cot δ0√
mω

+ · · · , (13)

where p cot δ0 is evaluated at p2/m = ω/2. This generalizes
the results of Ref. [36].

III. A TOY MODEL

For a harmonic potential with an arbitrary value of ω

one must rely on Eq. (2) to extract continuum phase shifts
and scattering parameters from the location of the energy
eigenvalues, while keeping in mind that finite-range effects
are present and will move the calculated phase shift away
from its true value. To test the utility of Eq. (2) in the presence
of a finite-range interaction and to develop a “feel” for the
size of the finite-range corrections, we use the toy example
of two particles interacting via a spherical well. To make this
system as “nuclearlike” as possible, the depth and width of
the well are tuned to reproduce gross features of the deuteron
system. In particular, with a well depth V0 = 48 MeV and
radius R0 = 1.7 fm, the single bound state has a binding energy
B0 = 2.22 MeV. The scattering phase shift for this potential is
known to be

δ0 = tan−1

(√
Elab

Elab + 2V0
tan[

√
R0µ(Elab + 2V0)]

)

−
√

ElabR
2
0V0µ, (14)

where µ is the reduced mass.
This system is placed within a harmonic potential and the

resulting two-body spectrum at various oscillator frequencies
is determined numerically. For each oscillator frequency, the
spectrum is used to extract the scattering phase shift by virtue
of Eq. (2). Because the spectrum is discretized, the extracted
phase shifts occur at discrete points. By varying the oscillator
frequency, the energies at which the phase shift is determined
vary, thereby allowing for the energy dependence of the phase
shift to be mapped out.

For modest-sized oscillator frequencies (ω < 4 MeV) the
extracted phase shifts agree well with the exact result given
in Eq. (14) (within 0.1%), as shown in Fig. 1, as the effects
of the harmonic potential are negligible within the range of
the spherical well. The situation changes, however, for large
oscillator frequencies, also shown in Fig. 1. In this case the
exact phase shifts and extracted phase shifts have appreciable
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FIG. 1. (Color online) Extracted phase shifts for the spherical-well toy model for oscillator frequencies from ω = 0.5 MeV to ω = 4.0 MeV
(a), and from ω = 8.0 MeV to ω = 64.0 MeV (b). For each oscillator frequency, the phase shift was determined from the lowest 11 energy
eigenvalues (excluding the bound state). The exact continuum phase shift, given by Eq. (14), is the solid black curve. Appreciable deviations
in the phase shift at larger oscillator frequencies are due to the finite range of the spherical well.
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FIG. 2. (Color online) The potential between two particles inter-
acting via a spherical well, VSW, confined by a harmonic potential,
VHO, for different oscillator frequencies. As the oscillator frequency
increases the distortion of the spherical well increases.

differences due to the finite range of the spherical well. Not
surprisingly, the confining nature of these potentials distorts
the interaction of the two particles within the spherical well,
which is demonstrated in Fig. 2. An interesting feature of these
finite-range effects is that for a given oscillator frequency, the
effects are largest at lower energy, and diminish as the energy
of the system increases.4

IV. REALISTIC NUCLEAR FORCES

It is important to determine how well this method works for
realistic NN interactions. There are a number of modern NN
potentials that could be used for this numerical comparison,
but for simplicity we work with the JISP16 potential [32–34].
This NN interaction is constructed so as to reproduce the
measured NN scattering phase shifts to high precision over
a wide range of energies, below Elab � 350 MeV, and is
known to provide a good description of p-shell nuclei [32,34]

4In the high-energy limit, in which the nucleon wavelength inside
the range of the nuclear interaction is small compared to the length
scale over which the potential varies significantly, the LO contribution
of the harmonic potential to the s-wave phase shift, calculated in the
WKB approximation, is

δω(E) − δω=0(E) = 1

2
√

2
µ3/2ω2

∫ ∞

0
dxx2

(
1√

E − VNN (x)
− 1√

E

)
,

(15)

where µ is the reduced mass of the two-nucleon system, and VNN (x) is
the (central) NN potential. In the case of a toy model of NN interactions
where a spherical well of depth V0 and radius R0 is used to describe
the NN potential (V0 and R0 are tuned to reproduce the scattering
length and effective range), the correction to the phase shift is

δω(E) − δω=0(E) → 1

4
√

2

(
µ

E

)3/2

ω2

∫ ∞

0
dx x2 VNN (x)

= 1

12
√

2

(
µ

E

)3/2

ω2 V0R
3
0 . (16)

without an additional 3N interaction. It was developed using
inverse-scattering techniques, followed by off-shell tuning
with phase-equivalent transformations to describe selected
light nuclear properties up to 16O. Using this interaction, the
spectrum of the two confined particles was found by diago-
nalizing the Hamiltonian in the relative harmonic-oscillator
(HO) basis space for each partial wave. The size of the
HO basis was increased until the spectrum converged to
a prescribed precision. In order to access the lower-energy
phase shifts, we decreased ω which consequently required an
increase in the size of the basis space to obtain convergence.
This limited the range of small ω that we investigated (ω �
0.4 MeV with a maximum basis dimension of 1800×1800).
In order to improve convergence with increasing basis-space
dimension, the choice of the HO frequency for the basis space
was adjusted independently of the frequency of the external
confining potential.

In Figs. 3–6 we show the application of Eq. (2) to four
different partial waves in the NN system: 1S0 (l = 0), 3P0

(l = 1), 3D2 (l = 2), and 1F3 (l = 3). The extracted phase
shifts were obtained from the low-lying spectrum of the NN

system in harmonic potentials with a range of frequencies
(the points in each figure). For comparison, the phase shifts
calculated by solving the Schrödinger equation in the absence
of the harmonic potential are shown as the solid curves in each
figure.

A. Numerical analysis

The harmonic potential modifies the interactions between
the two nucleons at all distance scales, and as such, there
are modifications to the potential between the nucleons over
the range of the nuclear forces, leading to short-distance
corrections to the relation between p cot δ and the energy
eigenvalues given by Eq. (2). The energy eigenvalues are
calculated in a given energy interval for a range of values of
ω in order to extrapolate the phase shift δω(Elab), to the ω = 0
limit, δω=0(Elab), and hence eliminate the modifications to the
nuclear force due to the harmonic potential. This procedure is
not as straightforward as it naively appears due to the fact that
for each value of ω, the energy eigenvalues (generally) have
different values, and an interpolation of δω(Elab) within the
energy interval is required for each ω in order to extrapolate to
δω=0(Elab) at any given energy.5 For the sake of demonstration,
we focus on the phase shift in the 1S0 channel, but the
methodology can be applied in all channels.

The energy eigenvalues of two nucleons interacting in the
1S0 in a harmonic potential were calculated for a range of
values of ω from ω = 0.4 MeV to ω = 15.0 MeV. For each
eigenvalue, the scattering phase shift δω(Elab) was calculated
using the zero-range relation in Eq. (2), the results of which
are shown in Fig. 3. The “exact” phase shift δω=0(Elab) that
is determined by solving the Schrödinger equation for the
phase shift in the absence of the external harmonic potential

5For a given energy, a range of values of ω could be iteratively tuned
to produce the same energy eigenvalue.
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FIG. 3. (Color online) The phase shift in the 1S0 channel, δω(Elab), evaluated at the energy eigenvalues determined for a range of values of
ω defining the external harmonic potential, using Eq. (2). The solid curve corresponds to the phase shift, δω=0(Elab), determined by a direct
evaluation in free space. The right panel is a magnification of the left panel.

is shown in Fig. 3 as the solid curve. For ω � 1.0 MeV,
and for the energy eigenvalues shown in Table I, the phase
shift calculated from the zero-range relation in Eq. (2) is
very close to the actual phase shift. For larger values of
ω there are noticeable deviations from the exact result, but
these deviations are found to become smaller as the energy
increases.

The energy-dependent interpolation of the phase shift for
a given ω that is required in order to extrapolate δω(Elab)
to δω=0(Elab) is the most problematic part of this numerical
analysis. In the range of energies for which the ERE is formally
convergent (|p| � mπ/2 resulting from the location of the t
channel cut in the one-pion exchange amplitude) an expansion
of p cot δ in powers of the energy reproduces the scattering
amplitude. In contrast, for energies outside of this range but
below the inelastic threshold [for which the relation between
p cot δ and the energy eigenvalues in the harmonic potential in
Eq. (2) remains valid] such a power series does not describe the
amplitude. As such, without directly solving for the amplitude,
one does not know the form to use for the interpolation in
relative energy E beyond |p| = mπ/2. We do not attempt to
resolve this issue, and restrict ourselves to the energy range

for which the ERE formally converges.6 Figure 7 shows the
extracted values of p cot δ as a function of relative energy E for
ω � 1 MeV. For each ω � 1 MeV a fourth-order polynomial
in E is fit to the values of p cot δ shown in Fig. 7 (the order
was chosen to minimize the χ2/DOF of the fit and to achieve
a stable fit under the change of order7). With the interpolating
functions, it is then possible to choose a particular value of E

and extrapolate p cot δω(E) to p cot δω=0(E), from which the
phase shift δω=0(E) can be recovered. The ω extrapolations at
E = 1 MeV and E = 5 MeV are shown in Fig. 8. A fit function
of the form p cot δω = A + B ω2 is used to extrapolate to
ω = 0, as also shown in Fig. 8. The small observed scatter
of the points about the best fit function is attributed to the
form of the interpolation in E (and the increasing separation
between energy eigenvalues with increasing ω), and not the
finite model space as the energy eigenvalues have converged

6Within this range, this part of our analysis is formally equivalent
to the pionless EFT description given in Refs. [19,35].

7A full systematic study of uncertainties would include the variation
of the fit with the polynomial order.
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FIG. 4. (Color online) The phase shift in the 3P0 channel, δω(Elab), evaluated at the energy eigenvalues determined for a range of values
of ω defining the external harmonic potential, using Eq. (2). The solid curve corresponds to the phase shift, δω=0(Elab), determined by a direct
evaluation in free space. The right panel is a magnification of the left panel.
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FIG. 5. (Color online) The phase shift in the 3D2 channel, δω(Elab), evaluated using Eq. (2) at the energy eigenvalues determined for a
range of values of ω defining the external harmonic potential. The solid curve corresponds to the phase shift, δω=0(Elab), determined by a direct
evaluation in free space. The right panel is a magnification of the left panel.
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FIG. 6. (Color online) The phase shift in the 1F3 channel, δω(Elab), evaluated using Eq. (2) at the energy eigenvalues determined for a range
of values of ω that define the external harmonic potential. The solid curve corresponds to the phase shift, δω=0(Elab), determined by a direct
evaluation in free space. In (a) this solid curve is obscured by the points calculated using Eq. (2). The right panel is a magnification of the left
panel.

TABLE I. The lowest eight energy eigenvalues in the center-of-mass frame and their associated phase shifts found from Eq. (2) in the
1S0 channel for ω � 1 MeV.

ω = 0.4 MeV ω = 0.5 MeV ω = 0.6 MeV ω = 0.8 MeV ω = 0.9 MeV ω = 1.0 MeV

E1 0.666 42 0.816 18 0.964 88 1.2610 1.408 98 1.557 11
δω(E1) 58.5279 60.0449 61.1382 62.5816 63.0684 63.4511
E2 2.227 32 2.781 98 3.338 93 4.4597 5.023 44 5.589 33
δω(E2) 64.2586 64.454 11 64.4124 63.9721 63.6576 63.3088
E3 3.828 36 4.7907 5.756 72 7.699 14 8.675 18 9.654 24
δω(E3) 64.2495 63.7768 63.1847 61.8606 61.1775 60.4948
E4 5.4363 6.805 48 8.179 32 10.9398 12.326 13.7158
δω(E4) 63.3856 62.4755 61.5194 59.6034 58.6685 57.754
E5 7.045 98 8.821 26 10.602 14.1783 15.9733 17.7726
δω(E5) 62.3082 61.0673 59.832 57.4512 56.3152 55.214
E6 8.656 04 10.8369 13.0238 17.4144 19.6173 21.825
δω(E6) 61.1822 59.6694 58.2013 55.4272 54.1198 52.8615
E7 10.266 12.852 15.4446 20.6482 23.2584 25.8736
δω(E7) 60.0611 58.3139 56.6418 53.5231 52.0696 50.6769
E8 11.8758 14.8665 17.8645 23.8802 26.897 29.9188
δω(E8) 58.9638 57.0076 55.1527 51.7288 50.1421 48.6454
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FIG. 7. (Color online) p cot δ as a function of the energy in the
center-of-mass frame in the 1S0 channel extracted from the energy
eigenvalues of the two-nucleon system in harmonic potentials for a
range of oscillator frequencies ω.

to six significant digits which we establish by increasing NMS

sufficiently. An important point to note is that the results of
the calculations at the smallest few values of ω are all within
∼0.1% of the extrapolated values. Therefore, to determine the
phase shift at this level of precision, no extrapolation in ω2

is required. The extrapolated phase shift δω=0(Elab) in the 1S0

channel is shown in Fig. 9, and is found to agree with the exact
phase shift (the solid curve) within the uncertainties of the
calculation. The points with uncertainties correspond to the
phase shift derived from the energy eigenvalues extrapolated
to ω = 0 evaluated at regular intervals in E. Uncertainties in
the extrapolated phase shifts, which are at the ∼10−4 level,
can, in principle, be reduced further by calculating at even
smaller values of ω.

We have numerically explored some of the higher partial
waves. The methodology in the higher partial waves is the same
as in the 1S0 channel. The harmonic potential modifications to
the nuclear force are seen to increase with increasing partial
waves. This behavior is expected due to the fact that the
centripetal barrier, and the associated rl behavior of the wave
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FIG. 9. (Color online) The ω-extrapolated phase shift δω=0(Elab)
as a function of Elab in the 1S0 channel. The points and their
uncertainty are determined, at uniform intervals in Elab, by the
interpolations and extrapolations described in the text. The solid curve
corresponds to the “exact” phase shift. The inset is a magnification
around Elab = 7 MeV that shows the precision of the calculation.

function near the origin, forces the wave function to larger
values of r (but within the range of the nuclear force) and
hence to larger values of the harmonic potential. Calculations
at smaller values of ω than employed for the S wave case
are required in order to achieve the same level of precision,
consistent with the conclusions of Ref. [38]. The extracted
values of the phase shift in the 3P0, 3D2, and 1F3 channels
extrapolated to ω = 0 are shown in Fig. 10. In all channels,
the extrapolated phase shifts are found to agree with the exact
phase shift within the uncertainties of the calculation.

Determining the energy levels of two nucleons in a
harmonic potential involves calculating the matrix elements
of the full Hamiltonian, including the harmonic potential,
in a large model space, with a cutoff on relative excitation
energies denoted by ωNMS. In the limit that NMS → ∞ the
energy eigenvalues found by diagonalizing the NMS × NMS

Hamiltonian will coincide with the exact energy eigenvalues.
For a finite-dimensional space, the energy eigenvalues deviate
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FIG. 8. (Color online) The extrapolation of p cot δω(E) to p cot δω=0(E) in the 1S0 channel at E = 1 MeV (a) and E = 5 MeV (b). The
solid lines correspond to the best fits of the form p cot δω = A + B ω2, and the dashed lines correspond to the 99% confidence intervals. The
red points with their associated 1σ uncertainties correspond to δω=0(E).
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FIG. 10. (Color online) The ω-extrapolated phase shift δω=0(Elab) as a function of Elab in the 3P0 channel (a), the 3D2 channel (b), and the
1F3 channel (c). The insets are a magnification around Elab = 7 MeV that shows the precision of the calculations.

from their infinite model-space values as shown, for instance,
in Fig. 11, making the quantification of the convergence of
eigenvalues with respect to NMS highly nontrivial. We do
not attempt to resolve this issue here, and all of the energy
eigenvalues we have used in this work have converged to at
least six significant digits.
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FIG. 11. (Color online) The 20th energy eigenvalue in the center-
of-mass frame for the 1S0 channel with ω = 0.4 MeV as a function
of the inverse cutoff of the model space, 1/NMS.

In this work we have only analyzed uncoupled channels
for simplicity. In general, due to the spin of the nucleon, and
the fact that two nucleons can have S = 1, many two-nucleon
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FIG. 12. (Color online) The deuteron binding energy as a function
of ω2. The solid line corresponds to the best fit of the form E0 =
E

(ω=0)
0 + C ω2 + D ω4 + F ω6, and the dashed lines (practically

indistinguishable from the solid line) denote the 68% confidence
interval. The red point corresponds to the ground-state energy
obtained by extrapolating to ω = 0. The uncertainty is within the
size of the red point.
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FIG. 13. (Color online) The extracted 1S0 (a) and 3P0 (b) scattering lengths and effective ranges for different harmonic potentials. The exact
values are denoted by the black points. The ellipses in (a) denote the 68% confidence intervals and were determined by fitting the ERE to the
interpolated phase shift at a given value of ω. The parameters in (b) were determined by fitting the three lowest states of the spectrum to the
perturbative expressions of Sec. II B.

states with total angular momentum J are a linear combination
of two orbital angular-momentum states, such as the 3S1-3D1

coupled channel which contains the deuteron. The zero-range
relation between the energy eigenvalues in the harmonic
potential and the scattering phase shift, given in Eq. (2), will
be modified to be a relation involving the three scattering
parameters that describe a two-component coupled-channels
system, e.g., δ0, δ2, and ε1, and not just a simple relation
between one phase shift and the energy eigenvalues. Such
relations remain to be constructed for two nucleons in a
harmonic potential. As the 3S1-3D1 coupled channels system
contains the deuteron as a bound state, we can explore the
behavior of the lowest-energy eigenvalue as a function of ω.
The perturbative corrections to the location of such bound
states due to the presence of the harmonic potential are given
in Eq. (4), where the LO deviations scale as ∼ω2. The binding
energies are found to be E0 = −2.2209, −2.2163, −2.2098,
and −2.2017 MeV in harmonic potentials with ω = 0.2, 0.3,
0.4, and 0.5 MeV, respectively. The extrapolation of these
values to ω = 0 is shown in Fig. 12. The results are fit well by a
polynomial of the form E0 = E

(ω=0)
0 + C ω2 + D ω4 + F ω6,

where C,D,F, and E
(ω=0)
0 are fit variables for the range of ω

for which the calculations have been performed. The deuteron
binding energy extracted from the extrapolation to ω = 0 is
E

(ω=0)
0 = −2.224 66(4) MeV (which is to be compared with

the input value of −B0 = −2.224 575 MeV). The coefficient
of the ω2 term is Cfit = 0.0939(4), which is consistent with the
value expected in the zero-range limit of CZR = 0.0944 from
Eq. (6). One expects both the LO short-range contributions
from ω 
= 0 and the small D-state admixture due to the tensor
force to also depend upon ω2, and to modify the value of
C away from CZR, but it is clear from this work that such
deviations are small.

By looking at different energy eigenvalues, the effective
range parameters can be extracted through the relation

p2l+1 cotδl(p) = −1/al + 1/2 rlp
2 + · · ·

= −1/al + 1/2 rlmE + · · · , (17)

where E is any relative energy eigenvalue which is low
enough to ensure convergence of the ERE. For example,
the low-energy spectrum of the confined 1S0 system can be
used to extract the scattering length and effective range using
Eq. (2). We show these extracted parameters at the 1σ level in
Fig. 13. These extracted parameters vary with ω2 in a way that
is consistent with expectations and converge to the exact result.
For a system with ERE parameters that are of natural size, the
perturbative expressions from Sec. II B can also be used to
extract these parameters. In Fig. 13 the extracted scattering
volume, a1, and effective momentum, r1, in the 3P0 channel,
determined through the perturbative expressions, are shown.
The behavior as ω2 → 0 is consistent with the exact result.

V. CONCLUSION

The NN phase shift below the inelastic threshold can be
determined from the eigenvalue spectrum of two interacting
nucleons confined to move in a harmonic-oscillator potential.
The conventional discussions of scattering from a potential that
falls faster than 1/r , and the connection between the scattering
amplitude and the location of poles in the complex energy
plane corresponding to bound states is complicated by the
fact that the harmonic potential is confining and asymptotic
scattering states cannot be defined for any nonzero value
of the harmonic-oscillator frequency, ω. As a result, the
zero-range relation between the scattering phase shift and
the energy eigenvalues is modified by the nonzero value of the
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harmonic potential within the range of the nuclear interaction,
giving rise to finite-range corrections. These corrections are
not present when dealing with a pionless EFT description
of two nucleons confined within a harmonic trap (when the
cutoff is taken to infinity). However, any pionful theory of
the nuclear interaction that describes nuclear processes above
the t-channel cut will have to address these finite-range issues.

We have studied these aspects numerically for two nucleons
confined by a harmonic potential. The nuclear interaction was
modeled by the JISP16 potential, but our results are general and
can be applied to other phenomenological or chiral effective
field theory interactions. We have explored uncoupled chan-
nels and found that for small values of ω, the low-energy phase
shift can be extracted from the energy eigenvalues through an
extrapolation to ω = 0. At the level of precision to which
we have performed the calculations, the energy eigenvalues
combined with the zero-range relation supplemented by an
extrapolation to ω = 0 allow for the determination of the
low-energy NN elastic-scattering phase shifts. Further, such
calculations enable a precise determination of the deuteron
binding energy.

Since the methods we present here are clearly nonperturba-
tive and include all antisymmetrization effects, an interesting
application of Eq. (2) would be to the elastic scattering of two
nuclear systems, with one or both composed of more than one
nucleon, below inelastic and rearrangement thresholds [18].
The processes we have in mind are nd, nt , and nα scattering.
Calculations of three-, four-, and five-nucleon systems can be
performed within harmonic potentials with small ω (to access
low-energy phase shifts and minimize finite-range effects),
and an application of Eq. (2), modified by the reduced mass and
an appropriate subtraction for the center-of-mass energy, and
extrapolation to ω = 0 would give the scattering phase shift
at low energies. This method contrasts with those currently

in use, such as Faddeev [40], Faddeev-Yakubovsky [41],
AGS [42], hyperspherical harmonics [43,44], NCSM/RGM
[45], GFMC [46], and J-matrix methods [47]. There remain
technical challenges to obtaining sufficient convergence with
increasing NMS and/or to extending the corrections for finite
ω to higher-order terms. A possible strategy to alleviate such
issues is through the use of HO-based EFT methods [13,20].
Work in this direction is under way.
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