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Splitting of the one-body potential in spin-polarized isospin-symmetric nuclear matter
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Spin-polarized symmetric nuclear matter is studied within the Dirac-Brueckner-Hartree-Fock approach. We
pay particular attention to the difference between the one-body potentials of upward and downward polarized
nucleons. This is formally analogous to the Lane potential for isospin-asymmetric nuclear matter. We point out
the necessity for additional information on this fundamentally important quantity and suggest ways to constrain it.
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Introduction. To describe the properties of spin-symmetric
and isospin-symmetric nuclear matter still presents consider-
able intellectual challenges. For instance, the physical pictures
of the underlying one-particle fields are very different in
relativistic and nonrelativistic approaches. In relativistic mod-
els, saturation mechanisms are introduced through negative
energy Dirac states, whereas nonrelativistic approaches must
be implemented with three-body forces (TBF) to correctly
describe saturation properties. Although the relation between
the two philosophies seems to be understood in terms of TBF
of the Z-diagram type, saturation details can be quite different
in the two frameworks.

When other aspects are considered, such as spin-polarized
and/or isospin-polarized states of nuclear matter, conclusions
become even more model dependent, and available constraints
are very limited. The magnetic properties of neutron/nuclear
matter have been studied extensively with a variety of
theoretical methods [1–28]. We also note the study reported
in Ref. [29], where the possibility of phase transitions into
spin-ordered states of symmetric nuclear matter was explored
based on the Gogny interaction [30] and the Fermi liquid
formalism. There, the appearance of an antiferromagnetic state
(with opposite spins for neutrons and protons) was predicted,
whereas the transition to a ferromagnetic state was not
observed. This seems to be in contrast with predictions based
on the Skyrme interaction [31], which favor the ferromagnetic
spin ordering. On the other hand, it was later shown [32]
that the state with oppositely directed spins for neutrons
and protons can also be realized with the SLy4 Skyrme
interaction. Furthermore, with the SkI3 Skyrme interaction,
a phase transition from the state with antiparallel spins of
neutrons and protons to the state with parallel spins is predicted
in isospin-asymmetric matter at some critical density [32].

In a previous calculation [33], we have investigated spin-
polarized pure neutron matter (NM). Lately, such a system has
gathered much attention in relation to the issue of possible
ferromagnetic instabilities. Also, the possibility of strong
magnetic fields in the interior of neutron stars makes the study
of polarized NM important and timely.

Although these are very exciting issues, there are other
motivations for studies of polarized matter. Here, for instance,
we will focus on the spin degrees of freedom of symmetric
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nuclear matter (SNM), by having a terrestrial scenario as a
possible laboratory in mind. We will pay particular attention
to the spin-dependent symmetry potential, namely, the gradient
between the single-nucleon potentials for upward and down-
ward polarized nucleons. The interest around this quantity
arises because of its natural interpretation as a spin-dependent
nuclear optical potential, defined in perfect formal analogy
with the Lane potential [34] for the isospin degree of freedom
in isospin-asymmetric nuclear matter (IANM).

With concern for optical potential analyses, to the best of
our knowledge, spin degrees of freedom have not been given
much attention, possibly because of the increased difficulties in
obtaining empirical constraints as compared to the unpolarized
system. Another way to access information related to the spin
dependence of the nuclear interaction in nuclear matter is
the study of collective modes such as spin giant resonances.
However, those are not easily observed with sufficient strength
[28,35].

What makes the issue of spin dependence particularly
interesting is that spin degrees of freedom and relativity
are inherently tied to each other. Thus, comparison between
relativistic and nonrelativistic predictions should be insightful.

This paper is organized as follows: after reviewing the main
aspects of the formalism, we demonstrate the splitting of the
one-body potential in spin-asymmetric matter and discuss its
significance. Lastly we summarize our conclusions.

Formalism. Our calculation is microscopic and treats the
nucleons relativistically. Within the Dirac-Brueckner-Hartree-
Fock (DBHF) method, the interactions of the nucleons with
the nuclear medium are expressed as self-energy correc-
tions to the nucleon propagator. That is, the nucleons are
regarded as dressed quasiparticles. Relativistic effects lead
to an intrinsically density-dependent interaction, which is
consistent with the contribution from TBF typically employed
in nonrelativistic approaches. The advantage of the DBHF
approximation is the absence of phenomenological TBF to be
extrapolated at higher densities from their values determined
through observables at normal density.

The starting point of any microscopic calculation of nuclear
structure or reactions is a realistic free-space nucleon-nucleon
interaction. A realistic and quantitative model for the nuclear
force with reasonable foundations in theory is the one-boson-
exchange model [36]. Our standard framework consists of the
Bonn B potential together with the DBHF approach to nuclear
matter. A detailed description of our application of the DBHF
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method to nuclear matter, NM, and asymmetric matter can be
found in a recent review of our work [37].

Similar to what we have performed to describe isospin
asymmetries of nuclear matter, the single-particle potential
is the solution of a set of coupled equations,

Uu = Uud + Uuu, (1)

Ud = Udu + Udd (2)

to be solved self-consistently along with the two-nucleon G

matrix.
In the preceding equations, u and d refer to spin-up

and spin-down polarizations, respectively, and each Uσσ ′

term contains the appropriate (spin-dependent) part of the
interaction, Gσσ ′ . More specifically,

Uσ ( �p) =
∑

σ ′=u,d

∑
q�kσ ′

F

〈σ, σ ′|G( �p, �q)|σ, σ ′〉, (3)

where the second summation indicates integration over the
Fermi sea of spin-up (or spin-down) nucleons, and
〈σ, σ ′|G( �p, �q)|σ, σ ′〉

=
∑

L,L′,S,J,M,ML

〈
1

2
σ ;

1

2
σ ′|S(σ + σ ′)

〉 〈
1

2
σ ;

1

2
σ ′|S(σ + σ ′)

〉

×〈LML; S(σ + σ ′)|JM〉〈L′ML; S(σ + σ ′)|JM〉
× iL

′−LY ∗
L′,ML

(k̂rel)YL,ML
(k̂rel)〈LSJ |G(krel,Kc.m.)|L′SJ 〉.

(4)

The notation 〈j1m1; j2m2|j3m3〉 is used for the Clebsch-
Gordan coefficients. Clearly, the need to separate the inter-
action by spin components brings along angular dependence,
with the result that the single-particle potential also depends
on the direction of the momentum. Notice that to solve the
G-matrix equation requires knowledge of the single-particle
potential, which, in turn, requires knowledge of the interaction.
Hence, Eqs. (1) and (2) together with the G-matrix equation
constitute a self-consistency problem, which is handled,
technically, exactly the same way as previously performed
for the case of isospin asymmetry [37,38]. The Pauli operator
for scattering of two particles with unequal Fermi momenta,
contained in the kernel of the G-matrix equation, is also defined
in perfect analogy with the isospin-asymmetric one [38],

Qσσ ′
(
p, q, kσ

F , kσ ′
F

) =
{

1, if p > kσ
F and q > kσ ′

F ,

0, otherwise.
(5)

The Pauli operator is then expressed in terms of relative and
center-of-mass coordinates krel and Kc.m. and angle averaged
in the usual way.

The Splitting of the One-Body Potential in Spin-Polarized
Nuclear Matter. Figure 1 displays the average potential energy
of nucleons 〈Uu/d〉, in polarized SNM as a function of the
degree of spin asymmetry, described by the spin-asymmetry
parameter α = ρu−ρd

ρu+ρd
(α > 0, by allowing the spin-up species

to increase in density). The average Fermi momentum is

related to the total density in the usual way ρ = 2k3
F

3π2 . The
splitting becomes more pronounced with increasing density;
compare the left and right panels in the figure.

As mentioned earlier, these potentials become direction
dependent in the presence of spin asymmetry, although we
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FIG. 1. (Color online) The spin splitting of the average potential
energy in polarized nuclear matter as a function of the spin-asymmetry
parameter. The average is taken over three-dimensional momenta.
The (average) Fermi momentum is equal to 1.4 fm−1 (left frame) and
1.6 fm−1 (right frame).

found such dependence (on the polar angle θ ) to be very mild.
In Fig. 1, the potentials are averaged with respect to both
magnitude and direction of the momenta.

From the approximate linear relation apparent in Fig. 1, one
can write

〈Uu/d (ρ, α)〉 ≈ 〈U (ρ)〉0 ± 〈
US

sym(ρ)
〉
α, (6)

where 〈Usym〉 plays the role of an (average) spin-symmetry
potential:

〈Usym〉 = (〈Uu〉 − 〈Ud〉)/2α. (7)

For a more direct connection with an actual physical experi-
ment, one would write (by suppressing, for simplicity, ρ and
α dependences),

Uu/d = U0 + Uσ

�s · ��
A

, (8)

where �s and �� are the projectile spin and the expectation
value of the target spin operator, respectively, and A is the
mass number of the target. (The momentum dependence may
or may not be taken into account, depending on the particular
analysis.) Because

�s · ��
A

= 1

A

1

2
σz

(
1

2
Nu − 1

2
Nd

)
, (9)

and (Nu − Nd )/A is easily identified as the parameter α in
the neutron-rich nucleus, one can establish an obvious relation
between Uσ of Eq. (8) and US

sym defined as in Eq. (6) (without
average if the momentum dependence is being analyzed).
In practice, a spin-unsaturated nucleus will also have a net
isospin, which means that Uσ , Uτ , and Uστ would all have to
be considered. Comparison with some older analyses, (mostly
based on proton scattering on 27Al and 59Co and neutron
scattering on 59Co), was performed in Refs. [39,40].

Next, we display the momentum dependence of Uu(k) and
Ud (k) at some fixed values of α and for fixed density, see Fig. 2.
The polar angle is also kept fixed (at the value of θ = 0)
in view of the mild angular dependence mentioned earlier.
Again, we see how the spin-up and the spin-down potentials
become more repulsive and more attractive, respectively. It is
interesting to analyze the reasons for this behavior, as it sheds
light on the similarity between spin and isospin asymmetries.
First, let us assume, for the sake of simplification, that ku

F
is much larger than kd

F so that Uu and Ud get the largest
contributions from the Uuu and the Udu terms, respectively
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FIG. 2. (Color online) The momentum dependence of the single-
nucleon potential with spin up (highest curve) and spin down (lowest
curve) in spin-asymmetric matter with α = 0.6. The middle curve
displays the potential in spin-saturated matter. The Fermi momentum
is equal to 1.1 fm−1 in the left frame and 1.4 fm−1 in the right frame.

(which have the same larger integration limit ku
F ). Thus,

Uu − Ud ≈ Uuu − Udu. The Uuu term receives contribution
only from the S = 1, MS = σ + σ ′ = +1 matrix elements.
By moving on to the Udu term, it receives contributions, with
equal weights, from S = 0, MS = 0 and from S = 1, MS = 0
matrix elements. When all of the appropriate weighting factors
are taken into account, the interaction among nucleons with
like-spin projections turns out to be more repulsive than the
one among nucleons with opposite-spin components. Thus, the
scenario becomes analogous to the case of isospin-asymmetric
nuclear matter, where the interaction among like nucleons
(with total isospin equal to 1), is more repulsive than the one
among neutrons and protons. (It may be useful to mention that
all arguments would remain invariant upon exchange of u and
d labels. The physical source of the splitting we observe is in
the different nature of the nuclear force between nucleons with
parallel or antiparallel spins.)

The spin-symmetry potential US
sym = (Uu − Ud )/(2α) is

displayed in Fig. 3 as a function of the momentum. It is
remarkably similar, both qualitatively and quantitatively, to
the symmetry potential for IANM [37] shown on the right-
hand side of the figure UI

sym = (Un − Up)/(2α). We notice
the rise of the potential (around the Fermi momentum), a
structure also found in the DBHF calculation of Ref. [41],
which uses the Bonn A nucleon-nucleon potential [36]. It is
interesting to observe, from Fig. 8 of Ref. [41], that none of
the phenomenological models shows an enhancement. Instead,
all predictions based on phenomenological potentials decrease
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FIG. 3. Left frame: the spin symmetry potential as a function of
the momentum. The Fermi momentum is equal to 1.4 fm−1. The polar
angle θ is taken to be equal to zero. The frame on the right shows the
symmetry potential in isospin-asymmetric (unpolarized) matter at the
same density [37]. The shaded area inside the right panel represents
empirical constraints from Ref. [34].

(or increase) monotonically. The BHF calculation of Ref. [42],
based on the Argonne potential and also shown in Fig. 8 of
Ref. [41], is flat at first and then starts to drop with energy.
Thus, the enhancement seems to be characteristic of the
momentum structure of meson-theoretic potentials. We also
point out that the difference between the spin-up and spin-down
potentials is very sensitive to the details of the momentum
dependence of the individual potentials. In fact, the seemingly
large peak originates from rather small slope variations of the
single-particle potentials relative to each other.

With concern for the symmetry potential for IANM, it
has been shown that, by starting from a phenomenological
formalism for the single-nucleon potential, it is possible to
predict opposite tendencies for the energy dependence of the
symmetry potential (while still maintaining nearly the same
value of the symmetry energy [43–45]), which results in very
different predictions of some heavy-ion (HI) observables. In
the case of IANM, the difference in the potentials felt by neu-
trons and protons is effective in separating the neutron-proton
dynamics. Observables such as isospin transport/diffusion
have been identified as sensitive to the isospin asymmetry of
the collision. A similar scenario can be visualized for polarized
matter, and a similar model dependence can be expected with
regard to US

sym. However, the bulk of nuclear matter, which
results from the HI collision is, on the average, spin saturated,
unless, of course, polarized HI beams are available. To the
best of our knowledge, polarized secondary beams can be
obtained from projectile fragmentation, as first proposed by
Kubo et al. [46], and are part of RIKEN plans.

Finally, we notice that the approximately linear dependence
(vs α) manifest from Fig. 1, along with a similar behavior of
the kinetic energy, implies the well-known parabolic form for
the EoS:

〈e(ρ, α)〉 ≈ 〈e0(ρ)〉 + 〈
eS

sym(ρ)
〉
α2 . (10)

This is demonstrated in Fig. 4, where the energy-particle
(averaged over spin-up and spin-down nucleons) is compared
with the parabolic approximation.

Before closing, we again stress the importance of more
and better empirical constraints to gain insight into the spin-
dependent part of the nucleon-nucleus optical potential and,
thus, the spin-dependent nuclear effective interaction. Valuable
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FIG. 4. (Color online) The energy/particle in polarized SNM at
three fixed densities as a function of the spin-asymmetry parameter.
The solid, dashed, and dotted lines are the parabolic approximation
Eq. (10) to the calculated values shown by the squares, solid circles,
and open circles, respectively. The various densities are in units of
fm−3 and correspond to values of the average Fermi momentum equal
to 1.1 (dotted line), 1.4 (dashed line), and 1.6 (solid line) fm−1.
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information can also come from HI collisions, provided
polarized heavy targets are available.

Within the Landau theory of a Fermi liquid, the effective
quasiparticle interaction is represented in terms of functions
associated with the various spin and isospin operators. The
Landau parameters are the lowest-order terms in the Legendre
polynomial expansions of those functions. In particular, the
strength of the interaction associated with the σ1 · σ2 operator
is represented, to lowest order, by the g0 Migdal-Landau pa-
rameter, which drives nuclear matter instabilities against spin
fluctuations. Thus, stringent constraints on the latter, which
includes its density dependence, would provide much-needed
insight into spin-spin correlations and the possibility for such
instabilities. Because the expectation value of the σ1 · σ2

operator is equal to −3 in the singlet states and +1 in the triplet
states, values of g0, which decrease with increasing density,
would signify that the spin-spin force turns less attractive in
the singlet configuration and less repulsive in the triplet one.
Thus, there may come a point (in terms of density) when the
state with aligned spins is energetically more favorable than
the unpolarized one, which results in spin instability.

Conclusions. We continue our broad analysis of various
phases of nuclear matter. Here, we specifically address the
splitting of the single-nucleon potential in spin-polarized,
but isospin-symmetric nuclear matter. The behavior of the
predictions is perfectly parallel to the one encountered in
IANM. We point out that additional constraints are crucial for
a better understanding of the polarizability of nuclear matter.
Spin-unsaturated and isospin-unsaturated phases of nuclear
matter are also interesting systems, which we plan to study,
although computationally more involved.

As usual, we adopt the microscopic approach for our
nuclear matter calculations. With concern for our many-body
method, we find DBHF to be a good starting point to
look beyond the normal states of nuclear matter, which it
successfully describes. The main strength of this method
is its inherent ability to effectively incorporate crucial TBF
contributions through relativistic effects (see Ref. [37] and
references therein).
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