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Medium effects on the surface tension of strangelets in the extended quasiparticle model
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We propose a modification of the finite size effects due to the effective bag function in the extended quark
quasiparticle model with a running coupling constant. The bag function is associated with the quark chemical
potential and the radius of strangelets. Considering the medium effects, the surface tension should be redefined
with an additional term described by the surface term of the bag function. With the increasing baryon number of
stable strangelets, it is found that the coupling strength becomes stronger while the surface tension decreases in
the vicinity of 35 MeV fm−2 for strangelets of the baryon number greater than 103. The comparison with the bag
model is shown and the distinction for smaller strangelets is very clear.

DOI: 10.1103/PhysRevC.82.025809 PACS number(s): 12.38.Mh, 21.65.Qr, 24.85.+p, 25.75.−q

I. INTRODUCTION

Strange quark matter (SQM) is postulated to be the true
ground state of quantum chromodynamics (QCD) with a new
strangeness freedom. It is argued by Witten that the strange
quark phase could have survived the early Universe [1]. Sub-
sequently, the new matter form was searched for in QCD phase
transitions of relativistic heavy ion collision experiments and
also probed in compact objects, that is, strange stars or hybrid
stars. At extremely high densities, the three flavors of u, d, and
s quarks can be treated on an equal footing and consequently
form the so-called color-flavor-locked phase [2,3]. In contrast,
there was a proposal that the strange matter could not have
survived the early Universe because it could boil and form
bubbles of hadronic gas [4].

Up to now, lattice QCD is incapable of getting significant
results for the case of finite chemical potential. Thus we
have to search for effective models for QCD. There are many
phenomenal models used in investigating SQM or strangelets,
lumps of SQM. One is the famous MIT bag model. Calcu-
lations based on the bag model have shown many aspects of
SQM and strangelets [5]. The bag constant is often introduced
phenomenologically with the expectation that it simulates
nonperturbative corrections. Many different values have been
taken for it. It has been usually assumed to be temperature or
density dependent. For example, a Gaussian parametrization
for the density dependence is adopted in Ref. [6].

It is also possible that the quark mass, pion mass, and
so on, change with temperature and density. These quan-
tities are essentially due to medium effects. The effective
mass produced has been extensively discussed, for example,
within the Nambu-Jona-Lasinio (NJL) model [7] and within
a quasiparticle model [8]. A chiral phase transition and
dynamical symmetry breaking are demonstrated in the NJL
model. Quark matter deconfinement properties have been
successfully investigated using the density-dependent bag
constant in the quasiparticle model. In the literature, some
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people have constructed the quasiparticle model in terms
of the temperature- and density-dependent bag constant and
made progress in studying the nonperturbative QCD model
at zero or small density. Most importantly in this paper, the
quasiparticle model with running coupling constant is used to
investigate the medium effect of SQM at moderate densities.
Calculation programs with phenomenological models should
be well guided by the spirit of QCD. Recently, we followed
the original idea [8] and demonstrated the derivation of
a chemical- potential-dependent bag function and extended
it to the study of finite-size strangelets [9]. Furthermore,
the thermodynamic treatment was improved based on the
chemical-potential-dependent running coupling constant used
to study the finite-size effects.

It is well known that the surface tension is a fundamental
parameter for the finite-size effects and the nucleation phase
transition [10]. Berger discussed the surface tension based on
a modification to the density of states [11] and concluded
that the maximum value of the surface tension (105 MeV)3 is
insufficient to save the SQM. Huang et al. reported a calcula-
tion of the surface tension in quenched QCD on lattices [10].
Recently, Alford et al. gave a critical value of surface tension
below which larger strangelets are unstable and the quark
star surface will fragment into a crystalline crust of charged
strangelets [12]. In our new version of the quark quasiparticle
model [9], the confinement mechanism is described by a bag
function of the strangelets’ radius and chemical potential. It
is different from the conventional bag constant, so the surface
tension should be modified accordingly. In this paper, we shed
new light on the finite-size effect by modification of the radius-
and chemical-potential-dependent bag function. We develop a
new formula to calculate the surface tension.

This paper is organized as follow. In the next section,
we briefly give the thermodynamic treatment in the extended
quasiparticle model at zero temperature based on the running
coupling constant. The effective masses of quarks and the
energy of strangelets are calculated. Then we present the
finite-size effects of strangelets and calculate the coupling
constant, the surface energy per baryon, and the surface tension
versus the baryon number. The last section is a short summary.
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II. THE EXTENDED QUASIPARTICLE MODEL

The main purpose of this paper is to study the properties
of quark masses in the deconfined SQM. For the three flavors
of quarks, nonzero current quark masses are applied and the
exact chiral symmetry is broken. In addition to the current
mass, the effective quasiparticle mass should be introduced to
include the interaction effect in the quasiparticle approach. For
the medium dependence of the quark quasiparticle model, the
effective quark mass m∗

i is derived at the zero-momentum limit
of the dispersion relation following from the effective quark
propagator by resumming one-loop self-energy diagrams in the
hard dense loop approximation [8]. The in-medium effective
mass of quarks can thus be expressed as [8,13,14]

m∗
i = mi

2
+

√
m2

i

4
+ g2µ2

i

6π2
(i = u, d, s), (1)

where mi is the current mass of corresponding quarks. In
the present paper we take mu0 = 5 MeV, md0 = 10 MeV,
and ms0 = 120 MeV for up, down, and strange quarks,
respectively. In fact, the quasiparticle idea can be followed
back to the work by Fowler et al. [15] showing that the
particle mass may change with the environment parameters.
Following the original ideas, the quark mass density-dependent
model was studied by Chakrabarty et al. [16]. Accordingly, as
a phenomenological method, our quasiparticle model uses a
similar treatment. They are apparently different in approach
but equally satisfactory in result. The in-medium screening
mass in Eq. (1) is merely a model assumption on the quasi-
particle mass in the present treatment and cannot be justified
field-theoretically.

In our present model, the quantity g is related to the
strong coupling αs by the equation g = √

4παs , which was
treated as a constant in the previous work [8]. By replac-
ing the constant coupling by an effective running coupling
G(µ), the nonperturbative effects can be accommodated.
The running of the coupling should be determined by the
QCD renormalization equation group [17]. One can use an
analytical expression phenomenologically, such as g(Q/�) =
4π
3

√
1

ln(Q2/�2) − 1
1−Q2/�2 in Ref. [18]. One can also apply the

µ and T dependence of the approximate running coupling
constant in lattice QCD simulations [14,19]. In this paper, we
adopt the following approximate expression for the running
quantity g(µ) [20,21]:

g2(T = 0, µ) = 48π2

29

[
ln

(
0.8µ2

�2

)]−1

, (2)

where � is the QCD scale-fixing parameter. In the present
calculation, the � values are taken to be 180 and 200 MeV,
respectively. With the running coupling constant rather
than a fixed one, the in-medium mass will result in a
new thermodynamic treatment. In particular, a density-
dependent bag function has to be derived. In the following
sections, we discuss the cases of both bulk SQM and
strangelets.

A. Strange quark matter with running coupling constant

In order to derive the thermodynamic formulas, let us
start from the quasiparticle contribution to the chemical
thermodynamic potential density for bulk matter, that is,

�i = − diT

2π2

∫ ∞

0
ln

(
1 + e−(

√
p2+m∗

i
2−µi )/T

)
p2dp. (3)

After integration at zero temperature, we get the analytic result,
which is called �V,i ,

�V,i = − di

48π2

(
µiνi

(
2µ2

i − 5m∗
i

2) + 3m∗
i

4 ln
µi + νi

m∗
i

)
,

(4)

where νi ≡
√

µ2
i − m∗2

i is the Fermi momentum of the particle
type i. The total thermodynamic potential density of bulk SQM
is written as

�({µk}) =
∑

i

�V,i(µi,m
∗
i ) + B∗

V , (5)

where the sum goes over u, d, and s quarks. The effective bag
function reads

B∗
V =

∑
i

BV,i(µi) + B0. (6)

Once the thermodynamic potential is known, the pressure
P and energy density E are calculated by the normal
thermodynamic relations

P = −�, E = � +
∑

i

µini . (7)

In order to satisfy the fundamental thermodynamic equation

E = −P +
∑

i

µi

∂P

∂µi

, (8)

we must require the relation [9] ∂P/∂m∗
i = −∂�i/∂m∗

i −
∂BV,i/∂m∗

i = 0. So BV,i in Eq. (6) is determined by the
integration formula

BV,i(µi) = −
∫ µi

m∗
i

∂�V,i

∂m∗
i

∂m∗
i

∂µi

dµi

= −
∫ µi

m∗
i

dim
∗
i

4π2

(
µiνi − m∗

i
2 ln

µi + νi

m∗
i

)

× ∂m∗
i (g(µi), µi)

∂µi

dµi, (9)

where the integration constant is included in the B0 of Eq. (6).
The adopted value of B

1/4
0 = 145 MeV is equivalent to the

conventional bag constant. Because of the complication in
analytic derivations, we can get only numerical results. It
should be noted that the quark effective mass is a function
of µi and g(µi). From the quark mass scale, we calculate the
relation of m∗

i versus the baryon chemical potential µB divided
by 3 in Fig. 1 (there µi � µB/3). The coupling constant
indicated by the dotted line on the right axis decreases with
increasing chemical potential. Accordingly, the quark mass
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FIG. 1. The in-medium effective mass m∗
i (i = u, d, s) and cou-

pling constant as functions of the chemical potential. The solid curve
on the left axis indicates the effective mass, which is in agreement with
the lattice QCD data and satisfies the requirement of the asymptotic
freedom of QCD. On the right axis is the coupling constant g indicated
by a dotted curve.

is also a decreasing function. In any case, it is physically
required by QCD that the dynamical quark mass must decrease
with increasing µi . Considering the range of g (0,

√
6π ) in

Ref. [8], we can realize it by adjusting the parameter �. With
the chemical potential decreasing, the quark mass will become
much larger so that the vacuum can support it, which indicates
that our model is consistent with the quark confinement feature
of QCD. In order to keep the coupling constant as a positive
real number in the logarithm form of Eq. (2), there should be
a lower limit value for the chemical potential.

For the different values of QCD parameter, � = 180 MeV
(solid line) and 200 MeV (dashed line), the energy per
baryon of SQM is plotted in Fig. 2. The minimum values
of the are curves located at the stable zero-pressure points
marked by open circles; this is the thermodynamic self-
consistency requirement and will be satisfied in the calcula-
tion of strangelets. For the sake of simplicity, the symbols
for the zero-pressure points are omitted in the following
figures.

B. The properties of strangelets

To study strangelets, the special problem is to include the
finite-size effect. We do this by applying the multireflection
expansion, originally suggested by Balian and Bloch [22], and
later developed by Madsen [23] and Farhi, Berger, and Jaffe
[5,11] among others. We express the quasiparticle contribution
to the thermodynamic potential density of a strangelet at zero
temperature by inserting a density of state into Eq. (3) as

�i =
∫ ∞

0

(√
p2 + m∗

i
2 − µi

)dNi

dp
(p,m∗

i , R) dp, (10)

FIG. 2. The energy per baryon versus the baryon number density
for different values of the QCD scale parameter �. The zero pressure
stable points are marked by open circles “◦”.

where the density of states dNi

dp
is given in the multiexpansion

approach by

dNi

dp
(p,mi, R) = di

(
p2V

2π2
+ pfS(xi)S + fC(xi)C

)
. (11)

Here xi ≡ m∗
i /p, the area S = 4πR2, and the extrinsic

curvature C = 8πR for a sphere. The functions fS(xi) [5,11]
and fC(xi) [23] are

fS(xi) = − 1

4π2
arctan(xi) (12)

and

fC(xi) = 1

12π2

(
1 − 3

2xi

arctan(xi)

)
. (13)

After integrating Eq. (10), the thermodynamic potential
density can be divided into three parts with respect to the
radius dependence as �i = �V,i + �S,i + �C,i . In addition to
the conventional volume part �V,i in Eq. (4), the other two
parts have the following explicit expressions:

�S,i = − di

8π2R

(
m∗

i
3 ln

µi + νi

m∗
i

+ µ3
i arctan

νi

m∗
i

− π

2
(µi + 2m∗

i )(µi − m∗
i )2 − 2m∗

i µiνi

)
, (14)

�C,i = − di

8π2R2

[
−m∗

i
2 ln

µi + νi

m∗
i

+ µ3
i

m∗
i

arctan
νi

m∗
i

− π

2

(
µi

m∗
i

+ 2

)
(µi − m∗

i )2

]
. (15)
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Now we can give the energy density and pressure according
to the basic thermodynamic relations [9],

E = � +
∑

i

µini =
∑

i

(
�i − µi

∂�i

∂µi

+ Bi(µi, R)

)
+ B0,

(16)

P = −� − R

3

∂�

∂R

= −
∑

i

(
�i + R

3

∂�i

∂R
+Bi(µi, R)+ R

3

∂Bi(µi, R)

∂R

)
− B0.

(17)

For the detailed derivation of the above energy density and
pressure formulas, please see Ref. [24]. In the finite-size case,
Bi(µi, R) depends not only on the chemical potential but also
on the radius R of the strangelet. In Ref. [9], we divided
Bi(µi, R) into three parts according to the R dependence:

Bi(µi, R) = BV,i + 3

R
BS,i + 6

R2
BC,i, (18)

where the three terms, BV,i , BS,i , and BC,i , correspond
respectively to the volume, surface, and curvature terms.
Similarly to the derivation of Eq. (9), we can obtain the surface
and curvature terms as follows:

BS,i(µi) = −
∫ µi

m∗
i

∂

∂m∗
i

(
�S,i + R

3

∂�S,i

∂R

)
∂m∗

i

∂µi

dµi, (19)

BC,i(µi) = −
∫ µi

m∗
i

∂

∂m∗
i

(
�C,i + R

3

∂�C,i

∂R

)
∂m∗

i

∂µi

dµi, (20)

where the partial derivatives with respect to the radius can be
obtained from Eq. (14). All the interaction constants have been
collected into the parameter B0 in Eq. (16).

In Fig. 3 for the fixed baryon number A = 100, the energy
per baryon of the strangelet is plotted as a function of radius
R. The lines for � = 180 MeV (solid line) and � = 200 MeV
(dashed line) are located above the dotted line, which is
calculated by the bag model. It can be concluded that the
� values have a proper influence on the result of the calculation
of the strangelet energy. In fact, because of the medium effects,
the effective quark masses are larger than the current constant
masses, and so the energy of strangelets will be bigger than in
the bag model.

In Fig. 4 we demonstrate the coupling constant as an
increasing function of the baryon number A of the strangelet.
The solid and dashed curves, respectively, are for � = 180
and 200 MeV. According to the stable conditions of weak
equilibrium and zero pressure, we can calculate the chemical
potentials µu and µs ; we then find that a larger value of
coupling strength g is required for increasing baryon number
and it gradually approaches the horizontal dotted lines, which
are the corresponding values for the bulk SQM limit.

III. MODIFICATIONS OF THE SURFACE TENSION
WITH MEDIUM EFFECTS

For strangelets with finite baryon number, especially small
strangelets, the finite-size effects will play an important

FIG. 3. The energy per baryon as a function of the radius of a
strangelet with baryon number A = 100 for � = 180 MeV (the solid
curve) and � = 200 MeV (the dashed curve). The bag model result
(dotted line) is used for comparison.

role. The finite-size effects include surface and curvature
terms. In the present version of the quasiparticle model,
the bag function is related to the finite size and describes
the nonperturbative interaction between quarks. Our previous
work [9] demonstrates that the surface term is more important
than the curvature term when talking about their contribution
to the energy. The surface modification is the main purpose of
this paper.

FIG. 4. The coupling constant g as a function of the baryon
number for stable strangelets. The two horizontal dotted lines are
the corresponding values for bulk strange quark matter.
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In the literature, the intrinsic surface tension is characteristic
of the phase boundary between the true vacuum and the
perturbative phase and it can be neglected in comparison to
the confinement bag constant. So only the calculation of the
dynamical surface tension is carried out in our work. The early
work is typically traced back to the paper [11] by Berger et al.
They suggested that the surface tension parameter σ , which
arises in finite strangelets, can be calculated from the surface
modification of the fermion density of states. Strangelets
with larger values of the surface tension could survive the
early Universe [11]. In contrast, there is a suggestion that
the surface tension for the interface separating the quark
and the hadron phase should be smaller to make the mixed
phase occur [6,25]. Recently, a critical value (70 MeV/fm2

in Ref. [26]) has been suggested, above which the structure
of the mixed phase will become unstable. Lattice gauge
simulations suggest a range of σ ≈ 10–100 MeV/fm2 at finite
temperature [10,27]. However, the value of the surface tension
is poorly known and typically values used in literature range
within 10–50 MeV fm−2 [28–30].

In this paper, a chemical-potential- and radius-dependent
bag function and running coupling constant are applied. So the
surface term will provide a modification to the surface tension.
We can use the above formulas in the preceding section to
investigate the finite-size effects. In 1987, Berger and Jaffe
made an original definition that the surface tension equals
the free energy per unit surface area [11]. At a later time, the
surface term of the density of states was developed in Ref. [31].
Mardor and Svetitsky corrected an error of a factor of 2 in the
coefficient of the area term and gave a suitable formula in the
MIT bag model [32]. Their density of states is defined as

dNi

dp
= p2V

2π2
− pS

8π

[
1 − 2

π
arctan

(
p

mi

)]
. (21)

The corresponding surface tension within the bag model is

σ
bag
i =diT

∫ ∞

0

p

4π2
arctan

(
mi

p

)
ln

(
1+e−(

√
p2+m2

i −µi )/T
)
dp.

(22)

In fact, the surface part in Eq. (21) is consistent with
Eq.(12). In this paper, we adopt the density of states derived
by the multiexpansion approach in Sec. II. The total energy
density per baryon is the sum of three parts,

E =
∑

i

(EV,i + ES,i + EC,i). (23)

In particular, in the quasiparticle model, the effective bag
constant at finite size will have a modification needed to
calculate the volume energy density EV,i , which is associated
with the particle number ni and chemical potential as∑

i

EV,i =
∑

i

(�V,i + BV,i + µini) + B0. (24)

The surface energy density ES,i , and curvature energy density
EC,i due to the i-type quark are

ES,i = �S,i + BS,i, (25)

EC,i = �C,i + BC,i . (26)

FIG. 5. The surface energies of strangelets are showed on the left
axis by solid and dashed lines respectively for � =180, and 200 MeV.
The corresponding radius (dotted line) are on the right axis.

Consequently, the surface tension σi , the free energy per
unit surface area, should be redefined as [33]

σi ≡ ES,iV

4πR2
= R

3
(�S,i + BS,i). (27)

The first term on the right side of Eq. (27) is the kinetic
contribution to the surface tension at zero temperature. It
has the same expression as the previous definition σ

bag
i of

Eq. (22) in the conventional bag model [11]. The important
difference is that the constant quark mass in the bag model
is replaced by the effective mass m∗

i in Eq. (1), σ
bag
i (mi →

m∗
i ) = R

3 �S,i . The second additional term is dominated by BS,i

in Eq. (19). Generally, it will give a positive modification to
σ

bag
i depending on the value of the running coupling constant

g(µi). Combining the conventional term σ
bag
i (m∗

i ) with the
additional term BS,i multiplied by the factor R/3, the surface
tension is only associated with the chemical potentials and
independent of R. The total surface tension σi is a sum over
the three flavors, σ = ∑

i σi .
For a given baryon number, the strangelets can be calculated

by solving the chemical potentials µu and µs . In Fig. 5, the
surface energy per baryon is shown on the left axis and the
radius is plotted by a dotted line on the right axis. The choice
of the � value has little influence on the numerical results.
According to Eq. (27), the total surface tension of strangelets
is shown for � = 180 MeV (solid line) and 200 MeV (dashed
line) in Fig. 6. When the baryon number of strangelets
increases to A > 103, the surface tension has a slight decline
and comes gradually down to the vicinity of 30 MeV fm−2. The
comparison with the bag model result is marked by the dotted
line in the figure, and the difference is obvious especially
for smaller strangelets. It is physically reasonable that the
surface tension decreases with increasing baryon number.
With a larger �, the strangelets can have a larger surface
tension. Therefore, we can predict to some extent that a larger
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FIG. 6. Surface tension σ decreases with the increasing baryon
number A.

� together with a stronger coupling strength can save the
SQM in the early Universe. These properties can also be
applied when studying the propagation of strangelets as cosmic
rays [34].

IV. SUMMARY

In this paper we have studied the finite-size effects on the
properties of strangelets in the framework of the extended
quasiparticle model at zero temperature. In this model, the
effective quark mass, characteristic of the variational mass
system, is associated with the environment, that is, the
chemical potential. In the calculations, we take into account
the density-dependent running coupling constant g(µ) derived
from the effective quark propagator by resumming one-loop
self-energy diagrams in the hard dense loop approximation. So

we can give a new calculation formula for the running coupling
instead of assuming a constant value as in previous work. It
is found by numerical calculations that the coupling constant
and the quark effective masses are sensitively dependent on the
effects of the medium. They decrease with increasing chemical
potential in a proper range. This result is consistent with the
spirit of QCD. From the thermodynamic consistency relation,
a chemical-potential- and radius-dependent bag function can
be derived and can be divided into three parts, the volume term
BV,i , the surface term BS,i , and the curvature term BC,i . They
play an important role in finite-size strange quark matter. The
surface term will have a positive influence on the energy of
the strangelets depending on the interaction constant g(µi).
Subsequently, the contribution of the surface term BS,i to the
redefined surface tension is described by an additional term of
BS,iR/3. Ultimately, the total surface tension is dominated by
the interaction and independent of the radius.

With the new definition, we find the surface tension equals
35 MeV fm−2 for strangelets of A > 103. The relations of
the coupling constant, the radius, the surface energy per
baryon, and the surface tension with the variational baryon
number are investigated. For stable strangelets, we find that the
surface tension will decrease with increasing baryon number
but become larger for a big � value. Comparisons with the
MIT bag model indicate an obvious difference for smaller
strangelets. One can get a larger surface tension with a larger �

value. Therefore, it can be predicted that the larger � together
with a stronger coupling strength can save the SQM in the
early Universe.

The work is carried out for the sake of simplicity. It is
desirable to perform a more realistic calculation including
electrons and quark charge distributions at the surface [35].
The influences on the quark-hadron mixed phase structure are
expected to be calculated in future work.
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