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α particles and the “pasta” phase in nuclear matter
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The effects of the α particles in nuclear matter at low densities are investigated within three different
parametrizations of relativistic models at finite temperature. Both homogeneous and inhomogeneous matter
(pasta phase) are described for neutral nuclear matter with fixed proton fractions and stellar matter subject
to β equilibrium and trapped neutrinos. In homogeneous matter, α particles are present only at densities below
0.02 fm−3 and their presence decreases with increase of the temperature and, for a fixed temperature, the α particle
fraction decreases for smaller proton fractions. A repulsive interaction is important to mimic the dissolution of
the clusters in homogeneous matter. The effect of the α particles on the pasta structure is very small except close
to the critical temperatures and/or proton fractions, when it may still predict a pasta phase while no pasta phase
would occur in the absence of light clusters. It is shown that for densities above 0.01 fm3 the α-particle fraction
in the pasta phase is much larger than that in homogeneous matter.
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I. INTRODUCTION

The pasta phase is a frustrated system [1–5] present at
densities of the order of 0.006–0.1 fm−3 [6] in neutral nuclear
matter and 0.029–0.065 fm−3 [7,8] in β-equilibrium stellar
matter, where a competition between the strong and the
electromagnetic interactions takes place.

The basic shapes of these complex structures were named
[1] after well-known types of cheese and pasta: droplets =
meat balls (bubbles = Swiss cheese), rods = spaghetti (tubes =
penne), and slabs = lasagna, for three, two, and one dimensions
respectively. The pasta phase is the ground state configuration
if its free energy per particle is lower than that corresponding
to the homogeneous phase at the same density.

A complete equation of state capable of describing matter
ranging from very low densities to a few times saturation
density and from zero temperature to around 100 MeV is
a necessary step toward the understanding of the stellar
core collapse, supernova explosion, and protoneutron star
evolution. The constitution of the pulsar crust plays a definite
role in the emission of neutrino and gravitational waves. In the
inner crust of neutron stars (zero temperature, very low proton
fraction, matter in β equilibrium), the pasta phase is expected
to be present and to coexist with a neutron gas. In a supernova
(finite temperature, proton fraction around 0.3) the pasta phase
is structured in such a way that there is no neutron gas or it is
very low in density [9].

In previous works [6,8] we have studied the existence of
the pasta phase at zero and finite temperature within different
parametrizations of the relativistic nonlinear Walecka model
(NLWM) [10], namely, NL3 [11], TM1 [12], and GM3 [13],
and the onset of the pasta phase with different parametrizations
of the density-dependent hadronic model, namely, TW [14],
density dependent hadronic model with δ meson (DDHδ) [15],
and GDFM [16,17], respectively. In these works two different
methods were used: coexisting phases (CPs) at both zero and fi-
nite temperature and the Thomas-Fermi (TF) approximation at
zero temperature only. It was found that matter in β equilibrium

presents a small (at zero or small temperatures) or nonexistent
pasta structure (at finite temperature above ∼4 MeV) [6]. In
fact, even for Skyrme forces it was shown that, depending
on the model, above 2–4 MeV there is no pasta phase for β

equilibrium matter [18]. If β equilibrium is imposed, the pasta
phase could not be found in a CP calculation for the same
surface energy parametrization used for fixed proton fractions.
This indicates the necessity to use a good parametrization for
the surface energy that is temperature, proton fraction, and
geometry dependent, as also stressed in [16,17]. The specific
problem of an appropriate parametrization for the surface
energy is tackled in the present work.

In the above calculations we have assumed predefined
shapes for the pasta clusters and considered that the ground
state configuration is the one that minimizes the free energy.
In [19] the authors could show by using ab initio numerical
simulations that in fact pasta phases can be formed in col-
lapsing supernovas. By compressing a bcc lattice of spherical
nuclei it was shown that an ordered structure of rod-like nuclei
could be formed.

The importance of the α particles has been pointed out in the
recent literature [20–24]. It is the most strongly bound system
among all light systems and it certainly plays a role in nuclear
matter. Lattimer and Swesty worked out the equation of state
(EOS) in the compressible extended liquid drop model based
on a nonrelativistic framework [20] appropriate for supernova
simulations, for a wide range of densities, proton fractions
and temperatures, including the contribution of α-particle
clusters. An excluded volume prescription is used to model the
dissolution of α particles at high densities. The same is done
by Shen et al. in [21,25] where nonuniform matter composed
of protons, neutrons, α particles, and single species of heavy
nuclei is described with the Thomas-Fermi approximation and
the TM1 parametrization of the nonlinear Walecka model. At
low densities, these particles are approximated by classical
gases. In [26] nuclear statistical equilibrium equations are
calculated and the α particles are also taken into account.
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In [22] an effective four-body equation that includes self-
energy corrections and Pauli blocking is used in a consistent
way. The influence of cluster formation on the nuclear matter
EOS is calculated and the occurrence of instabilities is
investigated in [27]. In [23] the virial equation of state of
low-density nuclear matter composed of neutrons, protons,
and α particles is presented, and it is shown that the predicted
α-particle concentrations differ from the predictions of the
EOSs proposed in [20] and [25]. The inclusion of small clusters
in the EOS is reconsidered in [24], where the most important
thermodynamical quantities are calculated with light clusters
up to the α particle with a density-dependent relativistic model.
The conditions for the liquid-gas phase transition are obtained,
and it is seen how the binodal section is affected by the
inclusion of these clusters. Moreover, an EOS is obtained
starting at low densities with clusterized matter up to high
density cluster-free homogeneous matter.

In the present paper we investigate the influence of the α

particles both on the homogeneous matter and on the onset,
size of the clusters, and structure of the pasta phase within
the relativistic mean field approximation. As all results so
far show model dependence, three different parametrizations
are employed. We have chosen the NL3 [11] and GM1 [13]
parametrizations of the NLWM and the TW parametrization of
the density-dependent hadronic model [14]. The calculations
are carried out for fixed proton fractions and also for matter in
β equilibrium with trapped neutrinos. Although in previous
works it was found that matter in β equilibrium presents
a small (at zero temperature) or nonexistent pasta structure
(at finite temperature) that is very sensitive to the surface
energy [6,8], once trapped neutrinos are present, the picture
changes considerably because of the large fraction of protons.
According to studies on binodals and spinodals underlying the
conditions for phase coexistence and phase transitions [18,28],
nonhomogeneous matter with trapped neutrinos is expected to
be found until temperatures around T = 12 MeV, depending
on the model considered. For this reason, we investigate this
possibility next.

The paper is organized as follows. In Sec. II we briefly
review the formalism underlying the homogeneous neutral
npe matter with the inclusion of the α particles. In Sec. III
the pasta phase is built with the help of the coexisting phase
method and the prescription for the introduction of the α’s is
given. A complete study for the parametrization of the surface
energy based on the Thomas-Fermi calculation is performed
and presented in Sec. IV. In Sec. V our results are displayed
and commented on, and in Appendix our conclusions are
drawn.

II. THE FORMALISM

We consider a system of protons and neutrons with mass M

interacting with and through an isoscalar-scalar field φ with
mass ms , an isoscalar-vector field V µ with mass mv , and an
isovector-vector field bµ with mass mρ . We also include α

particles as bosons with mass Mα and a system of electrons
with mass me. We do not consider models with δ mesons, but
their introduction is straightforward. The Lagrangian density

reads

L =
∑
i=p,n

Li + Le +Lσ+Lω+Lρ+Lα, (1)

where the nucleon Lagrangian reads

Li = ψ̄i[γµiDµ − M∗]ψi, (2)

with

iDµ = i∂µ − �vV
µ − �ρ

2
τ · bµ − e

1 + τ3

2
Aµ, (3)

M∗ = M − �sφ. (4)

The α particles are described as in [24] by

Lα = 1
2

(
iDµ

α φα

)∗
(iDµαφα) − 1

2φ∗
αM2

αφα, (5)

with

iDµ = i∂µ − �αV µ, (6)

where

Mα = 4M − Bα, Bα = 28.3 MeV, (7)

and �α is included for mimicking the excluded volume effect
and consequent α-particle dissolution at high densities. In [24]
a more complete effective interaction for the α particles is
considered, including the σ meson–α particle interaction and
the Pauli shifts for the binding energy. In our approach we
calculate a lower bound for the α particles present in the
medium. As a reference we also consider the opposite limit
and take the α particles as a gas of free particles. In most of
our calculations �α is set either to zero or to �α = 4�v . We
have also made tests using a lower value for this interaction
(2�v) and the results are noted when appropriate.

The electron Lagrangian density is given by

Le = ψ̄e[γµ(i∂µ + eAµ) − me]ψe, (8)

and the meson Lagrangian densities are

Lσ = +1

2

(
∂µφ∂µφ − m2

sφ
2 − 1

3
κφ3 − 1

12
λφ4

)
,

Lω = 1

2

(
−1

2
�µν�

µν + m2
vVµV µ + 1

12
ξg4

v(VµV µ)2

)
,

Lρ = 1

2

(
−1

2
Bµν · Bµν + m2

ρbµ · bµ

)
,

where �µν = ∂µVν − ∂νVµ and Bµν = ∂µbν − ∂νbµ −
�ρ(bµ × bν). The parameters of the models are as follows:
the nucleon mass M = 939 MeV, the coupling parameters
�s ,�v ,�ρ of the mesons to the nucleons, the electron mass
me, and the electromagnetic coupling constant e = √

4π/137.
In the above Lagrangian density τ is the isospin operator.
When density- dependent models are used, the nonlinear
terms are not present and hence κ = λ = ξ = 0 and the
density-dependent parameters are chosen as in [14,15,29].
When models with constant couplings are used, �i is replaced
by gi , where i = s, v, ρ as in [11,13]. The bulk nuclear matter
properties of the models we use in the present paper are given
in Table I. We also include in the table some properties at the
thermodynamical spinodal surface: ρspin is the upper border
density at the spinodal surface for symmetric matter (it defines
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TABLE I. Nuclear matter properties at the saturation density and
at the spinodal surface.

NL3 GM1 TW
[11] [13] [14]

B/A (MeV) 16.3 16.3 16.3
ρ0 (fm−3) 0.148 0.153 0.153
K (MeV) 272 300 240
Esym (MeV) 37.4 32.5 32.8
M∗/M 0.60 0.70 0.55
L (MeV) 118.3 93.8 55.3
Ksym (MeV) 100.5 17.9 −124.7
Q0 (MeV) 203 −216 −540
Kτ (MeV) −698 −478 −332
ρspin (fm−3) 0.096 0.100 0.096
ρt (fm−3) 0.0646 0.0743 0.0850
Pt (MeV/fm3) 0.396 0.382 0.455

the density for which the incompressibility is zero), and ρt

and Pt are, respectively, the density and the pressure at the
crossing between the cold β-equilibrium equation of state and
the spinodal surface. They give a rough estimate of the density
and pressure at the crust-core transition [6,8]. For symmetric
matter or large proton fractions we expect that GM1 will
have the largest extension of the pasta phase because it has
the largest value of ρspin. For cold β-equilibrium matter, TW
predicts the largest pasta extension, with the largest transition
density ρt .

From the de Euler–Lagrange formalism we obtain coupled
differential equations for the scalar, vector, isovector-scalar,
and nucleon fields. In the static case there are no currents and
the spatial vector components are zero. In [6] a complete de-
scription of the mean field and Thomas-Fermi approximations
applied to different parametrizations of the NLWM is given and
we do not repeat it here. The equations of motion for the fields
are obtained and solved self-consistently and they can be read
off [6,8]. The above mentioned equations of motion depend
on the the equilibrium densities ρ = ρp + ρn, ρ3 = ρp − ρn,
and ρs = ρsp + ρsn, where the proton and neutron densities
are given by

ρi = 1

π2

∫
p2dp(fi+ − fi−), i = p, n, (9)

and the corresponding scalar density by

ρsi
= 1

π2

∫
p2dp

M∗√
p2 + M∗2

(fi+ + fi−), (10)

with the distribution functions given by

fi± = 1

1 + exp[(ε∗(p) ∓ νi)/T ]
, (11)

where ε∗ =
√

p2 + M∗2,

M∗ = M − �sφ0, (12)

and the effective chemical potentials are

νi = µi − �vV0 − �ρ

2
τ3ib0 − �R

0 . (13)

τ3i = ±1 is the isospin projection for the protons and neutrons,
respectively. The density- dependent models in the mean field
approximation contain a rearrangement term �R

0i [15] given
by

�R
0 = ∂�v

∂ρ
(ρ)V0 + ∂�ρ

∂ρ
ρ3

b0

2
− ∂�s

∂ρ
ρsφ0.

In the description of the equations of state of a system, the
required quantities are the baryonic density, energy density,
pressure, and free energy, explicitly written in [6,8]. We refer
next to only some of the quantities.

The free energy density is defined as

F = E − T S, (14)

with the entropy density

S = 1

T
(E + P − µpρp − µnρn). (15)

In the present work the α particles are included as bosons
and their chemical potential is obtained from the proton and
neutron chemical potentials as in [24,26]:

µα = 2(µp + µn). (16)

The inclusion of the α particles also gives rise to a
rearrangement term given by

�R
0α = 4

∂�α

∂ρ
ραV0, (17)

which is present in the effective chemical potential of the α

particles:

να = µα − �αV0 − �R
0α. (18)

The density of α particles is

ρα = 1

2π2

∫
p2dp(fα+ − fα−), (19)

with the boson distribution function given by

fα± = 1

−1 + exp[(εα ∓ να)/T ]
, (20)

where εα = √
p2 + M2

α . The α free energy density reads

Fα = Eα − T Sα, (21)

where Eα and Sα stand respectively for the bosonic energy and
entropy density.

It is worth emphasizing that a term proportional to �R
0αρα

is present in the pressure. When nonlinear Walecka-type
models are used there is no rearrangement term and the α

effective chemical potential is also given by Eq. (16). For the
temperatures we consider in the present work, no α-particle
condensation occurs, and, therefore, the above equations do
not contain the condensate contribution.

As for the electrons, their density and distribution functions
read

ρe = 1

π2

∫
p2dp(fe+ − fe−), (22)

with

fe±(r, p, t) = 1

1 + exp[(εe ∓ µe)/T ]
, (23)
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where µe is the electron chemical potential and εe =√
p2 + m2

e . We always consider neutral matter, and therefore
the electron density is equal to the charge density of the positive
charged particles (protons and α particles).

The free energy density of the electrons reads

Fe = Ee − T Se, (24)

with

Se = 1

T
(Ee + Pe − µeρe). (25)

III. COEXISTING PHASES

Two possibilities are discussed next: nuclear matter with
fixed proton fraction and stellar matter with β equilibrium and
trapped neutrinos.

A. Nuclear pasta

As in [5,6], for a given total density ρ and proton fraction,
now defined with the inclusion of the protons present inside
the α particles, the pasta structures are built with different
geometrical forms in a background nucleon gas. This is
achieved by calculating from the Gibbs conditions the density
and the proton fraction of the pasta and of the background
gas, so that in the whole we have to solve simultaneously the
following six equations:

P I(νI
p, νI

n,M
∗I) = P II(νII

p , νII
n ,M∗II)

,

(26)

µI
i = µII

i , i = p, n, (27)

m2
sφ

I
0 + κ

2
φ2

0
I + λ

6
φ3

0
I = gsρ

I
s , (28)

m2
sφ

II
0 + κ

2
φ2

0
II + λ

6
φ3

0
II = gsρ

II
s , (29)

f
(
ρI

p + 2ρI
α

) + (1 − f )
(
ρII

p + 2ρII
α

) = Ypρ, (30)

where I and II label each of the phases; f is the volume fraction
of phase I:

f = ρ − ρII

ρI − ρII
, (31)

where the total baryonic density is

ρ = ρp + ρn + 4ρα, (32)

and Yp is the global proton fraction given by

Yp = ρp + 2ρα

ρ
. (33)

The density of electrons is uniform and taken as ρe = Ypρ.
The total pressure is given by P = P I + Pe + Pα . The total
energy density of the system is given by

E = f E I + (1 − f )E II + Ee + Esurf + ECoul, (34)

where, by minimizing the sum Esurf + ECoul with respect to the
size of the droplet or bubble, rod or tube, or slab we get [5]
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FIG. 1. (Color online) Surface energy as a function of the proton
fraction for GM1, NL3, and TW parametrizations.

Esurf = 2ECoul, and

ECoul = 2F

42/3
(e2π�)1/3

[
σD

(
ρI

p − ρII
p

)]2/3
, (35)

where F = f for droplets and F = 1 − f for bubbles, σ is
the surface energy coefficient, and D is the dimension of the
system. For droplets, rods, and slabs,

� =
{( 2−Df 1−2/D

D−2 + f
)

1
D+2 , D = 1, 3,

f −1−ln(f )
D+2 , D = 2,

(36)

and for bubbles and tubes the above expressions are valid with
f replaced by 1 − f .

Each structure is considered to be in the center of a charge-
neutral Wigner-Seitz cell constituted by neutrons, protons and
leptons [21]. The Wigner-Seitz cell is a sphere, cylinder, or
slab whose volume is the same as the unit bcc cell. In [21] the
internal structures are associated with heavy nuclei. Hence, the
radius of the droplet (rod, slab) and of the Wigner-Seitz cell
are respectively given by

RD =
(

σD

4πe2
(
ρI

p + 2ρI
α − ρII

p − 2ρII
α

)2
�

)1/3

, (37)

RW = RD

(1 − f )1/D
. (38)

In Fig. 1 the surface energy is plotted as a function of the
proton fraction for the three models under study. It is seen that
the models differ a lot.

B. Surface energy

The authors of [30] have studied how the uncertainties on
the surface energy affect the appearance of nonspherical pasta
structures. In particular, they have shown that for typical values
of the surface energy nonspherical clusters may occur below
the transition density to uniform matter. Also the authors of [5]
state that the appearance of the pasta phase essentially depends
on the value of the surface tension. We have fixed the surface
tension at different values and confirmed their claim in [6,8],
where the surface energy coefficient was parametrized in terms
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of the proton fraction according to the functional proposed
in [31], obtained by fitting Thomas-Fermi and Hartree-Fock
numerical values with a Skyrme force.

In the present paper we have considered this point in a more
systematic and consistent way. Hence, we have parametrized
the surface energy according to our Thomas-Fermi calcu-
lations for the relativistic models under investigation. We
have used the Gibbs prescription to obtain the σ coefficient
which, as extensively discussed in the literature [32,33], is the
appropriate surface tension coefficient to be used. We have
obtained for the three parametrizations used in this work,
namely, NL3, TW, and GM1 parameter sets, the corresponding
fittings for σ . Here, we briefly discuss the method that we
have employed for fitting σ ; more specific details about the
numerical algorithm can be found in [6]. First, we obtain
a density profile for the two-component system consisting
of protons and neutrons in a semi-infinite one-dimensional
system, where the axis perpendicular to the interface has been
defined as the z axis. In our approach, we assume the system
to be inside a large box of radius R so that the densities at the
left and right boundaries correspond to asymptotic densities
that approach the values of uniform nucleon matter (nucleus)
in equilibrium with a gas of drip particles and a uniform gas of
drip particles, respectively. Hence, we need a recipe in order
to extract the surface energy from the bulk one. The surface
tension may be expressed as follows:

σ =
∫ ∞

−∞
dz [ε(z) − εd − εref(z)] (39)

as discussed in [32]. The quantity εref(z) corresponds to a
reference energy density associated with the bulk contribution,
εd = limz→∞ ε(z), and ε(z) is the energy density. If one
considers the Gibbs phase coexistence conditions and usual
thermodynamic relations, one obtains for the (Gibbs) surface
tension coefficient the expression

σ =
∫ ∞

−∞
dz{ε(z) − εd − µn[ρn(z) − ρnd ].

−µp[ρp(z) − ρpd ]},
with ρnd = limz→∞ ρn(z) and an analogous definition for
ρpd . An alternative and completely equivalent expression for
the calculation of σ , known as the thin-wall approximation
[34–36], is given by the following expression:

σ =
∫ ∞

0
dz

[(
dφ0

dr

)2

−
(

dV0

dr

)2

−
(

db0

dr

)2
]

. (40)

In our parametrization of σ the above expression has been used
since it is more convenient for our Thomas-Fermi numerical
algorithm [6]. In particular, it is especially adequate for the
parametrization of the dependence of σ on the temperature. We
do not try to parametrize the σ through standard dimensionless
functions which, as discussed in [33], do not give good fits for
relativistic mean field models, especially for the region of small
σ values which are important for the pasta study. So we follow
a more pragmatic method, adopting a mathematical formula
for σ that gives accurate results for a broad range of neutron
excess and for temperatures up to 10 MeV, which are adequate
for the studies addressed in the present work. The following

functional for the surface tension coefficient σ is used:

σ = σ (x, T = 0)[1 − a(T )xT − b(T )T 2], (41)

where x = δ2 stands for the squared relative neutron excess

δ = ρn − ρp

ρ
= 1 − 2Yp,

and ρ, ρn, and ρp are defined at z = −∞. A table with the
coefficients σ (x, T = 0), a(T ), and b(T ) for the NL3, TW, and
GM1 parametrizations is shown in the Appendix. The proton
fraction considered throughout the calculation of σ is the one
of the denser phase.

C. Stellar pasta for matter in β equilibrium
with trapped neutrinos

In this case, hadronic matter is in β equilibrium and the
electron neutrinos are trapped. The condition of β equilibrium
in a system of protons, neutrons, electrons, and neutrinos is

µp = µn − µe + µνe
. (42)

In addition to the Gibbs conditions given in Eqs. (26), (27),
(28), and (29) we also impose

Yl = ρe + ρνe

ρ
, (43)

where Yl is the lepton fraction and has been fixed as 0.4 and
ρνe

is the density of electron neutrinos given by

ρνe
= 1

2π2

∫
p2dp

(
fνe+ − fνe−

)
, (44)

with

fνe± = 1

1 + exp
[(

p ∓ µνe

)
/T

] . (45)

The neutrino free energy density reads

Fνe
= Eνe

− T Sνe
, (46)

where Eνe
and Sνe

stand respectively for the neutrino energy
and entropy density.

The densities of interest to the study of the pasta phase
are too low for the muons to appear; they generally occur for
densities above 0.1 fm−3 [18] and hence are not considered in
the present work.

IV. RESULTS AND DISCUSSION

In this section we show results for the fraction of α particles
in homogeneous matter and pastalike matter and discuss the
effect of the α particles on the structure of the pasta phase.

A. α particles in homogeneous matter

We show the amount of α particles present in homogeneous
nuclear matter described by the NL3 parametrization for
symmetric matter and different temperatures in Fig. 2(a) and
for T = 5 MeV and three proton fractions Yp = 0.5, 0.3, 0.1
in Fig. 2(b). In all figures the curves drawn with thin lines
were obtained for free α particles, �α = 0 and the curves
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FIG. 2. (Color online) α fractions as a function of density for
(a) symmetric matter and several temperatures and (b) T = 5 MeV
and several proton fractions, obtained with NL3. The thin curves are
for free α particles and the thick ones include the ω meson–α particle
interaction.

with thick lines for �α = 4�v , that is, with the inclusion
of the term that mimics the excluded volume factor. As
mentioned before, this term dissolves the clusters. In both
calculations the α-particle vacuum mass was used. The maxi-
mum of the distribution occurs for the density that maximizes
2(µp + µn) − �αV0 − Mα . The curves obtained with this term
show the same behavior found in Fig. 15 of [24], that is, the
α-particle fraction decreases with increase of the temperature.
One can see from Fig. 2(b) that the total proton fraction
Yp has a different effect on the α-particle distribution. For
�α = 4�v , the maximum of the distribution occurs at the same
density for all fractions, although the amount of α particles
shows a lower value for the smaller value of Yp. Moreover,
the density of dissolution of α particles does not seem to be
sensitive to the proton fraction, because it is defined by the
isoscalar-vector interaction. The α-particle fractions for free
α particles in Figs. 2(a) and 2(b) show discontinuities for large
proton fractions at T = 5 MeV, just above ρ = 0.02 fm−3.
For lower proton fractions no discontinuity occurs. The region
where the discontinuity occurs is a region of instability since
the free energy has a negative concavity. For T = 5 MeV
and yp = 0.3 there is a smooth transition from a region with
a large α-particle fraction to a region with a low α-particle
fraction. If we increase the proton fraction the transition is
no longer smooth and we obtain a jump in the α-particle
fraction. The discontinuity occurs when the α-particle fraction
becomes close to 1 and the chemical potential of the α particle
is close to its mass. For larger densities the nucleon chemical
potential decreases because of the attraction induced by the
σ meson. The minimum of the nucleon chemical potential at
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FIG. 3. (Color online) α fractions as a function of density
obtained with (a) model NL3 for different temperatures; (b) models
NL3, GM1, and TW for T = 5 MeV for matter in β equilibrium with
trapped neutrinos. The thin curves are for free α particles and the thick
ones include the ω meson–α particle interaction. In (c) the nucleon
effective mass within NL3, GM1, and TW is plotted at subsaturation
densities.

ρ ∼ 0.1 fm−3 corresponds to the minimum of the α-particle
fraction. The discontinuity or kink occurs at the density, or
slightly above it, for which the nucleon chemical potential
in the presence of α particles becomes equal to the nucleon
chemical potential without α particles. To correctly treat this
region of densities, where the free energy has a negative
concavity, we should consider that matter is not homogeneous
and there are two phases. However, to describe α particles as
free particles is not realistic, and when the interaction between
particles is included the discontinuity in the α-particle fraction
does not occur.

In Fig. 3(a) the amount of α particles present in matter
with β equilibrium and trapped neutrinos with the NL3
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FIG. 4. (Color online) α fractions as a function of density
obtained with GM1, NL3, and TW models compared with the virial
EOS results of Ref. [23].

parametrization is displayed for different temperatures. Just
as in Fig. 2(a), it is seen that the larger the temperature the
lower the maximum of the α-particle distribution. With the
increase of temperature, the maximum is shifted to larger
densities and the same occurs to the dissolution of the clusters.
This behavior was also obtained in [24]. However, in [24]
other smaller clusters, besides the α particles, have also
been considered. In Fig. 3(b) the same is shown for T = 5
MeV and the three models used in the present work. TW
is responsible for the smallest amount of α particles and
GM1 for the largest. These behaviors are defined by the
model properties at subsaturation densities. This can be seen
in Fig. 3(c), where the nucleon effective masses of NL3,
GM1, and TW are plotted for subsaturation densities. If
the nucleon mass is larger it becomes energetically more
favorable to produce more α particles and fewer free nucleons.
Both the cluster dissolution and the particle maximum occur
at smaller densities for TW and larger densities for GM1
for the same reason. To a smaller effective mass corre-
sponds a larger ω-meson coupling since the parameters of
the models are chosen to reproduce the nuclear saturation
properties.

The virial expansion gives a model-independent prediction
of the low-density limit of the EOS [23]. In Fig. 4 we compare
the α-particle fraction obtained with the virial EOS of low-
density nuclear matter [23] with the prediction of the models
GM1, NL3, and TW with interacting α particles, �α = 4�v .
We also include the NL3 results for free α particles (thin red
line). The GM1 parametrization with interacting α particles
gives the closest results to the virial expansion and TW deviates
the most.

B. α particles in the pasta phase

In the following, we analyze the effect of the pasta phase
on the fraction of α particles. The α particles are present in the
background gas that surrounds the pasta structures.

In Fig. 5 we have plotted the α-particle fraction Yα for
T = 5 and 8 MeV with the proton fraction Yp = 0.3. Notice
that Yα = 4ρα/ρ is the fraction of nucleons clustered in α

particles. In both figures we include the homogeneous matter
results (dashed lines) and the pastalike matter results (full
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FIG. 5. (Color online) α fractions as a function of density
obtained with model NL3 for (a) Yp = 0.3 and T = 5 MeV;
(b) Yp = 0.3 and T = 8 MeV. The thin curves are for free α particles
and the thick ones include the ω meson–α particle interaction.

lines). We have considered both free α particles (thin lines)
and interacting α particles (thick lines). If free α particles are
considered, the fraction Yα in homogeneous matter becomes
quite high and it may be close to 1, which is quite unrealistic.
In pastalike matter the maximum of Yα is smaller, but still quite
high: it varies between ∼0.01 and 0.1 and, for Yp = 0.3, it is
larger for larger temperatures, T = 8 MeV. This last tendency
is still true when we include the interaction of α particles
with the ω meson. If we analyze the results including the α-ω
interaction some important conclusions can be drawn: while
for homogeneous matter Yα < 10−12 for ρ > 0.02 fm−3, for
pastalike matter this only occurs at the crust-core boundary for
ρ ∼ 0.1 fm−3.

We may consider the prediction of Fig. 5 a lower bound
prediction, since for the α-particle interaction we have con-
sidered only a repulsive interaction which mimics the volume
exclusion effect. If attraction had also been considered we
would expect larger fractions [24]. Also we have taken for
the coupling constant the nucleon-meson coupling constant
multiplied by the mass number, and this could be too strong
a coupling. In pastalike matter for symmetric matter the
α-particle fraction does not change because of the method used
to calculate the pasta phase. Phase equilibrium for symmetric
nuclear matter predicts the same proton fraction, equal to 0.5,
as well as the same pressure for both the dense (liquid) and gas
phases of the pasta. We may expect that within a Thomas-Fermi
calculation the α-particle fraction changes with density.

From Fig. 6 it is seen again that the α-particle fraction
is model dependent: GM1 predicts generally larger fractions
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FIG. 6. (Color online) α fractions as a function of density
obtained with the models under investigation for Yp = 0.5 and 0.3
and T = 5 and 8 MeV. The thin curves are for T = 5 MeV and the
thick curves for T = 8 MeV.

although the difference depends on the density. The differences
can be as high as one or two orders of magnitude. The
magnitude of Yα depends on the fraction of protons present
in the background gas. The low-density onset of the pastalike
matter in Figs. 5 and 6 lies slightly below the homogeneous
matter curves. The difference is smaller for the larger tem-
peratures owing to the distillation effect. The pasta phase
starts at low density with small droplets of dense matter in
a background gas. As soon as the droplets begin to form, the
distillation effect makes matter in the droplet more proton-rich
and that in the gas more proton-poor. Therefore, if we fix
the global proton fraction, we expect that at the onset of
the droplets (the volume fraction of the dense part is very
small) the gas phase has a smaller proton fraction than the
homogeneous matter at the corresponding density. This effect
is smaller for larger temperatures and can be observed from
Figs. 5 and 6.

The α-particle densities are plotted in Fig. 7 for two proton
fractions (Yp = 0.5 and 0.3) and two temperatures (T = 5 and
8 MeV). We include the calculation for both homogeneous and
pastalike matter and we consider only the case of interacting
α particles. This figure gives a hint as to the possible effects
of α particles in the inner crust of a compact star. The effect is
larger for the larger temperatures and larger proton fractions.
Because of the existence of a nonhomogeneous phase, the
presence of the α particles extends to larger densities. In fact
the α clusters dissolve at ρ ∼ 0.01 fm−3 in homogeneous
matter. If we consider the pasta phase, the background gas
does not exceed this value of the density and, therefore, there
are still α clusters at much larger densities because they only
exist in the gas phase. However, we should point out that, with
the strongly repulsive interaction considered, Yα takes very
small values.

In Figs. 2(a) and 3(a) it is clearly seen that the maximum
fraction of α particles decreases with temperature; however,
clusters dissolve at larger densities and above 0.01 fm−3 the
fraction of α particles is much larger for T = 10 MeV than for
T = 5 MeV. This effect is still seen in the pasta phase, Fig. 7:
above 0.01 fm−3 α-particle fractions are larger at T = 8 MeV
than at T = 5 MeV.
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FIG. 7. (Color online) α-particle density for (a) T = 5 MeV
and (b) T = 8 MeV and Yp = 0.3 and 0.5 obtained with NL3 for
homogeneous matter (thin lines) and gas phase of the pasta-like
matter (thick lines). All calculations include the ω meson–α particle
interaction.

It is worth emphasizing some points related to the effects
of the α particles present in the inner crust of a compact star.
They are small or negligible in calculations of the evolution
of protoneutron stars because of the very low densities
involved. However, simulations of supernova explosions seem
to indicate that the internal structure of the pasta phase plays
a decisive role in avoiding the stalling process. Moreover, at
the inner crust the shear viscosity, thermal conductivity, and
electrical conductivity are mainly determined by electron-ion
scattering. Above neutron drip it is important also to consider
electron-neutron scattering [37–39]. It has been shown [40]
that the shear viscosity in the inner crust, which is mainly
determined by electrons, is affected by the electron-impurity
scattering at low temperatures. Recently, taking into account
electron-proton scattering it was shown in [39] that the pasta
structures would not increase the shear viscosity and thermal
conductivity as expected, because of an effective reduction
of the proton number of the clusters owing to ion screening
effects. We expect that the presence of α particles will give
an extra contribution that should be calculated. In this paper it
was also shown that the scattering of neutrinos from neutrons
would be defined by the difference between the neutron content
of the pasta structures and the dripped neutron gas. The
reduction of the background neutron gas due to the α-particle
formation could increase the effective neutron content of the
pasta structures.

In order to show the effect of the α-particle interaction on
the background gas of the pasta phase, we plot in Fig. 8, for
matter with trapped neutrinos and a lepton fraction Yl = 0.4,
the density ρα obtained with free and interacting particles.
The α-particle density is lower for TW. A smaller α-particle
fraction is due to the smaller symmetry energy for TW at
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FIG. 8. (Color online) α-particle density in the gas phase of
pastalike matter for T = 5 MeV and β-equilibrium matter with
trapped neutrinos obtained with NL3, GM1, and TW. The α-particle
density is given for three cases: free α particles �α = 0 (thin lines),
interacting α particles with �α = 4�v (thick lines), and, just for NL3,
interacting α particles with �α = 2�v (red medium thick line).

subsaturation densities, which does not favor the formation
of isospin symmetric clusters. GM1, on the other hand,
has the largest symmetry energy and predicts much larger
α-particle fractions. We also conclude that it is crucial to
know with accuracy the strength of the interaction to obtain
the correct order of magnitude for Yα . At ρ = 0.08 fm−3,
which corresponds approximately to the crust-core transition,
the difference between a free α-particle gas and an interacting
one with �α = 4�v could be as high as six orders of magnitude.
Reducing the repulsive ω-α interaction to one half, �α = 2�v ,
reduces the difference to three orders of magnitude. This
test is shown only for NL3 and is represented in the figure
by the red medium thick line, close to the GM1 result with
�α = 4�v .

C. Effect of the α particles on the phase transitions

In Fig. 9 we have plotted the free energy for homogeneous
and pastalike matter described by the NL3 model with T =
5 MeV and proton fractions Yp = 0.5, 0.3 and for β-
equilibrium matter with trapped neutrinos for a lepton fraction
Yl = 0.4. The extension of the pasta free energy is determined
by the binodal surface and becomes smaller when the proton
fraction decreases. The system in equilibrium chooses the
configuration with lower free energy so the pastalike matter
defines the ground state of the system only while its free
energy is lower than the free energy of the corresponding
homogeneous matter.

In Tables II and III the densities at the crossing between the
homogeneous and the pasta phases are given for NL3 and TW.
The two crossing phases correspond to homogeneous matter
to pasta (ρ1

t in the tables), at very low densities, and pasta
to homogeneous matter (ρ2

t in the tables), at slightly higher
densities. The corresponding pressures (P 1 and P 2 obtained
in the pasta phase) are also given. The (*) means that the
numbers shown for the crossing densities with NL3 and no α

particles are different from the ones shown in [6] because a
different parametrization for the surface energy was used here.

It is seen from Tables II and III that the transition density
for symmetric matter is smaller than the transition density for
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FIG. 9. (Color online) Free energy for the homogeneous and
pastalike matter obtained within the NL3 for T = 5 MeV and several
proton fractions. The red dashed line defines the pasta free energy
and its extension is determined by the binodal. The crossings of the
pasta and the homogeneous free energies define the extension of the
pasta phase.

matter with Yp = 0.3, while the opposite would be expected
since the binodal has a smaller extension for the smaller
proton fractions. In fact a Thomas- Fermi calculation predicts,
respectively, 0.104 and 0.092 fm−3 for Yp = 0.5 and Yp = 0.3
for NL3 and T = 5 MeV [41]. As can be seen from Fig. 9,
there is a range of densities close to the transition density
when the free energies of pasta and homogeneous matter
do not differ much. The same occurs with a Thomas-Fermi
calculation. This corresponds to the range of densities that
is sensitive to the method used and the self-consistency of
the method. One large drawback of the coexisting phase
method is the fact that the proton distribution inside the pasta
structure is not perturbed by the Coulomb field. In particular,
for symmetric matter the proton fraction of the structure is
0.5, larger than the prediction of a Thomas-Fermi calculation,
which would predict that protons spread, giving rise to a
smaller proton fraction, since the neutrons are not affected.
This effect is larger the larger the proton fraction and is
particularly critical for symmetric matter. We have verified
that the density transition for symmetric matter at T = 5 MeV
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TABLE II. Densities of the inner edge of the crust (crossing points) for NL3.

ρ1
t /ρ

2
t P 1/P 2

EOS (fm−3) (MeV/fm3) Pasta structure

T = 5 MeV
Yp = 0.5

no α’s (*) 0.004/0.077 0.039/2.065 Droplets, rods, slabs
�va = 0 0.010/0.077 0.155/2.069 Droplets, rods, slabs
�va = 4�v 0.004/0.077 0.036/2.065 Droplets, rods, slabs

Yp = 0.3
no α’s (*) 0.003/0.082 0.015/1.136 Droplets, rods, slabs
�va = 0 0.006/0.082 0.044/1.138 Droplets, rods, slabs
�va = 4�v 0.003/0.082 0.017/1.136 Droplets, rods, slabs

Yl = 0.4
no α’s 0.003/0.080 0.024/1.430 Droplets, rods, slabs
�va = 0 0.007/0.080 0.060/1.431 Droplets, rods, slabs
�va = 4�v 0.003/0.080 0.024/1.430 Droplets, rods, slabs

T = 8 MeV
Yp = 0.3

no α’s (*) 0.025/0.042 0.275/0.516 Droplets, rods
�va = 0 0.025/0.045 0.281/0.572 Droplets, rods
�va = 4�v 0.025/0.042 0.275/0.515 Droplets, rods

Yl = 0.4
no α’s
�va = 0 0.029/0.039 0.418/0.593 Droplets, rods
�va = 4�v

TABLE III. Densities of the inner edge of the crust (crossing points) for TW.

ρ1
t /ρ

2
t P 1/P 2

EOS (fm−3) (MeV/fm3) Pasta structure

T = 5 MeV
Yp = 0.5

no α’s (*) 0.004/0.079 0.037/2.060 Droplets, rods, slabs
�va = 0 0.012/0.079 0.160/2.067 Droplets, rods, slabs
�va = 4�v 0.004/0.079 0.038/2.060 Droplets, rods, slabs

Yp = 0.3
no α’s (*) 0.003/0.086 0.018/1.209 Droplets, rods, slabs
�va = 0 0.007/0.086 0.049/1.211 Droplets, rods, slabs
�va = 4�v 0.003/0.086 0.018/1.209 Droplets, rods, slabs

Yl = 0.4
no α’s (*) 0.004/0.085 0.028/1.536 Droplets, rods, slabs
�va = 0 0.008/0.085 0.072/1.534 Droplets, rods, slabs
�va = 4�v 0.004/0.085 0.026/1.537 Droplets, rods, slabs

T = 8 MeV
Yp = 0.5

no α’s (*)
�va = 0 0.030/0.042 0.605/0.919 Droplets, rods
�va = 4�v

Yp = 0.3
no α’s (*) 0.021 0.054 0.221/0.714 Droplets, rods
�va = 0 0.024/0.056 0.263/0.747 Droplets, rods
�va = 4�v 0.021/0.054 0.222/0.715 Droplets, rods

Yl = 0.4
no α’s (*) 0.023/0.050 0.306/0.816 Droplets, rods
�va = 0 0.026/0.050 0.389/0.818 Droplets, rods
�va = 4�v 0.023/0.050 0.306/0.816 Droplets, rods
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TABLE IV. Densities of the inner edge of the crust (crossing points) for T = 5 MeV and �α = 4�v .

ρ1
t /ρ

2
t (fm−3) P 1/P 2 (MeV fm−3)

NL3 GM1 TW NL3 GM1 TW

Yp = 0.5 0.004/0.077 0.005/0.080 0.004/0.079 0.039/2.065 0.049/2.076 0.038/2.060
Yp = 0.3 0.003/0.082 0.004/0.088 0.003/0.086 0.017/1.136 0.021/1.243 0.018/1.209
Yl = 0.4 0.003/0.080 0.003/0.094 0.004/0.085 0.024/1.430 0.028/1.527 0.026/1.537

would increase to 0.087 fm−3 if the central proton fraction of
the structure were reduced by 20% because of the Coulomb
force.

The presence of the α particles has only a small effect
on the pasta phase structure and on the size of the clusters.
The largest effect occurs for the lower densities, namely, the
low-density limit of the onset of the pasta phase, when a gas of
free α particles is considered: this defines an upper limit of the
possible effect. The density at the upper border may be slightly
larger for temperatures and proton fractions close to the critical
values above which the pasta phase disappears, like the results
obtained for T = 8 MeV. The density at the lower border is
generally larger due to the softer EOS for the homogeneous
matter with α particles. Including the interaction of the
α particles with the ω meson defines the extension of the pasta
phase to the limits obtained without α particles. The effect
of the model is mainly noticeable close to the critical values
of temperature and proton fraction: in particular, for matter
with trapped neutrinos at T = 8 MeV we predict a pasta phase
within TW, with or without α particles; however, for NL3
there is a pasta phase only in the presence of noninteracting
α particles. A more precise knowledge of the effect of α

particles requires a self-consistent calculation, within, for
instance a Thomas-Fermi calculation.

We have included in Tables II and III the pressure at
the transition between the pasta phase and the homogeneous
matter because it as been shown in [42] that this pressure
defines the mass and moment of inertia of the crust of compact
stars. The presence of α particles does not seem to have a large
effect on the pressure at the transition.

At this point a comment on the effect of thermal fluctuations
is in order. The problem of the effect of thermal fluctuations
on the pasta structures has been studied in [43,44] and it was
shown that thermally induced displacements of the rodlike
and slablike nuclei could melt the lattice structure when these
displacement are larger than the space available between the
cluster and the boundary of the Wigner-Seitz cell. Using
the elastic constants calculated in [43], the authors of [44] have
calculated the critical temperatures above which the ordered
configuration is destroyed. While for the rodlike clusters and
for the densities and temperatures considered in our work the
lattice would not be affected by the thermal fluctuations, for
the slabs and densities considered T = 5 MeV is a limiting
temperature.

Table IV allows a comparison between the models NL3,
GM1, and TW at the crust-core transition for T = 5 MeV and
several proton fractions. The values in this table include the
effect of interacting α particles. GM1 predicts larger transition

densities at the crust-core boundary. This reflects the larger
binodal region this model presents.

V. CONCLUSIONS

In the present work we have studied the effect of
α particles on warm low-density stellar matter as found
in the inner edge of the crust of a protoneutron star. We
have considered three different types of relativistic nuclear
model: the parametrizations NL3 [11] and GM1 [13] of the
nonlinear Walecka model with constant couplings and the TW
parametrization of the density-dependent relativistic hadronic
model [14] with density-dependent coupling parameters.

We first considered a homogeneous neutral gas formed
by protons, neutrons, electrons, and α particles with a fixed
proton fraction or in β equilibrium with trapped neutrinos. The
α particles were described as a gas of bosons, and two opposite
situations were considered: a free gas of α particles with
binding energy 28.3 MeV was used with no interaction taken
into account, and a gas of particles with binding energy
28.3 MeV interacting through the exchange of a ω meson
which reduces the interaction to a repulsive interaction. It
is expected that a realistic situation lies between these two
extrema. The binding energy is density and temperature
dependent, and in the approach made in [24] the inclusion of a
term that describes the temperature and density dependence of
the binding energy is essential to dissolve the clusters. In the
present work this was not considered explicitly, because, in or-
der to reduce the unknown α-particle couplings, the attractive
σ meson–α interaction was not included. It was shown that
the inclusion of the repulsive interaction is essential to avoid
an overprediction of α particles above ρ ∼ 0.001 fm−3, and
it is also the mechanism responsible for the dissolution of the
α-particle clusters in the present approach. In the low-density
limit (ρ < 0.0001 fm−3) all models considered behave in a
similar way: this behavior essentially coincides with the one
predicted by the virial expansion [23] when the interparticle
interaction is negligible, and the system behavior is model
independent. The main differences between models occur
for ρ > 0.001 fm−3 when the α-particle fraction differences
between models may be as large as one order of magnitude or
even larger. TW predicts the smallest fractions and GM1 the
largest ones. Temperature shifts the maximum on the α-particle
distribution and the density of cluster dissolution to larger
densities, although the maximum values of the distributions
themselves decrease with temperature. The maximum values
of the α-particle distributions also decrease when the proton
fraction decreases. However, the proton fraction has no effect
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on the density localization of the maximum nor on the density
of dissolution of the clusters.

We next investigated the pasta phase with α particles.
We described the pasta phase using the method described
in [5,6,8]: the coexisting phases are determined from Gibbs
conditions and surface energy and Coulomb interaction are
added a posteriori. For the surface energy we have used the
parametrizations determined in terms of the proton fraction
and the temperature using a Thomas-Fermi calculation. It was
shown in [5,6,8] that the method of coexisting phases is very
sensitive to the surface energy. We performed our calculations
for two temperatures T = 5 and 8 MeV, two proton fractions
Yp = 0.5 and 0.3, and for β-equilibrium matter with trapped
neutrinos and a lepton fraction of 0.4. We analyzed the fraction
of α particles as a function of density in the pasta phase and,
comparing with the fraction of α particles in homogeneous
matter, it was shown that it was larger by many orders of
magnitude for densities above 0.01 fm−3. It is important
to stress that the prediction obtained within a homogeneous
EOS calculation underestimates the α-particle fraction. This
certainly affects transport properties such as heat conduction
and electrical conductivity.

It was also seen that, while for symmetric matter the
α-particle fraction decreases with temperature when interact-
ing α particles are considered, for Yp = 0.3 the opposite oc-
curs. This is an interesting effect related to the proton fraction
in the background gas, which increases with temperature for
asymmetric matter.

Finally we analyzed the effect of the α particles on the pasta
structure. It was shown that the effect is small except close to
the critical temperatures and/or proton fractions when it may
still predict a pasta phase, while no pasta phase would occur
in the absence of light clusters. A self-consistent calculation
is necessary to give more quantitative predictions. Other small
clusters should also be included in the calculation.
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APPENDIX

The surface tension coefficient σ , was calculated in the
Thomas-Fermi approximation and fitted to the functional
form given in Eq. (41), with σ (x) = σ (x, T = 0), a(T ), and

TABLE V. Surface tension coefficient parameters fitted within the
Thomas-Fermi approximation for GM1 [13], NL3 [11], and TW [14]
parametrizations.

GM1 σ (x) a(T ) b(T )

σ0 1.488 01
σ1 10.6647
a0 0.005 215 94 0.006 408 79
a1 −4.324 19 0.012 518 7 0.000 140 886
a2 61.6172 −0.001 569 99 −4.176 15×10−5

a3 −488.383 8.4792×10−5 1.6856×10−6

a4 1678.95
a5 −2450.41
a6 1296.86

NL3 σ (x) a(T ) b(T )
σ0 1.123 07
σ1 20.7779
a0 0.012 122 2 0.007 921 68
a1 −5.849 15 0.016 64 −8.2504×10−5

a2 138.839 −0.001 372 66 −4.593 36×10−6

a3 −1631.42 4.0257×10−5 −2.816 79×10−7

a4 8900.34
a5 −21 592.3
a6 20 858.6

TW σ (x) a(T ) b(T )
σ0 1.217 35
σ1 8.334 25
a0 −0.004 818 23 0.008 446 64
a1 −2.180 75 0.006 649 8 −7.233 79×10−4

a2 18.0584 −0.000 267 288 9.6817×10−5

a3 −96.548 1.345 44×10−5 −5.084 88×10−6

a4 259.517
a5 −296.69
a6 125.94

b(T ) having the following expressions:

σ (x) = σ0 exp(−σ1x
3/2)(1 + a1x + a2x

2

+ a3x
3 + a4x

4 + a5x
5 + a6x

6),

a(T ) = a0 + a1T + a2T
2 + a3T

3,

b(T ) = a0 + a1T + a2T
2 + a3T

3.

The results of the model fitting using the Thomas-Fermi
approximation for the GM1, NL3, and TW parametrizations
are given in Table V for temperatures up to T = 10 MeV.
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