
PHYSICAL REVIEW C 82, 025804 (2010)

Medium effects of magnetic moments of baryons on neutron stars under strong magnetic fields
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We investigate medium effects caused by density-dependent magnetic moments of baryons on neutron stars
under strong magnetic fields. If we allow the variation of anomalous magnetic moments (AMMs) of baryons in
dense matter under strong magnetic fields, AMMs of nucleons are enhanced to be larger than those of hyperons.
The enhancement naturally causes the chemical potentials of the baryons to be large and leads to the increase of
the proton fraction. Consequently, it causes the suppression of hyperons, resulting in stiffness of the equation of
state. Under the presumed strong magnetic fields, we evaluate the relevant particle populations, the equation of
state, and the maximum masses of neutron stars by including density-dependent AMMs and compare them with
those obtained from AMMs in free space.
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I. INTRODUCTION

Recently, strong magnetic fields were observed at the sur-
face of soft γ ray repeaters, called magnetars. The magnitude
of the fields was estimated as on the order of 1014–1015 G [1]. In
the interior of neutron stars, according to the scalar virial the-
orem, the magnetic field strength could be about 1018 G. Such
strong magnetic fields may affect the structure of a neutron
star, changing properties such as the populations of particles,
the equation of state (EOS), and mass-radius relations. Many
studies of neutron stars with strong magnetic fields have
been reported in several papers, including the electromagnetic
interaction, the Landau quantization of charged particles, and
anomalous magnetic moments (AMMs) of baryons [2–8]. But
the roles of the relevant particles’ AMMs in a strong magnetic
field are still uncertain because the properties of AMMs in
nuclear matter are not fully scrutinized yet.

In contrast, medium effects of the electromagnetic (EM)
form factors for nucleons have been mainly investigated in
electron scattering both experimentally [9–11] and theoreti-
cally [12,13]. From these results, one may expect the effect
of the EM form factors to increase by about 20%–40%. In
particular, various possible variations of the AMMs of baryons
in nuclear matter have been studied extensively by many
different theoretical models [14–21]. However, there are still
remained some ambiguities about the density dependence of
the AMMs stemming from the model dependence of baryons
in nuclear matter. Furthermore, experimental data also show
large error bars. For example, the AMM of the � hyperon in
the 7

�Li nucleus recently measured at BNL [22] still showed
large error bars. Further experiments are expected to deduce
more clearly the AMM properties in nuclear matter.

The authors of Ref. [21] studied the medium dependence
of the AMMs of baryons in symmetric nuclear matter by using
two different models, the quark-meson coupling (QMC) [23]
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and the modified quark-meson coupling (MQMC) models
[24]. In the QMC model, the density dependence of the AMMs
of baryons is very small, while the AMM values of a proton
and a � hyperon in the MQMC model are enhanced by about
25% and about 10%, respectively, at saturation density. Such
large enhancements in the MQMC model are quite feasible
because the AMM of a baryon generally depends strongly on
the bag radius.

In the sense, the MQMC model could effectively take the
increased effect of nucleons into account, by increasing the
bag radius by about 20% at saturation density. But in the QMC
model the bag radius is rarely changed to make the change of
AMMs very small. Therefore, the MQMC model can provide
us with a theoretical framework to discuss medium effects of
AMMs.

In this work, under the assumption that the AMM values of
baryons may considerably depend on the medium, we apply
the effects to a neutron star. The calculation of the AMMs of
baryons in a medium is done by considering only SU(6) quark
wave functions obtained by using the MQMC model. Further
possible consequences of the effects under strong magnetic
fields are also discussed using observational quantities of
neutron stars.

Since quantum hadrodynamics (QHD), which is a system-
atically developed model for finite nuclei and nuclear matter,
provides us with results very similar to those obtained by the
MQMC model for the structure of a neutron star, we employ
the QHD model for a neutron star under strong magnetic
fields by including the electromagnetic potential, the Landau
quantization of charged particles, and the AMM values of
baryons [3,5,7,8]. But to extract the density dependence of the
AMMs, we adopt the MQMC model because the model can
be more easily applied than QHD to describe the AMMs in
nuclear matter and successfully generate the AMM values of
baryon octets in nuclear matter.

This paper is organized as follows. In Sec. II, the QHD
model for dense matter under a strong magnetic field is briefly
introduced by focusing on the role of the AMM in the magnetic
field. Results and discussion are presented in Sec. III. The
summary and conclusions are given in Sec. IV.
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II. THEORY

The Lagrangian density of the QHD model for dense
matter in the presence of strong magnetic fields, which is
introduced by the vector potential Aµ due to magnetic fields,
can be represented in terms of octet baryons, leptons, and five
meson fields as follows:

L =
∑

b

ψ̄b

(
iγµ∂µ − qbγµAµ − M∗

b (σ, σ ∗) − gωbγµωµ

− gφbγµφµ − gρbγµ�τ · ρµ − 1

2
κbσµνF

µν

)
ψb

+
∑

l

ψ̄l(iγµ∂µ − qlγµAµ − ml)ψl + 1

2
∂µσ∂µσ

− 1

2
m2

σ σ 2 − U (σ ) + 1

2
∂µσ ∗∂µσ ∗ − 1

2
m2

σ ∗σ
∗2

− 1

4
WµνW

µν + 1

2
m2

ωwµwµ − 1

4
�µν�

µν + 1

2
m2

φφµφµ

− 1

4
RiµνR

µν

i + 1

2
m2

ρρµρµ − 1

4
FµνF

µν, (1)

where b and l denote the octet baryons and the leptons
(e− and µ−), respectively. The effective mass of a baryon, M∗

b ,
is simply given by M∗

b = Mb − gσbσ − gσ ∗bσ
∗, where Mb is

the free mass of a baryon in vacuum. The σ , ω, and ρ meson
fields describe nucleon-nucleon (N -N ) and nucleon-hyperon
(N -Y ) interactions. The Y -Y interaction is mediated by the σ ∗
and φ meson fields. U (σ ) is the self-interaction of the σ field
given by U (σ ) = 1

3g2σ
3 + 1

4g3σ
4. Wµν , Riµν , �µν , and Fµν

represent the field tensors of the ω, ρ, φ, and photon fields,
respectively.

The AMMs of baryons interact with an external magnetic
field in the form κbσµνF

µν , where σµν = i
2 [γµ, γν] and κb is

the AMM of a baryon. For a proton, κp = 1.7928µN with the
nucleon magneton defined as µN = e/2Mp in natural units.
Therefore, one may expect two possibilities for the medium
dependence of the AMM. The first one comes from the strength
of the AMM and the second may stem from the possible
variation of the baryon mass at the nucleon magneton in the
nuclear medium.

But the nucleon magneton is given by the mass of a proton
in free space because it is usually treated as a unit for the
magnetic moment of the Dirac particle. It means that the
density dependence of the AMM is taken into account by
the AMM strength. That is, in this work, the κb strength
depends on the density but µN does not. The medium
dependence of the AMM on the density is evaluated from
the MQMC model in our previous paper [21], where baryons
are treated as MIT bags, and all κb are calculated from SU(6)
quark wave functions and the bag radius depending on the
medium.

The Dirac equations of octet baryons and leptons in the
mean field approximation are given by(

iγµ∂µ − qbγµAµ − M∗
b (σ, σ ∗) − gωbγ

0ω0 − gφbγ
0φ0

− gρbγ
0τ3ρ30 − 1

2κbσµνF
µν

)
ψb = 0, (2)

(iγµ∂µ − qlγµAµ − ml)ψl = 0, (3)

where Aµ = (0, 0, Bx, 0) refers to the constant magnetic
field B, which is assumed to be along the z axis. The energy
spectra of baryons and leptons are given by

EC
b =

√
k2
z + (√

M∗
b

2 + 2ν|qb|B − sκbB
)2 + gωbω0

+ gφbφ0 + gρbI
b
3 ρ30,

EN
b =

√
k2
z + (√

M∗
b

2 + k2
x + k2

y − sκbB
)2 + gωbω0 (4)

+ gφbφ0 + gρbI
b
3 ρ30,

El =
√

k2
z + m2

l + 2ν|ql |B,

where EC
b and EN

b represent the energies of a charged baryon
and a neutral baryon, respectively. The Landau quantization
of a charged particle caused by magnetic fields is denoted as
ν = n + 1/2 − sgn(q)s/2 = 0, 1, 2, . . . , with electric charge
q and spin up (down) s = 1(−1). The equations of the meson
fields are given by

m2
σ σ + ∂U (σ )

∂σ
= gσb

∑
b

ρb
s , m2

σ ∗σ
∗ = gσ ∗b

∑
b

ρb
s ,

m2
ωω0 = gωb

∑
b

ρb
v , m2

φφ0 = gφb

∑
b

ρb
v , (5)

m2
ρρ30 = gρb

∑
b

I b
3 ρb

v ,

where ρs and ρv are the scalar and the vector densities under
magnetic fields, respectively. Detailed expressions for these
quantities are given in Refs. [3,7]. The chemical potentials of
baryons and leptons are, respectively, given by

µb = Eb
f + gωbω0 + gφbφ0 + gρbI

b
z ρ30, (6)

µl =
√

k2
f + m2

l + 2ν|ql |B, (7)

where Eb
f is the Fermi energy of a baryon and kf is the

Fermi momentum of a lepton. For charged particles, the Eb
f

is written as

Eb
f

2 = kb
f

2 + (√
m∗

b
2 + 2ν|qb|B − sκbB

)2
, (8)

where kb
f is the Fermi momentum of a baryon. Since the

Landau quantization does not appear for neutral baryons, the
Fermi energy is simply given by

Eb
f

2 = kb
f

2 + (m∗
b − sκbB)2. (9)

We exploit three constraints for calculating the properties of
a neutron star: baryon number conservation, charge neutrality,
and chemical equilibrium. The meson field equations in Eq. (5)
are solved with the chemical potentials of baryons and leptons
under the above three constraints. The total energy density is
given by εtot = εm + εf , where the energy density for matter
fields is given by

εm =
∑

b

εb +
∑

l

εl + 1

2
m2

σ σ 2 + 1

2
m2

σ ∗σ
∗2 + 1

2
m2

ωω2

+ 1

2
m2

φφ2 + 1

2
m2

ρρ
2 + U (σ ), (10)
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and the energy density owing to the magnetic field is given by
εf = B2/2. The total pressure can also be written as

Ptot = Pm + 1
2B2, (11)

where the pressure due to matter fields is obtained from
Pm = ∑

i µiρ
i
v − εm. The relation between mass and radius

for a static and spherical symmetric neutron star is generated
by calculating the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions with the equation of state above.

III. RESULTS AND DISCUSSION

We use the parameter set in Ref. [25] for the coupling
constants gσN , gωN , and gρN , where N denotes the nucleon.

For the coupling constants of hyperons in the nuclear medium,
gωY is determined by the quark counting rule, and gσY is fitted
to reproduce the potential of each hyperon at saturation density,
whose strengths are given by U� = −30 MeV, U� = 30 MeV,
and U� = −15 MeV. For density-dependent AMM values
of baryons, we use the values obtained from our previous
calculation done using the MQMC model [21]. Since the
magnetic fields may also depend on density, we take the
density-dependent magnetic fields used in Refs. [2,8]:

B(ρ/ρ0) = Bsurf + B0{1 − exp[−β(ρ/ρ0)γ ]}, (12)

where Bsurf is the magnetic field at the surface of a neutron star,
which is taken as 1015 G from observations, and B0 represents
the magnetic field saturated at high densities.
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FIG. 1. (Color online) Populations of particles in a neutron star for the slowly varying magnetic field (β = 0.05 and γ = 2). Left panels
denote results for constant AMMs in free space and right panels are for density-dependent AMMs obtained from the MQMC model. For more
direct comparison, all results for p and �− are summarized in the left-hand side (LHS) of Fig. 3.
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In the present work, we use two different sets, slowly (β =
0.05 and γ = 2) and quickly (β = 0.02 and γ = 3) varying
magnetic fields. Since the magnetic field is usually written in
units of the critical field for the electron, Bc

e = 4.414 × 1013 G,
the B and the B0 in Eq. (12) can be written as B∗ = B/Bc

e

and B∗
0 = B0/B

c
e . Here, we regard the B∗

0 as a free parameter
and investigate the medium effects of AMMs in a neutron
star for three different magnetic fields given by B∗

0 = 1 × 105,
2 × 105, and 3 × 105.

A. Medium effects on the populations of particles

Before presenting medium effects of density-dependent
AMMs, we briefly discuss the effects of a magnetic field
on a neutron star. A strong magnetic field affects charged
particles through the EM interaction term (eB), which leads

to the Landau quantization, and all baryons by the AMM term
(κbB).

The quantum numbers for the Landau levels have positive
values ν = 0, 1, 2, . . . , so that the magnetic field increases the
energies of charged particles. Consequently, the chemical po-
tentials of charged particles are increased by the magnetic field.

In contrast, the AMM term gives rise to spin splitting, so that
the energy level is divided into two levels: one higher and the
other lower. Since the chemical potential is the Fermi surface
energy of a particle, the AMM term enlarges the chemical
potential of baryons with increasing magnetic fields.

If we allow variations of AMMs in a nuclear medium,
the AMM values of relevant baryons are usually increased.
According to our previous results from the MQMC model [21],
for example, the AMM enhancements of a proton, �, and � are
about 25%, 10%, and 5%, respectively, at saturation density.
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FIG. 2. (Color online) Same as Fig. 1 but for the quickly varying magnetic field (β = 0.02 and γ = 3). For more direct comparison, all
results for p and �− are summarized in the right-hand side (RHS) of Fig. 3.
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Therefore, medium effects because of density-dependent
AMMs cause the chemical potentials of relevant baryons to
become larger in addition to the enlargement by the effect of
the magnetic fields.

In Figs. 1 and 2, the populations of baryons and leptons
for the slowly (Fig. 1) and quickly (Fig. 2) varying magnetic
fields are presented for various B∗

0 values. The left panels
are results for constant AMMs and the right panels those
for density-dependent AMMs. The populations of protons
and electrons are enhanced with higher B∗ from the upper
to the lower figures. If we look at the electron population at
ρ/ρ0 = 10, the enhancement is easily discerned. In particular,
the population of electrons is larger than that of protons
because the Bohr magneton µe is about 2000 times larger
than the nucleon magneton µN . This effect is fully ascribed
to the increased magnetic fields.

The difference between left and right panels shows medium
effects due to density-dependent AMMs. One can see the
increase of electron population from the left to the right
panels. The higher the magnetic field, the larger medium
effect appears.

In order to clearly demonstrate both effects, i.e.,
the magnetic field effects and medium effects due to
density-dependent AMMs, the effects together in Fig. 3. We
show populations of protons and a �− for two different B∗

0
fields, and for the constant and the density-dependent AMM
values. Since both effects increase the chemical potentials
of charged particles, populations of both particles are clearly
increased.

The magnetic field effect seems to play a major role in
increasing populations compared to the medium effect. But
in the ρ/ρ0 = 6–8 region the medium effect due to density-
dependent AMMs can be competitive with the magnetic field
effect. The medium effect is almost the same as that of the
magnetic field increased by one unit.

The enhancement of the proton fraction gives rise to
the suppression of other baryons because of baryon number
conservation. This means that there suppression of neutrons
and � hyperons appears, as shown in Figs. 1 and 2.

However, the threshold density for �− is pushed to a
higher density with stronger magnetic field as shown in Fig. 3.
However, the abundance of �− is not changed as much in

comparison with � as shown in Figs. 1 and 2. Since the �−
hyperon is a charged particle, the population is increased by the
magnetic field, while baryon number conservation and charge
neutrality lead to suppression of the population. Therefore,
the behavior of the �− population is balanced by the effects
of the magnetic field and the conditions of a neutron star.

The difference between the slowly (Fig. 1) and quickly
(Fig. 2) varying magnetic fields is the slope of the magnetic
field in the region of middle densities. Therefore, this differ-
ence just corresponds to the increase of the magnetic field
strength B∗

0 at the same density. However, the effect of the
difference is not remarkable because the exponential term is
small compared with the effect of the B∗

0 term, irrespective of
the γ and β values used here.

B. Medium effects on the EOS, mass, and radius

Magnetic fields and density-dependent AMMs also affect
the EOS and the maximum mass of a neutron star. As shown
in Fig. 4, the EOS in dense matter becomes stiffer with the
increase of the chemical potentials and the suppression of
hyperons by the magnetic field. As a result, the maximum
masses of neutron stars are increased. The pressure caused
by matter fields also strongly depends on the strength of the
magnetic fields, but weakly depends on the density-dependent
AMMs as shown in Fig. 4. For the quickly varying magnetic
field, the slopes of the EOSs between ρ/ρ0 = 3 and 5 are
rapidly changed because magnetic fields cause the EOS to
become stiffer more quickly.

But the effects of density-dependent AMMs are smaller
than those of the magnetic field strength, just as for the popu-
lations. In a relatively small magnetic field (B∗

0 = 1 × 105 G),
the density dependence of AMMs rarely affects the EOS.
However, in strong magnetic fields (B∗

0 � 2 × 105), the
contribution of the density-dependent AMMs in the nuclear
medium appears explicitly. For example, the increase of the
pressure Pm is about 37 MeV fm−3 at ρ = 6ρ0 for the fast case
in B∗

0 = 3 × 105.
The mass-radius relations of neutron stars obtained from

the TOV equations are shown in Fig. 5. The masses of
neutron stars, Mstar, which are obtained from total energy
density and total pressure (εtot,Ptot), depend very strongly
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FIG. 3. (Color online) Populations of p and �− in a neutron star for both slowly (LHS) and quickly (RHS) varying magnetic fields. Thick
lines represent results for density-dependent AMM and thin lines are for constant AMM. B∗

0 values are given in units of 105.
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on the strength of magnetic fields. But the contribution of
density-dependent AMMs is indiscernible; it is about 0.1M�,
maximally, even in the largest magnetic fields. Since there
are no direct data for mass-radius relations of magnetars, we
compare our results with the observed neutron stars in the next
section.

C. Comparison with observations

Neutron stars and heavy ion collisions may provide
valuable constraints for the nuclear EOS [26]. Recent data
reported higher masses and larger radii for neutron stars. For
instance, M = (2.0 ± 0.1)M� for 4U 1636-536 was reported
in Ref. [27], and the authors in Ref. [28] recently investigated
seven neutron stars, six binaries and an isolated neutron
star (RX J1865-3754), showing M = (1.9–2.3)M� and R =
11–13 km. Pulsar I of the globular cluster Terzan 5 (Ter 5 I)
shows a lower mass limit M � 1.68M� at 95% confidence
level [29]. Another constraint deduced independently of the
given models is obtained from XTE J1739-285 [30], which
presents a constrained curve for the ratio between mass and
radius.

Thus we compare our results with Ter 5 I and XTE
J1739-285 in Fig. 5. In the hyperonic star without magnetic
fields (“no B” in Fig. 5), the maximum mass is about 1.59M�,

which does not satisfy the mass limit (1.68M�) of Ter 5 I.
In addition, the constraint from XTE J1739-285 runs though
an unstable region. When magnetic fields are introduced, the
LHS in Fig. 5 for the slowly varying field shows that the line
from XTE J1739-285 also goes through the unstable region.
However, results for the quickly varying magnetic field can
satisfy the constraint of XTE J1739-285 and explain masses
of neutron stars as 2–3)M� with magnetic fields for hyperonic
stars.

In order to detail the effects of density-dependent AMMs,
in Table I, the central density (ρc), maximum masses, and
magnetic fields at central density (B∗

c ) for the quickly varying
magnetic field are tabulated for both constant and density-
dependent AMMs. The effects of density-dependent AMMs
are negligible in small magnetic fields. But as the magnetic
fields increase, the effect also increases, and the maximum
mass is increased by about 0.07M� for B∗

0 = 3 × 105 in the
quickly varying magnetic fields.

Finally, one can derive the limit of magnetic fields in
the interior of a neutron star and the limit of density-
dependent AMMs in the medium. The allowed strength of
the magnetic fields is usually constrained by the scalar virial
theorem [4,31]. It is given by the approximate relation B ∼
2 × 108(M/M�)(R�/R)2 G for a nonrotating star. For the star
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TABLE I. The central density (ρc), maximum masses (M/M�),
and central magnetic field (B∗

c ) for various B∗
0 in both constant

and changing AMMs. The results are obtained in quickly varying
magnetic fields.

B∗
0 ρc Mstar/M� B∗

c

Constant AMM 5 × 104 6.05 2.08 4.94 × 104

1 × 105 6.05 2.43 9.88 × 104

2 × 105 5.55 2.71 1.93 × 105

3 × 105 4.90 2.88 2.71 × 105

Density-dependent 5 × 104 6.05 2.08 4.94 × 104

AMM 1 × 105 6.05 2.42 9.88 × 104

2 × 105 5.75 2.76 1.95 × 105

3 × 105 5.00 2.96 2.75 × 105

with R ≈ 10 km and M ∼ M�, we obtain B ∼ 1018 G from
the above relation.

In a model-independent calculation for the maximum
mass of neutron star, the limit of maximum mass is about
M = (3–5)M� [31]. Furthermore, the observations show that
there is no neutron star in the large-mass region which exceeds
3M�. In these results, for the fast case at B∗

0 = 3 × 105 G,
the maximum mass of the star is 2.96M� (2.89M�) for
density-dependent (constant) AMM and the central magnetic
fields is about B = 2.75 (2.71) × 105Bc

e G. We can thus
conclude that the upper limit of magnetic fields might be
B ≈ 3 × 105Bc

e G in a neutron star with hyperons in this
work, although detailed numbers depend on the model and
parameters.

According to the model dependence of the AMM in
other calculations [14–20], the largest enhancement is by
about 40% for nucleons at saturation density [15], but the
other models show enhancement of about 10%–25%. Thus
the enhancement of 25% in this work corresponds to the
maximum enhancement except in Ref. [15]. If we employ
much larger enhancement for the AMM, like the value in
Ref. [15], the contribution of the density-dependent AMM in
the medium may become larger. However, all populations, the
EOS, and the maximum mass should depend on the strength
of magnetic field very strongly, so that the contribution from
varying the AMM still remains in a subsidiary role. Thus the
effect of a density-dependent AMM might be maximal around
0.1M�.

IV. SUMMARY

We investigate the effect of a density-dependent AMM of
baryons in a neutron star under strong magnetic fields by
using the QHD model, which includes a baryon octet and
leptons. By exploiting the density-dependent AMM values
of baryons obtained from the MQMC model, we calculate the
populations of particles, the EOS, and the mass-radius relations
for slowly and quickly varying magnetic fields. The strength
of the magnetic field is expressed as the EM interaction of all
charged particles and the AMM of the baryon octet.

In the populations of particles, all charged particles ex-
perience Landau quantization and its effect depends strongly
on the strength of magnetic fields. Increase of the magnetic
fields enhances the chemical potentials of all charged particles.
In particular, since the proton is the lightest particle among
baryons, the fraction of protons is enlarged by the magnetic
field. As a result, hyperons are suppressed to satisfy the con-
servation of baryon number. The EOS becomes stiffer and thus
the maximum mass of the neutron star also becomes larger.

The mass-radius relations of neutron stars obtained from
magnetic fields are compared with observational data. The
mass-radius relation with the quickly varying magnetic fields
satisfy the constraint given by XTE J1739-285. The effect
of density-dependent AMMs appears in very high magnetic
fields, causing an increase of the maximum mass of the star
by about 0.1M� in B∗

0 = 3 × 105.
We assume a constant magnetic field along the z axis

for a nonrotating star. However, a real neutron star under a
strong magnetic field rotates very rapidly, and the magnetic
fields may be generated by the rotation of matter fields [32].
Thus the calculations should be consistent with each other, that
is, the matter fields in a rotating star create a magnetic field
and the magnetic field produced affects the matter fields. We
shall study this self-consistent approach for the magnetic field
next.
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