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The differential cross sections for the neutrino-induced weak charged current production of strange particles
in the threshold energy region are presented. The general representation of the weak hadronic current is newly
developed in terms of eighteen unknown invariant amplitudes to parametrize the hadron vertex. The Born-term
approximation is used for the numerical calculations in the framework of the Cabibbo theory and SU(3) symmetry.
For unpolarized octet baryons four processes are investigated, whereas in the case of polarized baryons only
one process is chosen to study the sensitivity of the differential cross section to the various polarizations of the
initial-state nucleon and the final-state hyperon.
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I. INTRODUCTION

The study of neutrino-induced weak interactions has be-
come one of the frontiers of theoretical and experimental
research in the fields of cosmology, astrophysics, particle
physics, and nuclear physics. For instance, it allows for the
analysis of the various oscillation experiments, the detailed
study of the strange-quark content of the nucleon, the inves-
tigation of the structure of the hadronic weak current, and
the estimation of the atmospheric neutrino backgrounds for
nucleon decay searches [1,2].

Neutrinos are very important in the study of the strange-
quark contribution to the nucleon spin. In the near future
experiments such as Minerνa will allow physicists to gain
considerable insight regarding the structure of the nucleon
and the hadronic weak current via the neutrino-induced weak
production of strange particles [1].

After the experimental evidence was reported by Ref. [3],
the first extensive theoretical studies of the strange particle
productions via the weak interaction in comparison with
experiment were done in Refs. [4–6]. Shrock and Mecklenburg
independently studied the associated production of charged
current (CC) reactions by employing the Cabibbo theory with
SU(3) symmetry and neutral current (NC) in the framework
of the Weinberg-Salam model, whereas Dewan focused on
the CC and strangeness changing (�S = 1) strange particle
production reactions. They decomposed the norm squared
invariant matrix element in terms of the helicity amplitudes,
which would be determined from the Born diagram.

The main purpose of this paper is the investigation of
strange particle production via the weak interaction of the
neutrino and nucleon near threshold energy. We focus on the
following specific CC reactions:

νp → µ−[K+�+] : CC1 (1)

νn → µ−[K0�+, K+�0, K+�] : CC2, CC3, CC4, (2)
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which are the neutrino-induced associated productions of octet
baryons and pseudoscalar mesons. What makes these reactions
interesting is not only that they provide a possibility to test the
Cabibbo V-A theory and the SU(3) symmetry but also that they
allow the investigation of the sensitivity of the differential cross
section to the various baryon polarizations owing to the exper-
imental feasibility to measure polarization of hyperons [4].

The general formalism is done in the relativistic framework
in the rest frame of the nucleon. The kinematic part of the
reactions is specified in two planes: the leptonic and the
hadronic planes. Unlike the leptonic transition current, there
are no well-developed and tested gauge theories that allow us to
calculate the hadronic weak transition current. Therefore, we
have developed a new model-independent approach to evaluate
the invariant matrix element. Hence we derive, for the first
time, the most general representation of the hadronic weak
current operator for strange particle production.

For the numerical calculation of the differential cross sec-
tion for CC associated productions, we follow a scheme similar
to that employed by Ref. [5] for evaluating the Born diagram
that approximates the hadronic vertex. That is, we apply the
Cabibbo V-A theory in relation to the conserved vector current
(CVC) hypothesis as well as the SU(3) predictions of the strong
coupling constants to determine the invariant amplitudes of the
weak hadronic currents.

II. FORMALISM

In this section we present the relativistic formalism for
the neutrino-induced CC production of the strange particles.
The differential cross section will be constructed as a con-
traction between a leptonic tensor and a hadronic tensor.
The electroweak theory of Glashow, Salam, and Weinberg
is used to calculate the leptonic tensor. The hadronic current is
determined from the newly derived general form of the weak
hadronic current, which is expressed in terms of eighteen
invariant amplitudes that parametrize the hadron vertex. To
extract the values of the eighteen structure functions we
introduce the Born model.

0556-2813/2010/82(2)/025501(15) 025501-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.82.025501


ADERA, VAN DER VENTEL, VAN NIEKERK, AND MART PHYSICAL REVIEW C 82, 025501 (2010)

FIG. 1. The lowest order Feynman diagram of neutrino-induced
strange particle production.

A. Differential cross section

The processes under consideration are of the form

ν(k, h) + N(p1, s1) → �(k′, h′) + K(p′
1) + Y(p′

2, s
′
2). (3)

Here ν and � refer to the initial neutrino and the final state
lepton, respectively, N and Y represent the initial nucleon and
the final hyperon states, respectively, and K stands for the final-
state pseudoscalar meson. The corresponding four-momenta
labels of the particles are also given in parentheses along with
the spin polarization. The lowest order Feynman diagram for
the strange particle production reaction is shown in Fig. 1.

The most general form of the differential cross section of the
reaction process that can be represented by Fig. 1 is constructed
based on Fermi’s golden rule. In the rest frame of the nucleon
[7],

dσ = (2π )4δ(k + p1 − k′ − p′
1 − p′

2)

|v − v1| |M|2

×
{

1

(2π )3
d3k′ 1

(2π )3

d3p′
1

2Ep′
1

1

(2π )3
d3p′

2

}
. (4)

The lowest order Feynman diagram is used to construct the
invariant amplitude for the reaction processes in question. In
general the diagram in Fig. 1 contains four major components:
the weak leptonic transition, the weak hadronic transition, the
gauge boson propagator, and the interaction vertices. Thus the
general expression of M becomes

− iM = [ūl(k′, h′)ηlγµ(I − γ5)ν(k, h)]iDµν

×〈K(p′
1)Y(p′

2)|ηhĴν(q)|N(p1)〉, (5)

where for convenience the neutrino’s Dirac spinor is repre-
sented by ν(k, h) instead of uν(k, h) and Dµν is the gauge
boson propagator,

Dµν = −gµν + qµqν
/
M2

W

q2 − M2
W

, (6)

and the hadronic transition current can be written as

〈K(p′
1)Y(p′

2)|ηhĴν |N(p1)〉 = ūY (p′
2, s

′
2)ηhJν(q)uN (p1, s1),

(7)

with the two factors ηl and ηh given in Table I. Note that here
ηc is the Cabibbo factor and it may have any of the following

TABLE I. The expressions for ηl and ηh in
terms of the weak coupling constant.

CC NC

ηl

−ig

2
√

2

−ig

4

MZ

MW+

ηh

−ig

2
√

2
ηc

−ig

4

MZ

MW+
ηc.

forms in term of the Cabibbo angle θc:

ηc =

⎧⎪⎨
⎪⎩

cos θc, for CC,�S = 0,

sin θc, for CC,�S = 1,

1 for NC.

(8)

The condition Q2 � M2
W (Q2 = −q2) must be satisfied such

that Dµν → gµν/M2
W , which in turn relates the weak coupling

constant with the Fermi constant GF = 1.166 × 10−5 GeV−2.
That is,

GF√
2

= g2

8M2
W

. (9)

Then M becomes [8]

M = GF√
2
η[ūl(k′, h′)γµ(I − γ5)ν(k, h)]

× [ūY (p′
2, s

′
2)Jµ(q)uN (p1, s1)], (10)

where

η =
{

ηc for CC,

ηc

2 for NC.
(11)

Thus the norm squared invariant matrix element may be
written as the contraction between the leptonic tensor, Lµν ,
and the hadronic tensor, Wµν :

|M|2 = G2
F η2

2
LµνW

µν, (12)

where

Lµν = [ūl(k′, h′)γµ(I − γ5)ν(k, h)]

× [ūl(k′, h′)γν(I − γ5)ν(k, h)]∗ (13)

and

Wµν = [ūY (p′
2, s

′
2)Jµ(q)uN (p1, s1)]

× [ūY (p′
2, s

′
2)J ν(q)uN (p1, s1)]∗. (14)

Since the study is done at the elementary level, spin- 1
2 free

particles are described in terms of the Dirac spinor fields with
noncovariant normalization condition:

u(p, s) =
√

E + m

2E

(
φs

�σ · p
E +m

φs

)
, u†(p, s)u(p, s ′) = δss ′ .

(15)
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However, in the small-mass limit, the helicity representation
of the Dirac spinor is more appropriate. That is,

u(p, h) =
√

E + m

2E

(
φh(p̂)

h|p|
E+m

φh(p̂)

)
, h = ±1. (16)

Thus the normalized helicity eigenstates with their correspond-
ing eigenvalues h = ±1 are

φh=+1(ϕ, θ ) =
(

cos θ
2

sin θ
2 eiϕ

)

and φh=−1(ϕ, θ ) =
(

−sin θ
2 e−iϕ

cos θ
2

)
. (17)

The leptonic tensor is derived from the leptonic weak transition
current by applying the Feynman trace technique. This
approach avoids the explicit use of the Dirac spinors and the
gamma matrices for the calculation of the differential cross
section. The projection operators play a key role in the further
simplification of the tensor. Thus the energy-spin projection
operator is defined as

u(p, s)αū(p, s)β =
[ 	p + m

2E

I + γ5s/

2

]
αβ

. (18)

In the rest frame we define the polarization four-vector
as ŝµ = (0, ŝ). In a given inertial frame where the three-
momentum of the particle is p, the Lorentz transformation
of the polarization four-vector, ŝµ, then becomes [9]

sµ =
(

ŝ · p
m

, ŝ + ŝ · p
m(E + m)

p
)

. (19)

Since in the limit m → 0, the spin- 1
2 particle is represented

by the helicity state, its projection operator is redefined as

u(p, h)αū(p, h)β =
[ 	p

2E

I − hγ5

2

]
αβ

. (20)

By applying the Dirac algebra the leptonic tensor becomes

LCC
µν = 2

EkE
′
k

[kµKν + kνKµ − k · Kgµν + iεµναβkαKβ],

(21)

where εµναβ is the antisymmetric Levi-Cevita tensor with
convention ε0123 = +1, and

Kµ = 1

2
(k′µ − h′mls

′µ); s ′µ = 1

ml

(|k′|, Ek′ k̂′), (22)

where s ′µ is the spin polarization four-vector of the final lepton.
This procedure for deriving the leptonic tensor is generally
called Casimir’s trick. In the zero-mass limit, we find that
Kµ → k′µ and hence the leptonic tensor for the NC weak
transition may be deduced from Eq. (20):

LNC
µν = 2

EkE
′
k

[kµk′
ν + kνk

′
µ − k · k′gµν + iεµναβkαk′β]. (23)

By employing a similar procedure to that of the leptonic case,
the hadronic tensor becomes

W
µν

pol = 1

4

{
1

(2Ep1 )(2Ep′
2
)
Tr[Jµ(q)( 	p1 + MN )(I + γ5s/1)

× J̄ ν(q)( 	p′
2 + MY )(I + γ5s/

′
2)]

}
. (24)

Note that in the treatment of polarized baryons, the hadronic
tensor is specified as W

µν

pol ≡ Wµν(q; p1, p
′
2, s1, s

′
2). In

contrast, the unpolarized hadrons will have the tensor
W

µν

unpol ≡ Wµν(q; p1, p
′
2). The reason for this difference lies

in the fact that, in the unpolarized particle treatment, we
average over the target nucleon spin state and sum over the
final hyperon spin state,

W
µν

unpol = 1

2

{
1(

2Ep1

)(
2Ep′

2

)Tr[Jµ(q)( 	p1 + MN )

× J̄ ν(q)( 	p′
2 + MY )]

}
, (25)

where J̄ µ(q) = γ 0Jµ†(q)γ 0. Eventually, by invoking energy
and momentum conservation at the hadronic vertex via the
Dirac delta function, the differential cross section given in
Eq. (4) may become

d3σ

dEk′d(cos θ ′)d�′
1

= 1

2(2π )5

G2
F η2

2
χ (Ek′)

×
⎡
⎣

(
E2

p′
1
− M2

K

) 1
2

|f ′(Ep′
1
)|

⎤
⎦LµνW

µν. (26)

Here f (Ep′
1
) and χ (Ek′) are scalar functions of Ep′

1
and Ek′ ,

respectively, and are defined as

f
(
Ep′

1

) = Ek + M − Ek′ − Ep′
1
− Ep′

2

(
Ep′

1

)
, (27)

χ (Ek′) =
{

2πE2
k′ for NC process,

2πEk′
(
E2

k′ − m2
l

) 1
2 for CC process.

(28)

Note that the weak hadronic transition current Ĵ µ(q) is not
well known because of the complication that arises from the
strong interaction effects at the hadronic vertex, which are
not yet well understood. The next section will focus on the
model-independent construction of the most general form of
hadronic weak current in the context of the three-body process.

B. General representation of the hadronic current

Unlike the leptonic case, the hadronic coupling vertex must
be parametrized by form factors to take into account the strong
interaction effects. In Ref. [10], Bjorken and Drell decomposed
the electromagnetic current operators in terms of two indepen-
dent form factors. The introduction of these form factors lead to
the understanding that hadrons are composite particles and the
typical properties of these hadrons result from the individual
contributions of the constituents. We present, for the first time,
the general form of the hadronic vertex for the three-body weak
transitions by extending the basic principle used by Bjorken
and Drell for the two-body electromagnetic transition.
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FIG. 2. The Feynman diagram with a vertex of three external lines
of hadrons.

Figure 2 shows the appropriate Feynman diagram that
represents the three-body process under consideration. We
choose p1 and p′

2 to be the four-momenta of the initial-
and final-state baryons, respectively, and p′

1 to be that of
the pseudoscalar meson. The hadronic vertex represents the
coupling of the generalized weak hadronic current, Jµ, with
the gauge boson carrying four-momentum q. The weak
transition current at the hadronic vertex of may be written as

〈K(p′
1)B(p′

2)|Ĵ µ(q)|B(p1)〉 ≡ ū(p′
2)Jµ(q)u(p1). (29)

This model-independent derivation is done by taking
advantage of the fact that the weak interaction violates the
most fundamental discrete symmetries such as parity (P),
time-reversal (T ), charge conjugation (C), and the combination
of parity and charge conjugation (CP); and hence the general
expression of the current will have a relatively large number
of independent parametrization form factors, which possibly
allow us to gain more insight into the weak interaction and
structure of the hadronic weak current. In addition, unlike
the electromagnetic current, the nonconservation of the weak
current, resulting from the massive gauge boson exchange,
does not allow the possibility of reducing the number of
independent invariant amplitudes.

The derivation of the general expression of Jµ(q) is based
on the global structure that the current operator possesses. That
is, Jµ(q) is a Lorentz vector and a 4 × 4 matrix. Note that
the current operator is always sandwiched between the Dirac
spinor fields. Hence we can expand Jµ(q) in terms of the
bilinear covariant basis elements � = {I, γ5, γ

µ, γ5γ
µ, σµν},

where σµν = i
2 [γ µ, γ ν]. Thus our first decomposition of the

current operator is

ū(p′
2)Jµ(q)u(p1) = ū(p′

2){ÃµI + B̃µγ5 + C̃µνγν

+ D̃µνγ5γν + Ẽµνασνα}u(p1), (30)

where Ãµ, B̃µ, C̃µν, D̃µν , and Ẽµνα are unknown tensors.
However, in such transitions these unknown tensors depend
on all available independent four-momenta carried by the
particles participating in the interaction. Because of energy-
momentum conservation at the vertex, we may only have three
of them: {qµ, p

µ

1 , p′µ
2 }. In addition, the metric tensor, gµν , the

Levi-Cevita tensor, εµναβ , and their proper combination with
the independent four-momenta are also at our disposal to
further expand the unknown tensors. For instance, Ãµ and B̃µ

are first-rank tensors and hence can be further decomposed by
using the following basis elements:

J̃1 = {
qµ, p

µ

1 , p
′µ
2 , εµναβqνp1αp′

2β

}
. (31)

However, C̃µν and D̃µν are second-rank tensors and hence we
use basis elements: gµν, qµqν , qµp1

ν ± p1
µqν , εµναβqαp1β ,

etc, with which we may construct our second set, J̃2.
The last unknown coefficient, Ẽµνα , is the third-rank ten-
sor. Hence by noticing that the symmetric behavior arises
from the exchange of the Lorentz indices, our third set,
J̃3, may be restricted to take only basis elements of the
form qµ(qνp1

α − p1
νqα), qµ(qνp′

2
α − p′

2
ν
qα), qµ(p1

νp′
2
α −

p′
2
ν
p1

α), qµεναβηqβp1η, ε
µναβqβ , etc,

The basis elements in Eq. (31) will allow us to expand Ãµ

as follows:

ū(p′
2)ÃµIu(p1) = ū(p′

2)
{
Ã1Iqµ + Ã2Ip

µ

1 + Ã3Ip
′µ
2 ,

+ Ã4Iεµναβqνp1αp′
2β

}
u(p1). (32)

It is quite obvious that ū(p′
2)B̃µγ5u(p1) can be expanded in a

similar manner by substituting I by γ5 and Ãi by B̃i . We also
notice that all of the four terms in Eq. (32) are independent and
hence no further expansion is needed. The decomposition of
ū(p′

2)C̃µνγνu(p1) in terms of the second set of basis elements is

ū(p′
2)C̃µνγνu(p1)

= ū(p′
2)
{
C̃1γ

µ + C̃2q
µ 	q + C̃3p1

µ 	p1 + C̃4p
′
2
µ 	p′

2

+ C̃5
(
qµ 	p1 + p1

µ 	q) + C̃6
(
qµ 	p1 − p1

µ 	q)
+ C̃7

(
qµ 	p′

2 + p′
2
µ 	q) + C̃8

(
qµ 	p′

2 − p′
2
µ 	q)

+ C̃9
(
p1

µ 	p′
2 + p′

2
µ 	p1

) + C̃10
(
p1

µ 	p′
2 − p′

2
µ 	p1

)
+ C̃11ε

µναβγνqαp1β + C̃12ε
µναβγνqαqαp′

2β

+ C̃13ε
µναβγνp1αp′

2β

}
u(p1), (33)

where the Dirac slash notation 	a = aνγν is used. We also use
the second set of basis elements to expand ū(p′

2)D̃µνγ5γνu(p1),
which would have more or less similar structure. Now by
exhaustively applying the Dirac algebra for on-shell particles
[i.e., particles that satisfy 	pu(p) = Mu(p)] all proportional
terms can be eliminated and then the following expression
may be obtained:

ū(p′
2)C̃µνγνu(p1)

= ū(p′
2)
{
C̃1γ

µ + C̃ ′
1q

µ + C̃ ′
2p

µ

1 + C̃ ′
3p

′µ
2 + C̃ ′

4γ5γ
µ

+ C̃ ′
5γ5q

µ + C̃ ′
6γ5p1

µ + C̃ ′
7γ5p

′
2
µ + C̃2q

µ 	q
+ C̃ ′

8p1
µ 	q + C̃ ′

9p
′
2
µ 	q + C̃ ′

10γ5 	qγ µ
}
u(p1), (34)

where C̃1 and {C̃ ′
i}10

i=1 are unknown coefficients obtained by
factoring out all possible independent basis elements. It is
worth noting that C̃µνγν introduces six new expansion basis
elements, {γ µ, γ5γ

µ, qµ 	q, p1
µ 	q, p′

2
µ 	q, γ5 	qγ µ}, whereas

the rest are proportional to the ones belonging to either
ū(p′

2)ÃµIu(p1) or ū(p′
2)B̃µγ5u(p1). A similar procedure as

for ū(p′
2)C̃µνγνu(p1) also yields the following expression
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for ū(p′
2)D̃µνγ5γνu(p1):

ū(p′
2)D̃µνγ5γνu(p1)

= ū(p′
2)
{
D̃1γ5γ

µ + D̃′
1q

µ + D̃′
2p

µ

1 + D̃′
3p

′µ
2

+ D̃′
4γ

µ + D̃′
5γ5q

µ + D̃′
6γ5p1

µ + D̃′
7γ5p

′
2
µ

+ D̃2q
µγ5 	q + D̃′

8p1
µ 	q + D̃′

9p
′
2
µ 	q + D̃′

10p1
µγ5 	q

+ D̃′
11p

′
2
µ
γ5 	q + D̃5 	qγ µ

}
u(p1). (35)

As a result of the expansion of ū(p′
2)D̃µνγ5γνu(p1) additional

contributions come through the amplitudes associated with
the new basis elements: {qµγ5 	q, p1

µγ5 	q, p′
2
µ
γ5 	q, 	qγ µ}.

The remaining terms are proportional to the ones contained
by ū(p′

2)ÃµIu(p1), ū(p′
2)B̃µγ5u(p1), or ū(p′

2)C̃µνγνu(p1)
and hence fuse into coefficients of the same basis elements.
However, the last component ū(p′

2)Ẽµνασναu(p1) does not
carry new parameters; instead, all of them are absorbed by
any of the previous ones.

Finally, the most general hadronic weak current for strange
particle production may be expressed in terms of eighteen inde-
pendent amplitudes; and in a more convenient rearrangement
it may be written as

ū(p′
2)Jµ(q)u(p1)

= ū(p′
2){ÃµI + B̃µγ 5 + C̃1γ

µ + C̃µ 	q + D̃1γ5γ
µ

+ D̃µγ5 	q + D̃5 	qγ µ + D̃6γ5 	qγ µ}u(p1), (36)

where

Ãµ = Ã1q
µ + Ã2p

µ

1 + Ã3p
′
2
µ + Ã4ε

µναβqνp1αp′
2β

,

B̃µ = B̃1q
µ + B̃2p

µ

1 + B̃3p
′
2
µ + B̃4ε

µναβqνp1αp′
2β

,

C̃µ = C̃2q
µ + C̃3p

µ

1 + C̃4p
′
2
µ
,

D̃µ = D̃2q
µ + D̃3p

µ

1 + D̃4p
′
2
µ
.

(37)

These amplitudes are unknown. In the electromagnetic
interaction, the current operator of the two-body processes can
be specified by two independent form factors, which can be
determined by applying a Rosenbluth separation. In contrast,
in this study there are eighteen independent structure functions,
which necessitate the use of a model to determine them.
However, this general form of the weak current operator avoids
the recalculation of the differential cross section whenever
we consider various reactions, introduce other models, or
add more diagrams such as resonances to the Born diagram.
Instead, our formalism of the differential cross section can be
used in more generally by only updating the eighteen invariant
amplitudes of the hadronic weak current.

C. Born-term model

What makes the development of the weak interactions of
leptons relatively simple is that leptons have been identified as
pointlike fermions. As a result, the standard electroweak gauge
model can be used to construct the interaction Lagrangian.
However, the structure of the weak interactions of hadrons is
not well understood because hadrons are composite particles
and hence associated strong interaction effects exist.

To perform numerical calculations for the strange particle
production processes, we introduce the Born-term approxima-
tion of the hadron transition vertex. In this approximation the
hadronic vertex is expanded in terms of the Born diagram with

TABLE II. The exchange particles and the corresponding
propagators of the s, t , and u channels.

Channel Exchange particle Propagator

s N = {p(939), n(939)} 	q+	p1+MN

s−M2
N

t K = {K0(498), K+(494)} 1
t−M2

K

u Y = {�+(1189), �0(1192),
	q−	p′

2+MY

u−M2
Y

�−(1197), �(1116)}

parametrization form factors, which allows us to include the
high-order contributions and circumvent the strong interaction
effects. The eighteen unknown parameters in the general
hadronic current given in Eq. (36) will be extracted after
carefully expanding the Born diagram in terms of the basis
elements that are constructed in the general representation of
the weak hadronic current.

In Refs. [4–6] we realize the familiarity of this model in the
study of strange particle production. In general, the Born model
allows three diagrams, labeled as the s, t , and u channels.
But at the practical level individual channels may or may not
contribute to the weak hadronic current of a particular reaction.
The mediators of these channels are the bound-state hadrons,
and Table II gives a summary of the exchange particles
of the channels along with the corresponding propagators.
According to this model, the hadronic weak current operator
is approximated as

Jµ(q) � Jµ
s (q) + J

µ
t (q) + Jµ

u (q), (38)

where J
µ
s (q), J µ

t (q), and J
µ
u (q) are the hadronic weak current

contributions from the individual channels that are physical
to the process. If any of the channels allows more than
one exchange particle, then we sum over the individual
contributions to the channel. In some cases one of the three
channels is also absent owing to conservation laws that it does
not obey. Table III summarizes this argument for the CC and
strangeness conserving associated production reactions.

In general, the Born diagram contains three type of vertices:
the weak baryon coupling vertex, the weak pseudoscalar
meson coupling vertex, and the strong pseudoscalar coupling
vertex. The standard representation of the weak transition
current of a single baryon is

〈B′|Ĵ µ(q) |B〉 = uB ′

{
F1γ

µ + iF2

2M
σµνqν − GAγ5γ

µ

}
uB.

(39)

Note that the baryon CC belong to the SU(3) octet and
according to Ref. [11] the CVC hypothesis and the SU(3)

TABLE III. The CC associated productions and the
possible channel contributions.

Reaction s channel u channel t channel

CC1 − 2 1
CC2 1 2 −
CC3 1 1 1
CC4 1 1 1
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FIG. 3. The Born diagram of the associated production of K+�.

current algebra lead to the determination of the vector form
factors: F1 and F2, of the weak current from the experimentally
well-known electromagnetic form factors of the nucleon,
f

p

i (Q2) and f n
i (Q2).1 Moreover, the standard axial form

factor, GA, of any weak baryonic CC transition can also be
determined from the nucleon axial form factor, gA:

gA(Q2) = gA(0)

[1 + 3.31τ (Q2)]2
, (40)

1Appendix B of Ref. [8] contains a brief discussion of the nucleon
form factors.

where gA(0) = +1.26 and τ (Q2) = Q2/4M2. In Table IV
we present the SU(3) calculations of the vector and axial
form factors of the octet baryon CC weak transitions. The
determination of the form factors of the weak transitions of
the pseudoscalar K mesons is done based up on Ref. [5]:

〈Kλ(p′
1)|Ĵ µ(q)|Kλ′ 〉

=
{(

2p′
1
µ − qµ

)
FKλ(q2), λ, λ′ ∈ {0,+}, λ = λ′.(

2p′
1
µ − qµ

)
FKλ,λ′ (q2), λ, λ′ ∈ {0,+}, λ 	= λ′.

(41)

Eventually for the strong pseudoscalar interaction vertex,
〈KY|N〉 = ūY {γ5gKYN }uN , we need to find the estimated

FIG. 4. The angular distribution of the differential cross sections of CC1, CC2, CC3, and CC4 with respect to the kaon angle for the first
set of kinematical inputs: Ek = 2.0 GeV and Ek′ = 0.5 GeV.
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TABLE IV. The standard form factors for weak CC transitions of the SU(3) baryon octets.

Weak transition F1(Q2) F2(Q2) GA(Q2)

p → n f
p

1 (Q2) − f n
1 (Q2) f

p

2 (Q2) − f n
2 (Q2) gA(Q2)

p → � −
√

3
2 f

p

1 (Q2) −
√

3
2 f

p

2 (Q2) −
√

1
6

3F+D

F+D
gA(Q2)

�± → � −
√

3
2 f n

1 (Q2) −
√

3
2 f n

2 (Q2)
√

2
3

D

F+D
gA(Q2)

�± → �0 ∓ 1√
2
[2f

p

1 (Q2) + f n
1 (Q2)] ∓ 1√

2
[2f

p

2 (Q2) + f n
2 (Q2)] ∓√

2 F

F+D
gA(Q2)

values of the strong coupling constants gK�N and gK�N .
Since they have not been determined from experiment, we
rather adopt from Ref. [12] the SU(3) symmetry predictions
of gK+�p and gK+�0p in terms of gπNN , which is exper-
imentally well known. Then we make use of the isospin
symmetry relations given in Ref. [13] to estimate the rest
of the strong coupling constants: gK0�n, gK0�0n, gK0�+p, and
gK+�−n.

For instance, we apply the Born-term approximation to
a typical reaction νn → µ−K+�, which is the CC as-
sociated production. The Born diagram of this reaction
is given in Fig. 3, which shows that the three chan-
nels are allowed in the Born-term approximation of CC4.
Thus the weak hadronic current becomes the sum of
the individual contributions of the s, t , and u channels.

That is,

〈K+�|Ĵ µ

CC(q)|p〉

� ū�

{[
gK+�pγ5

	q + 	p1 + MN

s − M2
N

〈p|Ĵ µ

CC(q)|n〉
]

+
[
gK0�nγ5

1

t − M2
K0

〈K+|Ĵ µ

CC(q)|K0〉
]

+
[
〈�|Ĵ µ

CC(q)|�−〉 	q − 	p′
2 + M�−

u − M2
�−

gK+�−nγ5

]}
un. (42)

To extract the eighteen unknown invariant amplitudes of
Eq. (36) from the Born model we exhaustively expand the
current contributions of the individual channels under the

FIG. 5. The angular distribution of the differential cross sections of CC1, CC2, CC3, and CC4 with respect to the kaon angle for the second
set of kinematical inputs: Ek = 4.0 GeV and Ek′ = 1.0 GeV.
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FIG. 6. Comparison of the contributions of the helicity states of the outgoing muon to the differential cross sections of CC1, CC2, CC3,
and CC4 for the first set of kinematical inputs.

assumption that the fermions participating in the reaction are
on-shell particles and hence we repeatedly apply the Dirac
algebra until we eliminate terms that are not independent. Then
we employ the method of identification in terms of the common
expansion basis elements with the most general form of the
weak hadronic current. Note that a similar procedure is used
for other reactions, CC1, CC2, and CC3, for the calculation of
the corresponding differential cross sections.

III. NUMERICAL RESULTS

In this section the results of numerical calculations are
presented. The unknown amplitudes of the weak hadronic
current are determined via the Born-term approximation. In
Appendix B we tabulate the extracted amplitudes for the CC
reactions: CC1, CC2, CC3, and CC4. For the sake of relevance
the incident energy of the neutrino is limited to the threshold
energy region. Otherwise, the reliability of the Born-term
model becomes questionable. The general formalism is made
in such a way that it allows the investigation of the angular
distribution of the differential cross section with respect to
the outgoing kaon angle, θ ′

1, for the associated production
reactions under consideration.

Moreover, the separate treatment of individual channels
allows the comparison among their contribution to the full-
term differential cross section. The contributions of s, u, and t

channels comes through nine, ten, and three amplitudes
of the general hadronic current, respectively. Note that out
of the eighteen amplitudes no contribution has come via
Ã4, B̃4, C̃2, C̃3, and C̃4 amplitudes for the four reaction
channels.

The choice of the kinematical inputs, Ek and Ek′ , is made
such that Q2 remains constant for the entire spectrum of
calculations of individual reactions. It is worth noting that the
general formalism in Sec. II A was established in the limit of
small Q2. This value of Q2 is carefully selected in a region
where the dominant contribution more or less comes from
the lowest order Feynman diagram. The appropriate choice
is Q2 = 0.035 GeV2. In this way two sets of input values are
constructed.

A. Differential cross section for unpolarized baryons

We first investigate the case in which the target nucleon and
the final-state hyperon are considered to be unpolarized. Hence
we average over and sum over the spin states of the nucleon and
hyperon, respectively. This condition only affects the hadronic
tensor by leaving the rest unchanged. The numerical results of
the CC reactions are presented for the two sets of kinematical
inputs by fixing the value of Q2 at 0.035 GeV2.

Figures 4 and 5 contain the plots of the differential cross
sections of the four CC reactions for the unpolarized baryons.
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FIG. 7. Comparison of the contributions of the helicity states of the outgoing muon to the differential cross sections of CC1, CC2, CC3,
and CC4 for the second set of kinematical inputs.

Each plot shows the curves of individual contributions of the
channels as well as the full-term cross sections. The u channel
clearly dominates the other channels for CC1, CC2, and CC3
and hence the curve of the full-term cross section is forward
peaked. However, for all processes the contribution of the
t channel is negligibly small in comparison to the others. In
the CC4, however, the s channel becomes significantly the
dominant channel, which in turn shifts the peak of the full-term
curve away from the forward angle.

For unpolarized baryons the contributions of the helicity
states of the outgoing muon are compared in Figs. 6 and 7.
Here again we treat the participating baryons as unpolarized
particles. Both figures clearly show the dominance of the
contribution of the negative-helicity state over the positive
one. Especially at the peaks of the curves the dominance is
more significant, and hence almost the total contribution to the
differential cross section comes from the negative-helicity state
of the muon. If we compare the muon mass to its energy we
clearly see that the left-handedness of leptons is a high-energy
phenomenon. Note that the positive helicity survives partly
owing to the nonzero mass of the muon.

B. Differential cross section for polarized baryons

For polarized baryons we can investigate the sensitivity of
the differential cross section to the various spin polarizations

of the baryons. For convenience, by referring to Fig. 11 in
Appendix A, we choose the Cartesian coordinates of the
leptonic plane to specify the directions of the three-vectors,
ŝ1 and ŝ′

2, of the rest-frame spin polarizations of the target
nucleon and the outgoing hyperon, respectively. The three
possible polarization axes are x̂, ŷ, and ẑ and hence there
are nine possible combinations in choosing these axes for
the nucleon and hyperon. As a consequence we investigate
nine spin observables:

D =

⎛
⎜⎝

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞
⎟⎠ , (43)

where, for instance, the spin observable Dxy is defined as

Dxy = d3σ (ŝ1 = x̂; ŝ′
2 = ŷ)

dEk′d(cos θ ′)d�′
1

. (44)

Since it is experimentally feasible to measure the polariza-
tion of the � hyperon [4], we present the plots for the CC4
for the polarized nucleon and hyperon. Figure 8 shows all the
curves of the nine spin observables of the CC4 for the first
set of input kinematics. Figure 9 presents the plots that give
information about the contribution of the channels of the Born
diagram for specific spin observables.
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FIG. 8. The full-term differential cross sections of the CC4 for the case of polarized baryons.

IV. DISCUSSION

Without the knowledge of the SU(3) symmetry we can
determine the invariant amplitudes of the hadronic current
that comes through the s channel by using the SU(2) isospin
symmetry and hence this channel may not be considered as
the best candidate to test SU(3). So we can safely state that the
dynamics of SU(3) symmetry strongly comes through u and
t channels. Thus CC1, CC2, and CC3 reactions are sensitive
to SU(3) dynamics.

In summary, one of the peculiar features of these plots is
that almost all of the differential cross sections attain their
peaks at forward angles. However, the curves display a rapid
decrement as the kaon angle increases. It is also clearly shown
that the u channel dominates all the other channels in CC1,
CC2, and CC3. However, for CC4 the contribution of the
s channel dominantly influences the shape of the curve of the
full-term cross section.

In general, the cross section increases with Ek in all four
reactions. The presence of the s channel results in the shifting
of the peak of the differential cross section at forward angle
toward the right. Apart from that, all of the curves have cutoff
points at higher kaon angle, which arises from the nonzero
mass of the muon. Moreover, the numerical results show that,
at forward angle, the angular distribution of the differential
cross section for CC1 is the highest of all, whereas CC3 gives
the lowest cross section and CC2 and CC4 fall between the two.

The figures for the polarized baryons display the sensitivity
of the cross-section curves to the choice of the polarization
axes. For instance, the differential cross sections become
relatively large when the same polarization axis is picked for
both particles. In addition, the plots in Fig. 9 indicate that the
matrix in Eq. (43) is not symmetric for the full-term cross
section owing to the presence of the s channel. However, the
t channel alone gives the symmetric matrix, whereas for the
u channel it gets somewhat close to symmetric.

A. Comparison with previous calculations

To validate the general Lorentz-invariant representation of
the hadronic current operator presented here, it is necessary
to compare our results with similar calculations presented in
Refs. [4,6]. To this end we calculate

dσ (Ek,W )

dW
=

∫ Q2
max

0
dQ2

∫ 2π

0
dφ′

1

∫ π

0
dθ ′

1 sin θ ′
1

× d4σ

dWdQ2d(cos θ ′
1)dφ′

1

, (45)

where the integrand is given by Eq. (28) in Ref. [4] and
Q2

max is given in Ref. [6]. This numerical calculation has been
done using a 40-point Gaussian integration, which has shown
good convergence. In this expression we employed our newly
derived form of the hadronic current operator, together with
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FIG. 9. The contributions of the channels of the Born diagram to the spin observables: Dzx , Dzy , and Dzz for the reaction CC4.

the Born-term amplitudes and the coupling constants as given
in Ref. [4].

The results are presented in Fig. 10. We can see that our
results are virtually identical to those given in Fig. 5 of Ref. [4].

FIG. 10. The distribution of the differential cross section,
dσ (Ek, W )/dW , with respect to the hadronic center-of-mass energy,
W , for the CC reaction νn → µ−K+�, at the neutrino incident
energies Ek = 1.5, 2.0, 2.5, and 3.0 GeV.

Not only do we reproduce the shape of the cross sections, we
also obtain peak values practically identical to those in [4].
This gives us confidence that our general Lorentz-invariant
form of the hadronic current operator is indeed correct. Note
that a meaningful comparison with data is not really possible
since we (and also the authors of Refs. [4,6]) restricted our
calculations to Born-term contributions only.

V. CONCLUSIONS

We have developed the most general relativistic formalism
of the differential cross section for the neutrino-induced weak
production of strange particles. The derivation is made for
CC reactions to investigate the angular distribution of the
differential cross section with respect to the outgoing kaon
angle. The leptonic tensor can be calculated in the framework
of electroweak theory. The helicity dependence comes through
the antisymmetric component of the leptonic tensor. The
hadronic part of the reaction is influenced by the strong
interaction, for which a perturbative calculation is not possible.
Therefore, we have developed a new model-independent
approach to calculate the invariant matrix element by deriving
the most general weak hadronic current in terms of eighteen
parametrization form factors.

We have shown, by using the typical CC reaction, that it
is possible to virtually reproduce results presented in Ref. [4]

025501-11



ADERA, VAN DER VENTEL, VAN NIEKERK, AND MART PHYSICAL REVIEW C 82, 025501 (2010)

with the inclusion of the newly derived weak hadronic current.
At this stage it is not possible to directly compare our results
with data since we have not included effects such as resonances
and nuclear effects.

The results presented in Sec. III are entirely based on
the Born-term contribution. The main reason was to show
that it is possible to extract the invariant amplitudes in the
general expansion, when a specific model for the interaction
is adopted. The authors of Refs. [14] and [15] also presented
detailed models for neutrino-induced reactions. Specifically,
they showed that resonances, background, and nuclear effects
are important for a description of the data. Note, however,
that the authors of Ref. [14] did not consider associated
production as we do here. In our analysis there is a slight shift
in emphasis. We do not concentrate specifically on trying to
describe the data, but rather on developing a general model for
the hadronic tensor using general arguments based on Lorentz
invariance. This is similar in spirit to the method developed
for the description of the meson photoproduction in Ref. [16].
However, owing to the large number of invariant amplitudes
it is necessary for us to resort to a model to determine them.
For this purpose we used a simple model including the Born
terms.

Future work and quantitative comparison with experiment
will demand that we include all other effects as clearly
pointed out in the references mentioned here. However, the

true merit of the analysis presented here is that it is based
on general principles and that we do not need to rederive all
cross-section formulas. Any new model additions will only
mean that we have to update the relevant subroutines in our
codes. This analysis also provides another example of how
general principles can be used to derive the general form
of a fundamental quantity such as the hadronic tensor. This
approach is widely used in photo- and electroproduction and
we have have now shown that is also possible for neutrino-
induced associated production.

Finally, our general formalism has shown that the differen-
tial cross section is sensitive to the spin polarizations of the
nucleon and hyperon. In our next paper we will include the
resonance and background contributions that are relevant in the
threshold energy region. The CC strange particle production
reactions having u-channel dominance can be used to test
the validity of SU(3) symmetry. Therefore, we hope that our
predictions motivate the undertaking of further experiments in
the area of neutrino and hadron physics.
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TABLE V. Extraction of the unknown amplitudes for the CC1 reaction process.

Amplitudes u channel (�) u channel (�0) t channel (K0)

Ã1 2G(�)
u

aG
Y1
A

b 2G(�0)
u

aG
Y2
A

b −
Ã2 − − −
Ã3 −2G(�)

u G
Y1
A −2G(�0)

u G
Y2
A −

Ã4 − − −
B̃1 G(�)

u [2F
Y1
1

b + �Mc
2

F
Y1
2

b

2M
] G(�0)

u [2F
Y2
1

b + �M1
c F

Y2
2

b

2M
] Gt

aFK+,0

B̃2 − − 2GtFK+,0

B̃3 −2G(�)
u F

Y1
1 −2G(�0)

u F
Y2
1 −2GtFK+,0

B̃4 − − −
C̃1 G(�)

u �M2G
Y1
A G(�0)

u �M1G
Y2
A −

C̃2 − − −
C̃3 − − −
C̃4 − − −

D̃1 G(�)
u [q ′2d F

Y1
2
M

− �c
M3

F
Y1
1 ] G(�0)

u [q ′2 F
Y2
2
M

− �c
M2

F
Y2
1 ] −

D̃2 −G(�)
u

F
Y1
2

2M
−G(�0)

u

F
Y2
2

2M
−

D̃3 − − −
D̃4 G(�)

u

F
Y1
2
M

G(�0)
u

F
Y2
2
M

−
D̃5 −G(�)

u G
Y1
A −G(�0)

u G
Y2
A −

D̃6 −G(�)
u [F Y1

1 + �M2
F

Y1
2

2M
] −G(�0)

u [F Y2
1 + �M1

F
Y2
2

2M
] −

aGt = gK0�+p(t − M2
K0 )−1; G(�)

u = gK+�p(u − M2
�)−1; G(�0)

u = gK+�0p(u − M2
�0 )−1.

bF
Y1
i (Q2) = −

√
3
2 f n

i (Q2); GY1
A (Q2) =

√
2
3

D

F+D
gA(Q2); F Y2

i (Q2) = − 1√
2

[
2f

p

i (Q2) + f n
i (Q2)

]
; GY2

A (Q2) = −√
2 F

F+D
gA(Q2).

c�M1 = M�+ − M�0 ; �M2 = M�+ − M�; �M2 = M�+ + M�0 ; �M3 = M�+ + M�.
dq ′2 = (q2/2 − q · p′

2).
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APPENDIX A: KINEMATICS

The kinematics of the reaction is developed in terms of the
relativistic framework in the laboratory frame of reference. It
is more convenient to describe the kinematics in two planes: a
leptonic (scattering) plane and a hadronic (production) plane,
as shown in Fig. 11. The leptonic plane contains the incoming
neutrino and the outgoing lepton. The gauge boson, which
mediates the interaction, has the three-vector momentum
transfer directed along the z axis.

The hadronic plane is defined in such a way that it is the
SO(3) transformation of the leptonic plane about the z axis
by an angle φ and it contains the hadronic final-state particles
produced by the neutrino incident on the target nucleon. It
is worth noting that the kinematics of the differential cross
section depends on the masses, energies, and momenta of
the particles involved in the interaction. This dependence
would be shown in the general expression of the phase space
factor.

FIG. 11. (Color online) Kinematics of the neutrino-induced weak
production reactions, νN → lKY , in the rest frame of the target
nucleon.

In the leptonic plane, k and k′ become

k = Ek(sin α, 0, cos α),
(A1)

k′ = (
E2

k′ − mµ

) 1
2 [sin(α + θ ′), 0, cos(α + θ ′)].

Since the three-vector momentum transfer q = k − k′, which
is carried by the gauge boson, is defined in such a away that q =
(0, 0, qz), this in turn allows the determination of the incident

TABLE VI. Extraction of the unknown amplitudes for the CC2 reaction process.

Amplitude s channel (p) u channel (�) u channel (�0)

Ã1 − 2G′(�)
u

aG
Y1
A

b 2G′(�0)
u

aG
Y ′

2
A

b

Ã2 −2G′
s

aGN ′
A

b − −
Ã3 − −2G′(�)

u G
Y ′

1
A −2G′(�0)

u G
Y ′

2
A

Ã4 − − −

B̃1 −G′
s

MN

M
F N ′

2
b G′(�)

u [2F
Y ′

1
1

b
+ �M2

c F
Y ′

1
2

b

2M
] G′(�0)

u [2F
Y ′

2
1

b
+ �M1

c F
Y ′

2
2

b

2M
]

B̃2 2G′
sF

N ′
1

b − −
B̃3 − −2G′(�)

u F
Y ′

1
1 −2G′(�0)

u F
Y ′

2
1

B̃4 − − −
C̃1 2MNG′

sG
N ′
A G′(�)

u �M2G
Y ′

1
A G′(�0)

u �M1G
Y ′

2
A

C̃2 − − −
C̃3 − − −
C̃4 − − −
D̃1 G′

s(
q2

2 + p1 · q)
FN ′

2
M

G′(�)
u [q ′2 F

Y ′
1

2
M

− �c
M3

F
Y ′

1
1 ] G′(�0)

u [q ′2 F
Y ′

2
2
M

− �c
M2

F
Y ′

2
1 ]

D̃2 −G′
s

FN ′
2

2M
−G′(�)

u

F
Y ′

1
2

2M
−G′(�0)

u

F
Y ′

2
2

2M

D̃3 −G′
s

FN ′
2
M

− −
D̃4 − G′(�)

u

F
Y ′

1
2
M

G′(�0)
u

F
Y ′

2
2
M

D̃5 −G′
sG

N ′
A −G′(�)

u G
Y ′

1
A −G′(�0)

u G
Y ′

2
A

D̃6 G′
s[F

N ′
1 + MN

M
F N ′

2 ] −G′(�)
u [F

Y ′
1

1 + �M2
F

Y ′
1

2
2M

] −G′(�0)
u [F

Y ′
2

1 + �M1
F

Y ′
2

2
2M

]

aG′
s = gK0�+p(s − M2

N )−1; G′(�)
u = gK0�n(u − M2

�)−1; G′(�0)
u = gK0�0n(u − M2

�0 )−1.

bF N ′
i (Q2) = f

p

i (Q2) − f n
i (Q2); GN ′

A (Q2) = gA(Q2); F
Y ′

1
i (Q2) = −

√
3
2 f n

i (Q2); G
Y ′

1
A (Q2) =

√
2
3

D

F+D
gA(Q2); F

Y ′
2

i (Q2) = − 1√
2
[2f

p

i (Q2)] +
f n

i (Q2); G
Y ′

2
A (Q2) = −√

2 F

F+D
gA(Q2).

c�M1 = M�+ − M�0 ; �M2 = M�+ − M�; �M2 = M�+ + M�0 ; �M3 = M�+ + M�.
dq ′2 = (q2/2 − q · p′

2).
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TABLE VII. Extraction of the unknown amplitudes for the CC3 reaction process.

Amplitude s channel (p) u channel (�−) t channel (K0)

Ã1 − 2G̃u
aG̃Y

A
b −

Ã2 −2G̃s
aG̃N

A
b − −

Ã3 − −2G̃uG̃
Y
A −

Ã4 − − −
B̃1 −G̃s

MN

M
F̃ N

2
b G̃u[2F̃ Y b

1 + �M3
c F̃ Yb

2
2M

] G̃t
aFK+,0

B̃2 2G̃sF̃
N
1

b − 2G̃tFK+,0

B̃3 − −2G̃uF̃
Y
1 −2G̃tFK+,0

B̃4 − − −
C̃1 2MNG̃sG̃

N
A G̃u�M3G̃

Y
A −

C̃2 − − −
C̃3 − − −
C̃4 − − −
D̃1 G̃s(

q2

2 + p1 · q)
F̃N

2
M

−G̃u[�c
M4F̃

Y
1 + (q · p′

2 − q2

2 )
F̃ Y

2
M

] −
D̃2 −G̃s

F̃N
2

2M
−G̃u

F̃ Y
2

2M
−

D̃3 −G̃s
F̃N

2
M

− −
D̃4 − G̃u

F̃ Y
2

M
−

D̃5 −G̃sG̃
N
A −G̃uG̃

Y
A −

D̃6 G̃s(F̃ N
1 + MN

M
F̃ N

2 ) −G̃u[F̃ Y
1 + (�M3 )

F̃ Y
2

2M
] −

aG̃s = gK+�0p(s − M2
N )−1; G̃u = gK+�−n(u − M2

�− )−1; G̃t = gK0�0n(t − M2
K0 )−1.

bF̃ N
i (Q2) = f

p

i (Q2) − f n
i (Q2); G̃N

A (Q2) = gA(Q2); F̃ Y
i (Q2) = 1√

2
[2f

p

i (Q2) + f n
i (Q2)]; G̃Y

A(Q2) = √
2 F

F+D
gA(Q2).

c�M3 = M�0 − M�− ; �M4 = M�0 + M�− .

angle α from input variables Ek,Ek′ , θ ′:

sin α = ±|A|/(A2 + B2)
1
2 , cos α = ±|B|/(A2 + B2)

1
2 ,

(A2)

where

A = Ek − (
E2

k′ − mµ

) 1
2 cos θ ′, B = (

E2
k′ − mµ

) 1
2 sin θ ′.

(A3)

In the hadronic plane, there are two outgoing particles with
three-momenta p′

1 and p′
2 at angles θ ′

1 and θ ′
2 from the z axis.

Since this plane may be connected to the leptonic plane via
the SO(3) group transformation, we can obtain the following
expressions of p′

1 and p′
2:

p′
1 = (

E2
p′

1
− M2

K

) 1
2 (sin θ ′

1 cos φ, sin θ ′
1 sin φ, cos θ ′

1),

p′
2 = (

E2
p′

2
− M2

Y

) 1
2 (− sin θ ′

2 cos φ,− sin θ ′
2 sin φ, cos θ ′

2).

(A4)

In momentum space, the following spherical coordinate
treatments can be applied for the final-state particles l(k′),
K(p′

1), and Y (p′
2):

d3k′ = Ek′
(
E2

k′ − m2
µ

) 1
2 dEk′d�(φ′, θ ′),

d3p′
1 = Ep′

1

(
E2

p′
1
− M2

K

) 1
2 dEp′

1
d�(φ′

1, θ
′
1), (A5)

d3p′
2 = Ep′

2

(
E2

p′
2
− M2

Y

) 1
2 dEp′

2
d�(φ′

2, θ
′
2),

where d�(φ, θ ) = d(cos θ )dφ. Note that, we have chosen
the values of φ′

1 and φ′
2 such that φ′

1 = φ′
2 − π = φ. The

most important problem we encounter in the derivation
of the cross section is the one with the four-dimensional
Dirac delta function: (2π )4δ(k − k′ + p1 − p′

1 − p′
2). Based

on the properties associated with the delta function, the space
component enforces the conservation of three-momentum at
the hadronic vertex of the Feynman diagram of the reaction. As
a result, integrating over the Dirac delta function of Eq. (4) in
Sec. II A with respect to p′

2 gives rise to the following
conservation relation at the hadronic vertex:

p′
2 = q + p − p′

1. (A6)

Then the delta function becomes a function of two variables—
Ep′

1
and Ep′

2
, which are not independent. However, owing

to the relativistic energy-momentum relation we can use
Eq. (A6) to express Ep′

2
in terms of Ep′

1
. Thus the Dirac delta

function becomes δ[f (Ep′
1
)], where f (Ep′

1
) = Ek − Ek′ +

Ep − Ep′
1
− Ep′

2
. Therefore, after a few algebraic steps f (Ep′

1
)

becomes

f (z) = a − z − [
b + z2 − c

(
z2 − MK

2
) 1

2
] 1

2 , (A7)

where

z = Ep′
1
, a = Ek − E′

k + M,
(A8)

b = |q|2 − MK
2 + MY

2, c = 2|q| cos θ ′
1.

Once again, by invoking the property of the Dirac delta
function, it is possible to demand the conservation of energy at
the hadronic vertex, which allows us the determine Ep′

1
in terms

of the kinematical inputs of the reaction: {Ek,Ek′ , θ ′, θ ′
1, φ}.

For this paper we set θ ′ and φ to 0.5◦ and 0.0◦, respectively.
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TABLE VIII. Extraction of the unknown amplitudes for the CC4 reaction process.

Amplitudes s channel u channel t channel

Ã1 − 2Ga
uG

Y
A

bGN
A −

Ã2 −2Gs
aGN

A

b − −
Ã3 − −2GuG

Y
A −

Ã4 − − −
B̃1 −Gs

MN

M
F N

2
b

Gu[2F Y
1

b + �M
FY

2
b

2M
] Ga

t FK+,0

B̃2 2GsF
N
1

b − 2GtFK+,0

B̃3 − −2GuF
Y
1 −2GtFK+,0

B̃4 − − −
C̃1 2MNGsG

N
A Gu�MGY

A −
C̃2 − − −
C̃3 − − −
C̃4 − − −
D̃1 Gs(

q2

2 + p1 · q)
FN

2
M

−Gu[�c
M1

F Y
1 + (q · p′

2 − q2

2 )
FY

2
M

] −
D̃2 −Gs

FN
2

2M
−Gu

FY
2

2M
−

D̃3 −Gs
FN

2
M

− −
D̃4 − Gu

FY
2

M
−

D̃5 −GsG
N
A −GuG

Y
A −

D̃6 Gs(F N
1 + MN

M
F N

2 ) −Gu[F Y
1 + �M

FY
2

2M
] −

aGs = gK+�p(s − M2
N )−1; Gt = gK0�n(t − M2

K0 )−1; Gu = gK+�−n(u − M2
�− )−1.

bF N
i (Q2) = f

p

i (Q2) − f n
i (Q2); GN

A (Q2) = gA(Q2); F Y
i (Q2) = −

√
3
2 f n

i (Q2); GY
A(Q2) =

√
2
3

D

F+D
gA(Q2).

c�M = M� − M�− ; �M1 = M� + M�− .

Therefore, this specification allows us to investigate the
angular distribution of the differential cross section as a
function of the outgoing kaon angle, θ ′

1. We also define the
most appropriate kinematical quantities, which are called the
Lorentz-invariant Mandelstam variables:

s = (q + p1)2, t = (q − p′
1)2, u = (q − p′

2)2. (A9)

APPENDIX B: EXTRACTION OF THE INVARIANT
AMPLITUDES

Here we present the Born model extracted values of
the structure functions of the general representation of the
weak hadronic current for the neutrino-induced CC associated
productions: CC1, CC2, CC3, and CC4 in Tables V, VI, VII,
and VIII, respectively.
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