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The search for mesons with non-quark-antiquark (exotic) quantum numbers has gone on for nearly 30 years.
Currently there is experimental evidence of three isospin one states, the π1(1400), the π1(1600), and the π1(2015).
For all of these states, there are questions about their identification and even if some of them exist. In this article, we
will review both the theoretical work and the experimental evidence associated with these exotic quantum number
states. We find that the π1(1600) could be the lightest exotic quantum number hybrid meson, but observations of
other members of the nonet would be useful.
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I. INTRODUCTION

The quark model describes mesons as bound states of
quarks and antiquarks (qq̄), much akin to positronium (e+e−).
As described in Sec. II A, mesons have well-defined quantum
numbers: total spin J , parity P , and C parity C, represented
as JPC . The allowed JPC quantum numbers for orbital
angular momentum, L, smaller than 3 are given in Table I.
Interestingly, for J smaller than 3, all allowed JPC except
2−− [1] have been observed by experiments. From the
allowed quantum numbers in Table I, there are several missing
combinations: 0−−, 0+−, 1−+, and 2+−. These are not possible
for simple qq̄ systems and are known as “exotic” quantum
numbers. Observation of states with exotic quantum numbers
has been of great experimental interest as it would be clear
evidence for mesons beyond the simple qq̄ picture.

Moving beyond the simple quark-model picture of mesons,
there have been predictions for states with these exotic
quantum numbers. The most well known are qq̄ states in which
the gluons binding the system can contribute directly to the
quantum numbers of the meson. However, other candidates
include multiquark states (qq̄qq̄) and states containing only
gluons (glueballs). Early bag-model calculations [2] referred
to states with qq̄ and gluons as “hermaphrodite mesons” and
predicted that the lightest nonet (JPC = 1−+) might have
masses near 1 GeV as well as distinctive decay modes. They
might also be relatively stable and thus observable. While the
name hermaphorodite did not survive, what are now known as
“hybrid mesons” have become a very interesting theoretical
and experimental topic and the status of these states, with
particular emphasis on the exotic-quantum number ones is the
topic of this article. More information on meson spectroscopy
in general can be found in a recent review by Klempt and
Zaitsev [3]. Similarly, a recent review on the related topic of
glueballs can be found in Ref. [4].

II. THEORETICAL EXPECTATIONS FOR
HYBRID MESONS

A. Mesons in the quark model

In the quark model, mesons are bound states of quarks
and antiquarks (qq̄). The quantum numbers of such fermion-
antifermion systems are functions of the total spin, S, of

the quark-antiquark system and the relative orbital angular
momentum, L, between them. The spin S and angular
momentum L combine to yield the total spin

J = L ⊕ S, (1)

where L and S add as two angular momentums.
Parity is the result of a mirror reflection of the wave

function, taking �r into −�r . It can be written as

P [ψ(�r)] = ψ(−�r) = ηP ψ(�r), (2)

where ηP is the eigenvalue of parity. As application of parity
twice must return the original state, ηP = ±1. In spherical
coordinates, the parity operation reduces to the reflection of a
Ylm function,

Ylm(π − θ, π + φ) = (−1)lYlm(θ, φ). (3)

From this, we conclude that ηP = (−1)l .
For a qq̄ system, the intrinsic parity of the antiquark is

opposite to that of the quark, which yields the total parity of a
qq̄ system as

P (qq̄) = −(−1)L. (4)

Charge conjugation, C, is the result of a transformation
that takes a particle into its antiparticle. For a qq̄ system,
only electrically neutral states can be eigenstates of C. In
order to determine the eigenvalues of C (ηC), we need to
consider a wave function that includes both spatial and spin
information

�(�r, �s) = R(r)Ylm(θ, φ)χ (�s). (5)

As an example, we consider a uū system, the C operator
acting on this reverses the meaning of u and ū. This has the
effect of mapping the vector �r to the u quark into −�r . Thus,
following the arguments for parity, the spatial part of C yields
a factor of (−1)L. The spin wave function also reverse the two
individual spins. For a symmetric χ , we get a factor of 1, while
for an antisymmetric χ , we get a factor of −1. For two spin 1

2
particles, the S = 0 singlet is antisymmetric, while the S = 1
triplet is symmetric. Combining all of this, we find that the C
parity of (a neutral) qq̄ system is

C(qq̄) = (−1)L+S. (6)
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TABLE I. The allowed J PC quantum numbers for qq̄ systems.

L S J PC L S J PC L S J PC

0 0 0−+ 1 0 1+− 2 0 2−+

0 1 1−− 1 1 0++ 2 1 1−−

1 1 1++ 2 1 2−−

1 1 2++ 2 1 3−−

Because C parity is defined only for neutral states, it is
useful to extend this to the more general G parity which can
be used to describe all qq̄ states, independent of charge. For
isovector states (I = 1), C would transform a charged member
into the oppositely charged state (e.g., π+ → π−). In order to
transform this back to the original charge, we would need to
perform a rotation in isospin (π− → π+). For a state of whose
neutral member has C parity C, and whose total isospin is I ,
the G parity is defined to be

G = C(−1)I , (7)

which can be generalized to

G(qq̄) = (−1)L+S+I . (8)

The latter is valid for all of the I = 0 and I = 1 members of
a nonet. This leads to mesons having well-defined quantum
numbers: total angular momentum, J ; isospin, I ; parity P , C
parity, C; and G parity, G. These are represented as (IG)JPC

or simply JPC for short. For the case of L = 0 and S = 0, we
have JPC = 0−+, while for L = 0 and S = 1, JPC = 1−−.
The allowed quantum numbers for L smaller than three are
given in Table I.

B. Notation and quantum numbers of hybrids

The notation for hybrid mesons we use is that from the
Particle Data Group (PDG) [1]. In the PDG notation, the parity
and charge conjugation determine the name of the hybrid,
which is taken as the name of the normal meson of the same
JPC and isospin. The total spin is then used as a subscript to the
name. While various models predict different nonets of hybrid
mesons, the largest number of nonets is from the flux-tube
model (see Sec. II C). For completeness, we list all of these
as well as their PDG names in Table II. The first entry is the
isospin one (I = 1) state. The second and third are those with
isospin equal to zero (I = 0) and the fourth is the kaonlike state
with isospin one-half (I = 1

2 ). In the case of the I = 0 states,
the first is taken as the mostly uū and dd̄ state (so-called nn̄),
while the second is mostly ss̄. For the I = 0 states, C parity is
well defined, but for I = 1, only the neutral member can have
a defined C parity. However, the more general G parity can be
used to describe all of the I = 1 members [see Eq. (8)]. Thus,
the G parity can be used to identify exotic quantum numbers,
even for charged I = 1 members of a nonet. For the case of
the kaonlike states, neither C parity nor G parity is defined.
Thus, the I = 1

2 members of a nonet cannot have explicitly
exotic quantum numbers.

In Table III we show the JP of the three exotic I = 1
mesons from Table II. We also show the normal (qq̄) meson of

TABLE II. The naming scheme for hybrid mesons. The first state
listed for a given quantum number is the isospin one state. The second
state is the isospin zero state that is mostly u and d quarks (nn̄), while
the third name is for the mostly ss̄ isospin zero state. Note that for
the kaons, the C and G parity are not defined. Kaons cannot not have
manifestly exotic quantum numbers. States that have exotic quantum
numbers are shown in bold.

QNs Names

J PC (IG) (IG) (I )

1++ (1−) a1 (0+) f1 f ′
1

(
1
2

)
K1

1−− (1+) ρ1 (0−) ω1 φ1

(
1
2

)
K∗

1

0−+ (1−) π0 (0+) η0 η′
0

(
1
2

)
K0

1−+ (1−) π1 (0+) η1 η′
1

(
1
2

)
K∗

1

2−+ (1−) π2 (0+) η2 η′
2

(
1
2

)
K2

0+− (1+) b0 (0−) h0 h′
0

(
1
2

)
K∗

0

1+− (1+) b1 (0−) h1 h′
1

(
1
2

)
K1

2+− (1+) b2 (0−) h2 h′
2

(
1
2

)
K∗

2

the same JP and the IG quantum numbers for these states. The
exotic mesons have the opposite G parity relative to the normal
meson. This provides a simple mechanism for identifying if a
charged I = 1 state has exotic quantum numbers.

C. Model predictions

The first predictions for exotic quantum number mesons
came from calculations in the Bag model [5,6]. In this model,
boundary conditions are placed on quarks and gluons confined
inside a bag. A hybrid meson is formed by combining a qq̄

system (with spin 0 or 1) with a transverse-electric (TE) gluon
(JPC = 1+−). This yields four nonets of hybrid mesons with
quantum numbers JPC = 1−−, 0−+, 1−+, and 2−+. These four
nonets are roughly degenerate in mass and early calculations
predicted the mass of a 1−+ to be in the range of 1.2 to 1.4 GeV
[7,8]. In the bag model, the transverse-magnetic gluon is of
higher mass. It has JPC = 1−+ and combined with the same
S = 0 and S = 1 qq̄ systems yield four additional nonets with
JPC = 1++, 0+−, 1+−, and 2+−. These would presumably be
heavier than the nonets built with the TE gluon.

Another method that has been used to predict the hybrid
masses are “QCD spectral sum rules” (QSSR). Using QSSR,
one examines a two-point correlator of appropriate field
operators from QCD and produces a sum rule by equating
a dispersion relation for the correlator to an operator product

TABLE III. The J P and IG quantum numbers for the exotic
mesons and the normal mesons of the same J P .

J P Normal meson Exotic meson

Name (IG) Name (IG)

0+ a0 (1−) b0 (1+)
1− ρ (1+) π1 (1−)
2+ a2 (1−) b2 (1+)
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expansion. QSSR calculations initially found a 1−+ state near
1 GeV [9,10]. A 0−− state was also predicted around 3.8 GeV
in mass [10]. Newer calculations [11] tend to favor a 1−+
hybrid mass in the range of 1.6 to 2.1 GeV and favor the
π1(1600) (see Sec. III C) as the lightest exotic hybrid. Recently,
Narison [12] looked at the calculations for JPC = 1−+ states
with particular emphasis in understanding differences in the
results between QSSR and lattice QCD calculations (see
Sec. II D). He found that the π1(1400) and π1(1600) may be
consistent with 4-quark states, while QSSR are consistent with
the π1(2015) (see Sec. III D) being the lightest hybrid meson.

The formation of flux tubes was first introduced in the 1970s
by Yoichiro Nambu [13,14] to explain the observed linear
Regge trajectories—the linear dependence of mass squared,
m2, of hadrons on their spin, J . This linear dependence
results if one assumes that massless quarks are tied to the
ends of a relativistic string with constant mass (energy)
per length and the system rotating about its center. The
linear m2 versus J dependence arises only when the mass
density per length is constant, which is equivalent to a linear
potential.

In the heavy-quark sector, lattice QCD [15] calculations
show a distribution of the gluonic field (action density) which
is mostly confined to the region between the quark and the
antiquark. A picture which is very similar to that inspired by
the “flux-tube model.” Within the flux-tube model [16,17], one
can view hybrids as mesons with angular momentum in the
flux tube. Naively, one can imagine two degenerate excitations,
one with the tube going clockwise and one counterclockwise.
It is possible to write linear combinations of these that have
definite spin, parity, and C parity. For the case of one unit of
angular momentum in the tube, the flux tube behaves as if it
has quantum numbers JPC = 1+− or 1−+. The basic quantum
numbers of hybrids are obtained by adding the tube’s quantum
numbers to that of the underlying meson.

In the flux-tube model, the tube carries angular momentum,
m, which then leads to specific predictions for the product of
C parity and parity (CP ). For m = 0, one has CP = (−1)S+1,
while for the first excited states, (m = 1), we find that CP =
(−1)S . The excitations are then built on top of the s wave
mesons, (L = 0), where the total spin can be either S = 0 or
S = 1. For the case of m = 0, we find CP as follows,

(m = 0)
S = 0 0−+

S = 1 1−−

}
(−1)L+1(−1)S+L = (−1)S+1

Normal mesons,

which are the quantum numbers of the normal, qq̄, mesons as
discussed in Sec. II A. For the case of m = 1, where we have
one unit of angular momentum in the flux tube, we find the
following JPC quantum numbers

(m = 1)
S = 0 0−+

S = 1 1−−

}
1++, 1−−

0−+, 0+−, 1−+, 1+−, 2−+, 2+−.

The resulting quantum numbers are obtained by adding both
1+− and 1−+ to the underlying qq̄ quantum numbers (0−+ and
1−−).

From the two L = 0 meson nonets, we expect eight hybrid
nonets (72 new mesons!). Two of these nonets arise from the
qq̄ in an S = 0 (singlet) state, while six arise for the qq̄ in

TABLE IV. Mass predictions for hybrid mesons from various
models.

Mass (GeV) Model Reference

1.0–1.4 Bag model [2,5,6]
1.0–1.9 QSSR [9–12]
1.8–2.0 Flux tube [17]
2.1–2.3 Hamiltonian [18]

the S = 1 (triplet) state. Of the six states built on the triplet
qq̄, three have exotic quantum numbers (as indicated in bold
above).

In the picture presented by the flux-tube model, the hybrids
are no different than other excitations of the qq̄ states. In
addition to “orbital” and “radial” excitations, we also need
to consider “gluonic” excitations. Thus, the flux-tube model
predicts eight nonets of hybrid mesons (0+−, 0−+, 1++, 1−−,
1−+, 1+−, 2−+, and 2+−). The model also predicts that all
eight nonets are degenerate in mass, with masses expected
near 1.9 GeV [17].

An alternate approach to calculating properties of hybrid
mesons comes from the effective QCD Coulomb-gauge
Hamiltonian. Here, Foch states for hadrons are constructed
from the vacuum as well as quark and gluon operators. In this
model, the lightest hybrid nonets are JPC = 1+−, 0++, 1++,
and 2++, none of which are exotic. The first excitation of these,
(L = 1), yields the nonets 1−+, 3−+, and 0−−, all of which are
exotic [18,19]. In this model, the 1−+ is the lightest exotic
quantum number hybrid, with a mass in the range of 2.1 to
2.3 GeV. Predictions are also made for the lightest cc̄ exotic
hybrid, which is found in the range of 4.1 to 4.3 GeV.

Table IV presents a summary of the mass predictions for
the various model calculations for hybrid meson masses.

D. Lattice predictions

Lattice QCD (LQCD) calculations may provide the most
accurate estimate to the masses of hybrid mesons. While
these calculations have progressively gotten better, they are
still limited by a number of systematic effects. Currently, the
most significant of these is related to the mass of the light
quarks used in the calculations. This is typically parametrized
as the pion mass, and extrapolations need to be made to
reach the physical pion mass. This is often made as a linear
approximation, which may not be accurate. In addition, as the
the quark mass becomes lighter, two-meson decay channels
become possible. These may distort the resulting spectrum.

Most calculations have been performed with what is
effectively the strange-quark mass. However, it may not be
safe to assume that this is the mass of the ss̄ member of the
nonet, and one needs to be aware of the approximations made
to move the estimate to the uū/dd̄ mass. The bottom line is that
no one would be surprised if the true hybrid masses differed
by several hundred MeV from the best predictions.

While the flux-tube model (see Sec. II C predicts that the
lightest eight nonets of hybrid mesons are degenerate in mass
at about 1.9 GeV, LQCD calculations consistently show that
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TABLE V. Recent results for the light-quark 1−+ hybrid meson
masses.

Author 1−+ mass (GeV/c2)
collab.

uū/dd̄ ss̄

UKQCD [20] 1.87 ± 0.20 2.0 ± 0.2
MILC [21] 1.97 ± 0.09 ± 0.30 2.170 ± 0.080 ± 0.30
SESAM [22] 1.9 ± 0.20
MILC [23] 2.11 ± 0.10 ± (sys.)
Mei [24] 2.013 ± 0.026 ± 0.071
Hedditch [25] 1.74 ± 0.25
Bernard [26] 1.792 ± 0.139 2.100 ± 0.120
McNeile [27] 2.09 ± 0.1

the JPC = 1−+ nonet is the lightest. Predictions for the mass
of this state have varied from 1.8 to 2.1 GeV, with an average
about in the middle of these. Table V shows a number of
these predictions made over the last several years. Most of
these [20–25] were made in the quenched approximation (no
qq̄ loops allowed in the quenched calculation), while newer
calculations [26–29] are dynamic (not quenched).

However, the masses in Table V may not be the best
approximations to the hybrid masses. It has been noted [30]
that Table V is not a very useful way of displaying the results.
Rather, the mass needs to be correlated with the light-quark
mass used in the calculation. This is usually represented as
the pion mass. In Figure 1 are shown the predictions from the
same groups as a function of the pion masses used in their
calculations. In order to obtain the hybrid mass, one needs to
extrapolate to the physical pion mass.

There are fewer predictions for the masses of the other
exotic-quantum number states. Bernard [21] calculated the
splitting between the 0+− and the 1−+ state to be about
0.2 GeV with large errors. A later calculation using a clover
action [23] found a splitting of 0.270 ± 0.2 GeV. The SESAM
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FIG. 1. (Color online) The mass of the J PC = 1−+ exotic hybrid
as a function of the pion mass from lattice calculations. The open
(cyan) symbols correspond to quenched calculations, while the solid
(red and blue) symbols are dynamic (unquenched) calculations: open
(cyan) star [20], open (cyan) squares [21], open (cyan) upright
triangles [26], open (cyan) circles [25], solid (red) downward triangles
[22], solid (red) squares [27], solid (blue) upright triangles [26], and
solid (blue) circles [29].

TABLE VI. Estimates of the masses of exotic quantum number
hybrids [22].

Multiplet J PC Mass

π1 1−+ 1.9 ± 0.2 GeV/c2

b2 2+− 2.0 ± 1.1 GeV/c2

b0 0+− 2.3 ± 0.6 GeV/c2

collaboration [22] has one such calculation, the results of
which are shown in Table VI.

A significant LQCD calculation has recently been per-
formed which predicts the entire spectrum of light-quark
isovector mesons [28,29]. The fully dynamical (unquenched)
calculation is carried out with two flavors of the lightest quarks
and a heavier third quark tuned to the strange quark mass.
Calculations are performed on two lattice volumes and using
four different masses for the lightest quarks—corresponding
to pion masses of 700, 520, 440, and 390 MeV. In the heaviest
case, the lightest quark masses are the same at the strange
mass. The computed spectrum of isovector states for this
heavy case is shown in Fig. 2 [where the mass is plotted
as a ratio to the 
-baryon mass (1.672 GeV)]. In the plot,
the rightmost columns correspond to the exotic π1, b0, and
b2 states. Interestingly, the 1−+ π1 is the lightest, and both
a ground state and what appears to be an excited state are
predicted. The other two exotic-quantum-number states appear
to be somewhat heavier than the π1 with an excited state for
the b2 visible.

In addition to performing the calculation near the physical
quark mass, there are a number of important innovations. First,
the authors have found that the reduced rotational symmetry
of a cubic lattice can be overcome on sufficiently fine
lattices. They used meson operators of definite continuum spin
subduced into the irreducible representations of cubic rotations
and observed very strong correlation between operators and
the spin of the state. In this way they were able to make
spin assignments from a single lattice spacing. Second, the
unprecedented size of the operator basis used in a variational
calculation allowed the extraction of many excited states with
confidence.

There were also phenomenological implications of these
lattice results. A subset of the meson operators feature the
commutator of two gauge-covariant derivatives, equal to the
field-strength tensor, which is nonzero only for nontrivial
gluonic field configurations. Large overlap onto such operators
was used to determine the degree to which gluonic excitations
are important in the state, i.e., what one would call the hybrid
nature of the state. In particular, the exotic quantum number
states all have large overlap with this type of operator, a likely
indication of hybrid nature over, say, multiquark structure.
In addition to the exotic-quantum number states, several
normal-quantum-number states also had large overlap with the
nontrivial gluonic field. In particular, states with JPC = 1−−,
2−+ with approximately the same mass as the lighter 1−+ state
were noted.

In order to extract the masses of states, it is necessary
to work at the physical pion mass. While work is currently
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FIG. 2. (Color online) The LQCD prediction for the spectrum of isovector mesons. The quantum numbers are listed across the bottom,
while the color denotes the spin. Solid (dashed) bordered boxes on a 2.03(2.43) fm volume lattice, little volume dependence is observed. The
three columns at the far right are exotic-quantum numbers. The plot is taken from Ref. [29].

underway to extract a point at mπ ≈ 280 MeV, this limit has
not yet been reached. To attempt to extrapolate, one can plot the
extracted state masses as a function of the pion mass squared,
which acts as a proxy for the light quark mass (see Fig. 3).
While linearly extrapolating to the physical pion mass ignores
constraints from chiral dynamics, it is probably safe to say
that both the π1(1600) and the π1(2015) (as discussed below)
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FIG. 3. (Color online) The mass spectrum of the three exotic
quantum number states [29]. The open figures are for a 163 spatial
dimension lattice, while the solid are for a 203 spatial lattice. The
(blue) circles are the mass of the 1−+ state, the (green) squares are
the mass of the 0+− state, and the (red) stars are the 2+− state.

could be consistent with the expected 1−+ mass. They are also
consistent with the ground and first-excited π1 state. It appears
that the b0 and b2 masses will likely be several hundred MeV
heavier than the lightest π1.

Lattice calculations have also been performed to look for
other exotic quantum number states. Bernard [21] included
operators for a 0−− state but found no evidence for a state
with these quantum numbers in their quenched calculation.
Dudek et al. [29] looked for both 0−− and 3−+ states in their
lattice data. They found some evidence for states with these
quantum numbers, but the lightest masses were more than
2 GeV above the mass of the ρ meson.

These recent lattice calculations are extremely promising.
They reaffirm that hybrid mesons form part of the low-energy
QCD spectrum and that exotic quantum number states exist.
They also provide, for the first time, the possibility of assessing
the gluonic content of a calculated lattice state. Similar
calculations are currently underway for the isoscalar sector
where preliminary results [30] for the mass scale appear
consistent with those shown here in the isovector sector.
These calculations will also extract the flavor mixing angle, an
important quantity for phenomenology.

E. Decay modes

Currently, decays of hybrid mesons can only be calculated
within models. Such models exist, having been developed to
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compute the decays of normal mesons. A basic feature of these
is the so-called triplet-P-zero (3P0) model. In the 3P0 model, a
meson decays by producing a qq̄ pair with vacuum quantum
numbers (JPC = 0++).

A detailed study by Ackleh, Barnes, and Swanson [31]
established that the 3P0 amplitudes are dominant in most light-
quark meson decays. They also determined the parameters in
decay models by looking at the well-known decays of mesons.
This work was later extended to provide predictions for the
decay of all orbital and radial excitations of mesons lighter than
2.1 GeV [32]. This tour-de-force in calculation has served as
the backdrop against which most light-quark meson and hybrid
candidates are compared.

The original calculations for the decays of hybrids in
the flux-tube model were carried out by Isgur [17]. Within
their model, Close and Page [33], confirmed the results
and expanded the calculations to include additional hybrids.
Using improved information about mesons and using simple
harmonic oscillator (SHO) wave functions, they were able to
compute the decay width of hybrid mesons. They also provided
arguments for the selection rule that hybrids prefer to decay
to an L = 0 and an L = 1 meson. The suppression of a pair
of L = 0 mesons arises in the limit that the two mesons have
the same inverse radius in the simple harmonic oscillator wave
functions. Thus, these decays are not strictly forbidden, but
are suppressed depending on how close the two inverse radii
are. This led to the often-quoted predication for the decays of
the π1 hybrid given in Eq. (9).

πb1 : πf1 : πρ : ηπ : πη′

=
170 : 60 : 5 − 20 : 0 − 10 : 0 − 10. (9)

The current predictions for the widths of exotic-quantum-
number hybrids are based on model calculations by Page et al.
[34] for which the results are given in Table VII. They also
computed decay rates for the hybrids with normal qq̄ quantum
numbers (results in Table VIII). While a number of these
states are expected to be broad (in particular, most of the 0+−
exotic nonet), states in both the 2+− and the 1−+ nonets are
expected to have much narrower widths. The expected decay
modes involve daughters that in turn decay. Thus making the
overall reconstruction and analysis of these states much more
complicated then simple two-pseudoscalar decays.

For the nonexotic quantum numbers states, it will be even
more difficult. They are likely to mix with nearby normal
qq̄ states, complicating the expected decay pattern for both
the hybrid and the normal mesons. However, the decays in
Table VIII can be used as a guideline to help in identifying
these states. In searches for hybrid mesons, the nonets with
exotic quantum numbers provide the cleanest environment in
which to search for these objects.

Close and Thomas [35] reexamined this problem in terms
of work on hadronic loops in the cc̄ sector by Barnes and
Swanson [36]. They conclude that in the limit where all mesons
in a loop belong to a degenerate subset, vector hybrid mesons
remain orthogonal to the qq̄ states (JPC = 1−− 3S1 and 3D1)
and mixing may be minimal. Thus, the search for hybrids with

TABLE VII. Exotic quantum number hybrid width and decay
predictions from Ref. [34]. The column labeled PSS (Page, Swanson,
and Szczepaniak) is from their model, while the column labeled IKP
(Isgur, Karl, and Paton) is their calculation of the model in Ref. [17].
The variations in width for PSS come from different choices for the
masses of the hybrids. The KA

1 represents the K1(1270) while the KB
1

represents the K1(1400).

Name J PC Total width Large decays
(MeV)

PSS IKP

π1 1−+ 81–168 117 b1π , ρπ , f1π , a1η,
η(1295)π , KA

1 K , KB
1 K

η1 1−+ 59–158 107 a1π , f1η, π (1300)π ,
KA

1 K , KB
1 K

η′
1 1−+ 95–216 172 KB

1 K , KA
1 K , K∗K

b0 0+− 247–429 665 π (1300)π , h1π

h0 0+− 59–262 94 b1π , h1η, K(1460)K
h′

0 0+− 259–490 426 K(1460)K , KA
1 K , h1η

b2 2+− 5–11 248 a2π , a1π , h1π

h2 2+− 4–12 166 b1π , ρπ

h′
2 2+− 5–18 79 KB

1 K , KA
1 K , K∗

2 K , h1η

vector qq̄ quantum numbers may not be as difficult as the other
nonexotic quantum number hybrids.

Almost all models of hybrid mesons predict that they will
not decay to identical pairs of mesons. Many also predict
that decays to pairs of L = 0 mesons will be suppressed,
leading to decays of an (L = 0)(L = 1) pair as the favored
hybrid decay mode. Page [37] undertook a study of these

TABLE VIII. Nonexotic quantum number hybrid width and decay
predictions from Ref. [34]. The column labeled PSS (Page, Swanson,
and Szczepaniak) is from their model, while the column labeled IKP
(Isgur, Karl, and Paton) is their calculation of the model in Ref. [17].
The variations in width for PSS come from different choices for the
masses of the hybrids. The KA

1 represents the K1(1270) while the KB
1

represents the K1(1400).

Particle J PC Total width (MeV) Large decays

PSS IKP

ρ1 1−− 70–121 112 a1π ,ωπ , ρπ

ω1 1−− 61–134 60 ρπ , ωη, ρ(1450)π
φ1 1−− 95–155 120 KB

1 K , K∗K , φη

a1 1++ 108–204 269 ρ(1450)π , ρπ , K∗K
h1 1++ 43–130 436 K∗K , a1π

h′
1 1++ 119–164 219 K∗(1410)K ,K∗K

π0 0−+ 102–224 132 ρπ ,f0(1370)π
η0 0−+ 81–210 196 a0(1450)π , K∗K
η′

0 0−+ 215–390 335 K∗
0 K ,f0(1370)η, K∗K

b1 1+− 177–338 384 ω(1420)π ,K∗K
h1 1+− 305–529 632 ρ(1450)π , ρπ , K∗K
h′

1 1+− 301–373 443 K∗(1410)K , φη, K∗K
π2 2−+ 27–63 59 ρπ ,f2π

η2 2−+ 27–58 69 a2π

η′
2 2−+ 38–91 69 K∗

2 K , K∗K
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FIG. 4. (a) A connected decay diagram where the decay can be
suppressed. (b) An example of a disconnected diagram where the
decay is not suppressed.

models of hybrid decay that included “TE hybrids”(with a
transverse electric constituent gluon) in the bag model as
well as “adiabatic hybrids” in the flux-tube model (hybrids
in the limit where quarks move slowly with respect to the
gluonic degrees of freedom). In such cases, the decays to pairs
of orbital angular-momentum L = 0 (S-wave) mesons were
found to vanish. In both cases, it had been noted that this was
true when the quark and the antiquark in the hybrid’s daughters
have identical constituent masses with the same S-wave spatial
wave functions and the quarks are nonrelativistic. In order to
understand this, Page looked for an underlying symmetry that
could be responsible for this. He found that symmetrization of
connected decay diagrams [see Fig. 4(a)] where the daughters
are identical except for flavor and spin vanish when Eq. (10)
is satisfied.

C0
APA = (−1)(SA+Sqq̄+1). (10)

For meson A decaying to daughters B and C, C0
A is the C

parity of the neutral isospin member of the decaying meson A,
PA is its parity, and SA is its intrinsic spin. Sqq̄ is the total spin
of the created pair. In the nonrelativistic limit, Sqq̄ = 1. For
nonconnected diagrams [Fig. 4(b)], he found no such general
rules, so the vanishing of the decays occur to the extent that the
nonconnected diagrams are not important (OZI suppression).

As an example of this, consider A to be the π1 hybrid.
It has C0

A = +1, PA = −1, and SA = +1, thus the left-hand
side of equation (10) is −1. The right-hand side is (−1)3 = −1.
The decay to pairs of mesons with the same internal angular
momentum is suppressed to the extent that the disconnected
diagram in Fig. 4(b) is not important. In a later study, Close
and Dudek [38] found that some of these decays could be large
because the π and ρ wave functions were not the same.

While it has been historically difficult to compute decays on
the lattice, a first study of the decay of the π1 hybrid has been
carried out by McNeile [27,39]. In order to do this, they used
a technique where they put a given decay channel at roughly
the same energy as the decaying state. Thus, the decay is just
allowed and conserves energy in a two-point function. In this
way, they are able to extract the ratio of the decay width over
the decay momentum and find

�(π1 → b1π )/k = 0.66 ± 0.20

�(π1 → f1π )/k = 0.15 ± 0.10,

which they note corresponds to a total decay width larger
than 0.4 GeV for the π1. As a check of their procedure, they
carry out a similar calculation for b1 → ωπ where they obtain
�/k ∼ 0.8, which leads to �(b1 → ωπ ) ∼ 0.22 GeV. This is
about a factor of 1.6 larger than the experimental width.

TABLE IX. Decay widths as computed in the flux-tube model
(IKP) compared to the lattice calculations. (Table reproduced from
Ref. [40].)

IKP IKP Lattice
[17] [33] [27]

1.9 GeV 2.0 GeV 2.0 GeV

�(π1 → b1π )S 100 70 400 ± 120
�(π1 → b1π )D 30 30
�(π1 → f1π )S 30 20 90 ± 60
�(π1 → f1π )D 20 25

Burns and Close [40] examined these lattice decay results
and made comparisons to what had been found in flux-tube
model calculations. Table IX shows their comparison between
flux-tube calculations for the width of the π1 and the decay
width from the lattice. They note that in the work of McNeile
[27], an assumption was made that �/k does not vary with the
quark mass, and the resulting linear extrapolation leads to the
large width in Table IX. They argue that the flux-tube model has
been tested over a large range of k, where it accurately predicts
the decays of mesons and baryons. Quoting them, “The
successful phenomenology of this and a wide range of other
conventional meson decays relies on momentum-dependent
form factors arising from the overlap of hadron wave functions.
The need for such form factors is rather general, empirically
supported as exclusive hadron decay widths do not show
unrestricted growth with phase space.” Based on this, they
carried out a comparison of the transition amplitudes computed
for k = 0 (the lattice case). They found excellent agreement
between the lattice and the flux-tube calculations. Thus, their
concern that the extrapolation may be overestimating decay
widths may be valid.

While the model calculations provide a good guide in
looking for hybrids, there are often symmetries that can
suppress or enhance certain decays. Chung and Klempt [41]
noted one of these for decays of a JPC = 1−+ state into ηπ

where the η and π have relative angular momentum of L = 1.
In particular, in the limit where the η is an SU(3) octet, the
ηπ in a p wave must be in an antisymmetric wave function. In
order to couple this to an octet (hybrid) meson, the hybrid must
also be antisymmetric. This implies it must be a member of
the 82 octet. However, the SU(3) Clebsch-Gordan coefficient
for 82 → η8π is zero. Thus, the decay is forbidden.

However, by similar arguments, they showed that it can
couple to the 10 ⊕ 10 representation of SU(3). A representa-
tion that contains multiquark (qqq̄q̄) objects (see Sec. II F).
Similarly, for the singlet (η′) in a p wave, the coupling to an
octet is not suppressed.

To the extent that the η is octet and the η′ is singlet, a 1−+
state that decays to ηπ and not η′π cannot be a hybrid, while
one that decays to η′π and not ηπ is a candidate for a 1−+
hybrid meson. Our current understanding of the pseudoscalar
mixing angle is that it is between −10◦ and −20◦ [1], thus
the assumption on the nature of the η and η′ is not far off.
However, as far as we know, the pseudoscalar mesons are the
only nonet that is close to pure SU(3) states, all others tend to
be close to ideal mixing. A case where the higher mass state is
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nearly pure ss̄. Thus, this suppression would not be expected
for decays to higher mass nonets.

F. Multiquark states

As noted in Sec. I, exotic quantum numbers can arise
from other quark-gluon systems as well. While it is possible
for glueballs to have exotic quantum numbers, the masses
are expected to be above 3 GeV [42]. Another configuration
are multiquark states (qqq̄q̄) consisting of two quarks and
two antiquarks. A short review of this topic can be found in
Ref. [43], and a nice description of how these states are built
in the quark model can be found in Ref. [44].

Following Ref. [45], the SU(3) multiplets of these states
can be obtained by considering qq and q̄q̄ combinations. The
former can transform as either 3 or 6 under SU(3), while the
latter can transform as 3 and 6. Thus, multiplets can be built
up as

3 ⊗ 3 = 1 ⊕ 8 = 9
6 ⊗ 6 = 1 ⊕ 8 ⊕ 27 = 36

6 ⊗ 3 ⊕ 3 ⊗ 6 = 8 ⊕ 10 ⊕ 8 ⊕ 10 = 18 ⊕ 18.

The JP of these multiquark states can be obtained by initially
combining all the quarks in an S wave. This yields JP values
of 0+, 1+, and 2+, which can be combined with the fact that
the overall wave functions must be antisymmetric to associate
SU(3) multiplets with JP .

JP = 2+ : 9, 36

JP = 1+ : 9, 18, 18, 18, 18, 36

JP = 0+ : 9, 9, 36, 36.

Jaffe considered these multiquark states in terms of the bag
model [45,46], where he found a nonet of JP = 0+ states to
be the lightest with a mass around 1 GeV. This cryptoexotic
nonet is interesting in that the ρ- and ω-like states have an ss̄

pair combined with the lighter quarks.

ω
1√
2

(
uū + dd̄

)
(ss̄)

ρ+ ud̄(ss̄)

ρ0 1√
2

(
uū − dd̄

)
(ss̄)

ρ− dū(ss̄).

The K-like states have a single strange quark,

K+ us̄dd̄

K0 ds̄uū

K̄0 sūdd̄

K− sd̄uū,

while the φ-like state has no strange quarks,

φ uūdd̄.

This yields the so-called inverted nonet, where the mass
hierarchy is reversed relative to the qq̄ states. This nonet is

often associated with the low-mass states f0(600) (σ ), K∗
0 (800)

(κ), a0(980), and the f0(980). Jaffe also noted that whenever
the expected mass of a multiquark state was above that of a
simple meson-meson threshold to which the state could couple,
the decays would be “superallowed” and the width of the state
would be very large. Because of these superallowed decays,
Jaffe [47] noted that the states would not exist.

Orbital excitations of the multiquark systems were exam-
ined in Ref. [48]. Additional symmetrization rules beyond the
simple qq̄ system apply for these, but they found that the
addition of one unit of angular momentum could produce both
JPC = 1−+ and 0−− states as members of an 18 ⊕ 18 SU(3)
multiplet with masses around 1.7 GeV. There are two isovector
states in an 18, one as part of an octet and the second as part of
a decuplet. The multiquark representation can be represented
in a meson-meson-like way by recoupling the colors and spins
to the new basis. Doing this, the two isovector states look like
a π combined with either and η or an η′. While the mixing
between the η and η′ components is not known, it is likely that
both states would have some hidden ss̄ component.

General and colleagues [49] looked at multiquark states in
the framework of molecular resonances using their Coulomb
gauge formalism. In this framework, they computed the
spectrum of the lightest states and find several states with
masses below 1.5 GeV. In the isovector sector, they find the
lightest state to be a JPC = 1−+ state (m = 1.32 GeV), with
a somewhat heavier 0−− state (m = 1.36 GeV) and then a
second 1−+ state (m = 1.42 GeV). In the isoscalar channel,
they find a single 0−− state and in the isotensor (isospin two)
channel, they predict an additional 0−− state. Between 1.5 and
2 GeV, they predict two additional 1−+ states in each of the
three isospin channels.

QSSR techniques have also been used to look for both
isovector [50] and isoscalar [51] JPC = 1−+ multiquark states.
As with the earlier work, they find that the exotic-quantum
number multiquark states are in the (3 ⊗ 6) ⊕ (3 ⊗ 6) flavor
representations. In their calculations, the decuplet π1 state
(with no ss̄ pair) has a mass of about 1.6 GeV, while the octet
π1 state (with ss̄) has a mass of about 2 GeV. For these states,
they suggest decays of the form JP = 0+, J P = 1− (f0ρ),
JP = 1+, J P = 0− (b1π ), and JP = 1−, J P = 1+ (ωb1). For
the isoscalar masses, both the octet and decuplet member
contain an ss̄ pair. They find a single state with a mass between
1.8 and 2.1 GeV. For decays, their calculations favor decays
of the form KK , ηη, ηη′, and η′η′. They also suggest several
decays that are forbidden by isospin conservation.

Lattice calculations for multiquark states are somewhat
sparse, largely due to the challenge of the number of quarks.
Studies have been made to try to determine if the low-
mass scalars have multiquark nature. A calculation in the
quenched approximation was made with pion mass as small
as 180 MeV identified the f0(600) as a multiquark state
[52]. A later quenched calculation with heavier pion masses
(344–576 MeV) found no indication of the f0(600) [53], but
the authors note that their pion mass is too heavy for this
to be conclusive. A recent dynamical calculation [54] with
somewhat heavier pion mass shows good agreement with
Ref. [52], and while the authors could not exclude the states
are lattice artifacts, their results suggest that the f0(600) and
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K∗
0 (800) have a multiquark nature. Finally, a recent dynamical

calculation of the entire isovector meson spectrum shows
no multiquark states [29]. However, the authors note that
the correct operators were probably not included in their
analysis, so the fact that these states are missing from their
analysis should not be taken as conclusive. Other lattice
calculations explicitly looking for exotic-quantum-number
multiquark states do not appear to have been performed.

If exotic-quantum number multiquark states exist, the
favored quantum numbers are 1−+ and 0−−. The latter being
a JPC not predicted for hybrid mesons. There may also be
hidden ss̄ components in the multiquark multiplets that would
distort their mass hierarchy relative to hybrid nonets. However,
for most of these multiquark states, their decays will be
super-allowed. In their recent review, Klempt and Zaitsev [3]
argue that (qq)(q̄q̄) systems will not bind without additional
qq̄ forces, and feel, that it is unlikely that these multiquark
states exist. In reviewing the information on these states, we
concur with their assessment for the exotic-quantum-number
states.

III. EXPERIMENTAL RESULTS

A. Production processes

Data on exotic-quantum-number mesons have come from
both diffractive production using incident pion beams and from
antiproton annihilation on protons and neutrons. Diffractive
production is schematically shown in Fig. 5. A pion beam
is incident on a proton (or nuclear) target, which recoils
after exchanging something in the t channel. The process can
be written down in the reflectivity basis [55] in which the
production factorizes into two noninterfering amplitudes—
positive reflectivity (ε = +) and negative reflectivity (ε = −).
The absolute value of the spin projection along the z axis
is M and is taken to be either 0 or 1 (it is usually assumed
that contributions from M larger than 1 are small and can be
ignored [56]). It can be shown in this process that naturality of
the exchanged particle can be determined by ε. Natural parity
exchange (npe) corresponds to JP s of 0+, 1−, 2+, . . . , while

p (target) p (recoil)

X (J PCM )

FIG. 5. The diffractive production process showing an incident
pion (π beam) incident on a proton (p target) where the exchange
has z-component on angular momentum M and reflectivity ε. The
final state consists of a proton (p recoil) and a state X of given JPC

produced by an exchange Mε . For positive reflectivity, the t-channel
is a natural parity exchange (npe), while for negative reflectivity, it is
unnatural parity exchange (upe). (This diagram was produced using
the JAXODRAW package [57].)

unnatural parity exchange (upe) corresponds to JP of 0−, 1+,
2−, · · · .

For a state which is observed in more than one decay mode,
one would expect that the production mechanism (Mε) would
be the same for all decay modes. If not, this could be indicative
of more than one state being observed, or possible problems
in the analysis that are not under control.

In antiproton-nucleon annihilation, there are a number of
differences between various annihilation processes. For the
case of p̄p, the initial state is a mixture of isospin I = 0 and
I = 1. For p̄n annihilation, the initial state is pure I = 1. For
annihilation at rest on protons, the initial state is dominated by
atomic S waves. In particular, 1S0 and 3S1 atomic states, which
have JPC = 0−+ and 1−− respectively (with a small admixture
of P states). For annihilation in flight, the number of initial
states is much larger and it may no longer make sense to try
and parametrize the initial system in terms of atomic states.

The combination of initial isospin and final state particles
may lead to additional selection rules that restrict the allowed
initial states. In the case of p̄p → ηπ0π0, the annihilation
is dominated by 1S0 initial states (JPC = 0−+). For the case
of p̄n → ηπ0π−, quantum numbers restrict this annihilation
to occur from the 3S1 initial states (JPC = 1−−). In addition,
the neutron is bound in deuterium, where the Fermi motion
introduces substantial p-wave annihilation. Thus, one may see
quite different final states from the two apparently similar
reactions.

B. The π1(1400)

The first reported observation of an exotic quantum number
state came from the GAMS experiment which used a 40 GeV/c
π− to study the reaction π−p → pηπ−. They reported a
JPC = 1−+ state in the ηπ− system which they called the
M(1405) [58]. The M(1405) had a mass of 1.405 ± 0.020 GeV
and a width of 0.18 ± 0.02 GeV. Interestingly, an earlier
search in the ηπ0 channel found no evidence of an exotic
state [59]. At KEK, results were reported on studies using a
6.3 GeV/c π− beam where they observed a 1−+ state in the
ηπ− system with a mass of 1.3431 ± 0.0046 GeV and a width
of 0.1432 ± 0.0125 GeV [60]. However, there was concern
that this may have been leakage from the a2(1320).

The VES collaboration reported intensity in the 1−+ ηπ−
wave as well as rapid phase motion between the a2 and the
exotic wave [61] (see Fig. 6). The exotic wave was present in
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FIG. 6. The results of a partial-wave analysis of the ηπ− final
state from VES. (a) The intensity in the 2++ partial wave, (b) the
intensity in the 1−+ partial wave, and (c) the relative phase between
the waves. (This figure is reproduced from Ref. [63].)
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FIG. 7. The π1(1400) as observed in the E852 experiment [64].
(a) The intensity of the J PC = 2++ partial wave as a function of ηπ

mass. The strong signal is the a2(1320). (b) The intensity of the 1−+

wave as a function of mass. (c) The phase difference between the
2++ and 1−+ partial waves. (d) The phases associated with (1) the
a2(1320), (2) the π1(1400), (3) the assumed flat background phase,
and (4) the difference between (1) and (2). (This figure is reproduced
from Ref. [64].)

the Mε = 1+ (natural parity) exchange, but not in the 0− and
1− (unnatural parity) exchange. They could fit the observed
JPC = 1−+ intensity and the phase motion with respect to the
a2(1320) using a Breit-Wigner distribution (mass of 1.316 ±
0.012 GeV and width of 0.287 ± 0.025 GeV). However, they
stopped short of claiming an exotic resonance, as they could
not unambiguously establish the nature of the exotic wave [62].
In a later analysis of the ηπ0 system, they claim that the peak
near 1.4 GeV can be understood without requiring an exotic
quantum number meson [63].

The E852 Collaboration used 18 GeV/c π− beams to study
the reaction π−p → pηπ−. They reported the observation
of a 1−+ state in the ηπ− system [64]. E852 found this
state only produced in natural parity exchange (Mε = 1+).
They measured a mass of 1.37 ± 0.016+0.050

−0.030 GeV and a
width of 0.385 ± 0.040+0.065

−0.105 GeV. While the observed exotic
signal was only a few percentages of the dominant a2(1320)
strength, they noted that its interference with the a2 provided
clear evidence of this state. When their intensity and phase-
difference plots were compared with those from VES [61],
they were identical. These plots (from E852) are reproduced
in Fig. 7.

Due to disagreements over the interpretation of the 1−+ sig-
nal, the E852 collaboration split into two groups. The majority
of the collaboration published the resonance interpretation,
π1(1400) [64], while a subset of the collaboration did not sign
the paper. As this latter group, centered at Indiana University,
continued to analyze data collected by E852, we will refer to
their publications as E852-IU to try an carefully distinguish
the work of the two groups.

The exotic π1 state was confirmed by the Crystal Barrel
Experiment which studied antiproton-neutron annihilation at
rest in the reaction p̄n → ηπ−π0 [65]. The Dalitz plot for this
final state is shown in Fig. 8 where bands for the a2(1320)
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FIG. 8. (Color online) The Dalitz plot of m2(ηπ 0) versus
m2(ηπ−) for the reaction p̄n → ηπ−π 0 from the Crystal Barrel
experiment [65]. The bands for the a2(1320) are clearly seen in both
ηπ 0 and ηπ−, while the ρ(770) is seen in the π 0π− invariant mass.

and ρ(770) are clearly seen. They reported a 1−+ state with
a mass of 1.40 ± 0.020 ± 0.020 GeV and a width of 0.310 ±
0.050+0.050

−0.030 GeV. While the signal is not obvious in the Dalitz
plot, if one compares the difference between a fit to the data
without and with the π1(1400), a clear discrepancy is seen
when the π1(1400) is not included (see Fig. 9). While the
π1(1400) was only a small fraction of the a2(1320) in the
E852 measurement [64], Crystal Barrel observed the two states
produced with comparable strength.

Crystal Barrel also studied the reaction p̄p → ηπ0π0 [66].
Here, a weak signal was observed for the π1(1400) [relative to
the a2(1320)] with a mass of 1.360 ± 0.025 GeV and a width
of 0.220 ± 0.090 GeV. In I = 0 p̄p annihilation, the a2(1320)
is produced strongly from the 1S0 atomic state. However, p̄n

is isospin 1 and the 1S0 state is forbidden. Thus, the strong
a2 production from p̄p is suppressed in p̄d annihilations—
making the π1(1400) production appear enhanced relative to
the a2(1320) in the latter reaction.

An analysis by the E852-IU group of data for the reaction
π−p → nηπ0 found evidence for the exotic 1−+ partial wave,
but were unable to describe it as a Breit-Wigner-like π1(1400)
ηπ0 resonance [67]. However, a later analysis by the E852
collaboration of the same final state and data confirmed
their earlier observation of the π1(1400) [68]. E852 found
a mass of 1.257 ± 0.020 ± 0.025 GeV and a width of 0.354 ±
0.064 ± 0.058 GeV with the π1(1400) produced via natural
parity exchange (Mε = 1+). Much of the discrepancy between
these two works arise from the treatment of backgrounds.
The E852 collaboration consider no background phase and
attribute all phase motion to resonances. The E852-IU group
allow for nonresonant interactions in the exotic channel, these
background processes are sufficient to explain the observed
phase motion.

The π1(1400) was also reported in p̄p annihilation into
four-pion final states by both Obelix [69] and Crystal Barrel
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FIG. 9. (Color online) The difference between the fit and the data
in the Dalitz plot of m2(ηπ 0 versus ηπ− for the reaction p̄n →
ηπ−π 0 from the Crystal Barrel experiment [65]. (a) Does not include
the π1(1400) while (b) does include the π1(1400). There are clear
systematic discrepancies present in (a) that are not present when the
π1(1400) is included.

[70] (conference proceedings only). They both observed the
π1(1400) decaying to ρπ final states; however, there is some
concern about the production mechanism. The ηπ signal arises
from annihilation from p-wave initial state, while the signal
in ρπ come from the 1S0 initial state. Thus, it is unlikely that
the exotic state seen in ηπ and that seen in ρπ are the same.
The origin of these may not be due to an exotic resonance but
rather some rescattering mechanism that has not been properly
accounted for.

Interpretation of the π1(1400) has been problematic. Its
mass is lower than most predicted values from models, and
its observation in only a single decay mode (ηπ ) is not
consistent with models of hybrid decays. Donnachie and

TABLE X. Reported masses and widths of the π1(1400) from the
GAMS, KEK, E852, Crystal Barrel (CBAR), and Obelix experiment.
Also reported is the 2008 PDG average for the state.

Mode Mass (GeV) Width (GeV) Experiment Reference

ηπ− 1.405 ± 0.020 0.18 ± 0.02 GAMS [58]
ηπ− 1.343 ± 0.0046 0.1432 ± 0.0125 KEK [60]
ηπ− 1.37 ± 0.016 0.385 ± 0.040 E852 [64]
ηπ 0 1.257 ± 0.020 0.354 ± 0.064 E852 [68]
ηπ 1.40 ± 0.020 0.310 ± 0.050 CBAR [65]
ηπ 0 1.36 ± 0.025 0.220 ± 0.090 CBAR [66]
ρπ 1.384 ± 0.028 0.378 ± 0.058 Obelix [69]
ρπ ∼1.4 ∼0.4 CBAR [70]
ηπ 1.351 ± 0.030 0.313 ± 0.040 PDG [1]

Page showed that the π1(1400) could be an artifact of the
production dynamics. They demonstrated that is possible
to understand the π1(1400) peak as a consequence of the
π1(1600) (see Sec. III C) interfering with a nonresonant
Deck-type background with an appropriate relative phase [71].
Zhang [72] considered a molecular picture where the π1(1400)
was an η(1295)π molecule. However, the predicted decays
were inconsistent with the observations of the π1(1400).

Szczepaniak [73] considered a model in which t-channel
forces could give rise to a background amplitude which
could be responsible for the observed π1(1400). In his model,
meson-meson interactions which respected chiral symmetry
were used to construct the ηπ p-wave interaction much like
the ππ s-wave interaction gives rise to the σ meson. They
claimed that the π1(1400) was not a QCD bound state but
rather dynamically generated by meson exchange forces.

Close and Lipkin noted that because the SU(3) multiplets
to which a hybrid and a multiquark state belong differ, the ηπ

and η′π decays might be a good way to distinguish them. They
found that for a multiquark state, the ηπ decay should be larger
than η′π , while the reverse is true for a hybrid meson [74]. A
similar observation was made by Chung [41], who noted that,
in the limit of the η being a pure octet state, the decay of an
octet 1−+ state to an ηπ p-wave is forbidden. Such a decay can
only come from a decuplet state. Given that the pseudoscalar
mixing angle for the η and η′ are close to this assumption, they
argue that the π1(1400) is qqq̄q̄ in nature.

While the interpretation of the π1(1400) is not clear, most
analyses agree that there is intensity in the 1−+ wave near this
mass. A summary of all reported masses and widths for the
π1(1400) are given in Table X. All are reasonably consistent,
and even the null observations of VES and E852-IU all concur
that there is strength near 1.4 GeV in the JPC exotic wave.
However, the E852 and VES results can be explained as either
nonresonant background [73], or nonresonant deck amplitudes
[71]. An other possibility is the opening of meson-meson
thresholds, such as f1(1285)π . Unfortunately, no comparisons
of these hypothesis have been made with the p̄N data (due to
the lack of general availability of the data sets), so it is not
possible to conclude that they would also explain those data.
However, in our minds, we believe that the evidence favors a
nonresonant interpretation of the exotic 1−+ signal and that
the π1(1400) does not exist.
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FIG. 10. The production of the 1−+ partial wave as seen in the
π+π−π− final state by E852. (a) The unnatural parity exchange
(Mε = 0−,1−). (b) The natural parity exchange (Mε = 1+). (This
figure is reproduced from Ref. [76].)

C. The π1(1600)

While the low mass, and single observed decay mode, of
the π1(1400) have presented some problems in understanding
its nature, a second JPC = 1−+ state is less problematic.
The π1(1600) has been observed in diffractive production
using incident π− beams where its mass and width have
been reasonably stable over several experiments and the decay
modes. It may also have been observed in p̄p annihilation.
Positive results have been reported from VES, E852, COM-
PASS, and others. These are discussed below in approximate
chronological order.

In addition to their study of the ηπ− system, the VES
collaboration also examined the η′π− system. Here they
observed a JPC = 1−+ partial wave with intensity peaking at a
higher mass than the π1(1400) [61]. However, as with the ηπ−
system, they did not claim the discovery of an exotic-quantum-
number resonance. VES later reported a combined study of
the η′π−, f1π

−, and ρ0π− final states [75] and reported a
“resonance-like structure” with a mass of 1.62 ± 0.02 GeV
and a width of 0.24 ± 0.05 GeV decaying into ρ0π−. They
also noted that the wave with JPC = 1−+ dominates in the
η′π− final state, peaking near 1.6 GeV and observed a small
1−+ signal in the f1π

− final state.
Using an 18 GeV/c π− beam incident on a proton target,

the E852 collaboration carried out a partial-wave analysis of
the π+π−π− final state [76,77]. They saw both the ρ0π−
and f2(1270)π− intermediate states and observed a JPC =
1−+ state which decayed to ρπ , the π1(1600). The π1(1600)
was produced in both natural and unnatural parity exchange
(Mε = 1+ and Mε = 0−, 1−) with apparent similar strengths
in all three exchange mechanisms (see Fig. 10). In Ref. [77],
they noted that there were issues with the unnatural exchange
production. The signal in the Mε = 1− wave exhibited very
strong model dependence and nearly vanished when larger
numbers of partial waves were included. The signal in the
Mε = 0− partial wave was stable, but its peak was above
1.7 GeV. They noted that the unnatural-parity exchange is
expected to die off at higher energies, so their results are not
at odds with those of VES (see below), where natural parity
exchange dominates. Even in their data, the unnatural parity
exchange waves make up a small fraction of the total signal.
In unnatural parity exchange, they found no significant waves,
which made a study of phase motion of the 1−+ in this sector
problematic. Thus, in their analysis, they only considered the
natural parity exchange. There, they found the π1(1600) to
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FIG. 11. The results of a PWA to the π+π−π− final state from
E852. (a) The intensity of the J PC = 1−+ wave, (b) shows the 2−+,
and (c) shows the phase difference between the two. The solid curves
are fits to two interfering Breit-Wigner distributions. In (d) are shown
the phases of the two Breit-Wigner distributions and (1,2) and a flat
background phase (3) that combine to make the curve in (c). (This
figure is reproduced from Ref. [76].)

have a mass of 1.593 ± 0.08+0.029
−0.047 GeV and a width of 0.168 ±

0.020+0.150
−0.012 GeV. Fig. 11 shows the intensity of the 1−+ and

2−+ [π2(1670)] partial waves as well as their phase difference.
The phase difference can be reproduced by two interfering
Breit-Wigner distributions and a flat background.

VES also reported on the ωπ−π0 final state [78,79]. In a
combined analysis of the η′π−, b1π , and ρ0π− final states, they
reported the π1(1600) state with a mass of 1.61 ± 0.02 GeV
and a width of 0.29 ± 0.03 GeV that was consistent with all
three final states. To the extent that they observed these states,
they also observed all three final state produced in natural
parity exchange (Mε = 1+). They were also able to report
relative branching ratios for the three final states as given in
Eq. (11).

b1π : η′π : ρπ : = 1 : 1 ± 0.3 : 1.5 ± 0.5. (11)

However, there were some issues with the ρπ final state. Rather
than limiting the rank of the density matrix as was done in
Refs. [76,77], they did not limit it. This allowed for a more
general fit that might be less sensitive to acceptance affects. In
this model, they did not observe any significant structure in the
1−+ ρπ partial wave above 1.4 GeV. However, by looking at
how other resonances were produced, they were able to isolate
a coherent part of the density matrix from which they found a
statistically significant 1−+ partial wave peaking near 1.6 GeV.
While VES was extremely careful not to claim the existence
of the ρπ decay of the the π1(1600), in the case that it exists,
they were able to obtain the rates given in Eq. (11).

In a follow-up analysis, E852 also studied the reaction
π−p → pη′π− to examine the η′π− final state [80]. They
observed, consistent with VES [61], that the dominant signal
was the 1−+ exotic wave produced dominantly in the Mε = 1+
channel, implying only natural parity exchange. They found
the signal to be consistent with a resonance, π1(1600), and
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(f) the phase difference. (This figure is reproduced from Ref. [80].)

found a mass of 1.597 ± 0.010+0.045
−0.010 GeV and a width of

0.340 ± 0.040 ± 0.050 GeV. The results of the E852 PWA
are shown in Fig. 12 where the P+ wave is the 1−+, the D+
corresponds to the 2++ a2, and the G+ corresponds to the 4++
a4. Clear phase motion is observed between both the 2++ and
4++ wave and the 1−+ and the 4++ wave.

An analysis of Crystal Barrel data at rest for the reaction
p̄p → ωπ+π−π0 was carried by some members of the
collaboration [81]. They reported evidence for the π1(1600)
decaying to b1π from both the 1S0 and 3S1 initial states, with
the signal being stronger from the former. The total signal
including both initial states, as well as decays with 0 and 2
units of angular momentum accounted for less than 10% of
the total reaction channel. The mass and width were found to
be consistent (within large errors) with the PDG value, and
only results with the mass and width fixed to the PDG values
were reported. Accounting for the large rate of annihilation to
ωπ+π−π0 of 13%, this would imply that p̄p → π1(1600)π
accounts for several percentages of all p̄p annihilations.

E852 also looked for the decays of the π1(1600) to b1π

and f1π . The latter was studied in the reaction π−p →
pηπ+π−π− with the f1 being reconstructed in its ηπ+π−
decay mode [82]. The π1(1600) was seen via interference
with both the 1++ and 2−+ partial waves. It was produced
via natural parity exchange (Mε = 1+) and found to have a
mass of 1.709 ± 0.024 ± 0.041 GeV and a width of 0.403 ±
0.080 ± 0.115 GeV. A second π1 state was also observed in
this reaction (see Sec. III D).

The b1π final state was studied by looking at the reaction
π−p → ωπ−π0p, with the b1 reconstructed in its ωπ decay
mode [83]. The π1(1600) was seen interfering with the 2++
and 4++ partial waves. In b1π , they measured a mass of
1.664 ± 0.008 ± 0.010 GeV and a width of 0.185 ± 0.025 ±
0.028 GeV for the π1(1600). However, the production mech-
anism was seen to be a mixture of both natural and unnatural
parity exchange, with the unnatural being stronger. As with
the f1π , they also observed a second π1 state decaying to b1π

(see Sec. III D).
The fact that E852 observed the π1(1600) produced in

different production mechanisms, depending on the final

TABLE XI. The production mechanisms for the π1(1600) as seen
in the E852 experiment. Also shown is whether the natural parity
exchange (npe) or the unnatural parity exchange (upe) is stronger.

Final state production (Mε) Dominant

ρπ 0−, 1−, 1+ npe ∼ upe
η′π 1+ npe
f1π 1+ npe
b1π 0−, 1−, 1+ upe > npe

state, is somewhat confusing. A summary of the observed
mechanisms is given in Table XI. In order to understand
the variations in production, there either needs to be two
nearly degenerate π1(1600)s or there is some unaccounted-for
systematic problem in some of the analyses.

The E852-IU group analyzed an E852 data set that was
an order of magnitude larger than that used by E852 in
Refs. [76,77]. In this larger data set, they looked at the reactions
π−p → nπ+π−π− and π−p → nπ−π0π0 and carried out a
partial-wave analysis for both the π+π−π− and the π−π0π0

final states. This yielded solutions that were consistent with
both final states [85]. In this analysis, they carried out a
systematic study of which partial waves were important in
the fit. When they used the same wave set as in the E852
analysis [76,77], they found the same solution showing a
signal for the π1(1600) in both final states. However, when
they allowed for more partial waves, they found that the signal
for the π1(1600) went away. Figure 13 shows these results for
the π−π0π0 final state, while Fig. 14 shows the results for the
π+π−π− final state. In both figures, the “low wave” solution
matches that from E852, while their “high wave” solution
shows no intensity for the π1(1600) in either channel. An
important point is that in both their high-wave and low-wave
analyses, the phase difference between the exotic 1−+ wave
and the 2++ wave are the same (and thus the same as in the
E852 analysis). While not shown here, the same is also true for
the 1−+ and 2−+ waves.

E852-IU carried out a study to determine which of the
additional waves in their “high wave” set were absorbing the
intensity of the π1(1600). They found that the majority of this
was due to the inclusion of the ρπ decay of the π2(1670). The
partial waves associated with the π2(1670) in both analyses

(GeV)(GeV)

Ev
en

ts
(K

)/
(0

.0
25

 G
eV

)

Ph
as

e 
(r

ad
ia

ns
)

2
(a) (b)

1

0
1.2 2.0 1.2 2.01.6

∆Φ(2++ - 1-+)

1.6

1−+

0

5

M(π-π0π0) M(π-π0π0)
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is reproduced from Ref. [85].)
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are listed in Table XII. While the production from Mε = 0+
is similar for both analyses, the E852 analysis included only
the π2(1670) decaying to f2π in the Mε = 1+ production.
The high-statistics analysis included both f2π and ρπ in
both production mechanisms. The PDG [1] lists the two main
decays of the π2(1670) as f2π (56%) and ρπ (31%), so it seems
odd to not include this latter decay in an analysis including the
π2(1670). Figure 15 shows the results of removing the ρπ

decay from the “high wave” set for the π+π−π− final state.
This decay absorbs a significant portion of the π1(1600) partial
wave.

In the E852-IU analyses, the fact that the phase motion of
the 1−+ exotic wave relative to other partial waves agrees with
with those differences as measured by E852 and are the same
in both the high-wave and low-wave analyses is intriguing.
This could be interpreted as a π1(1600) state which is simply
absorbed by the stronger π2(1670) as more partial waves
are added. However, given the small actual phase difference
between the 1−+ and 2−+ partial waves (see Fig. 11), the
opposite conclusion is also possible, particularly if some small
nonzero background phase was present. Here, the 1−+ signal is
due to leakage from the stronger π2 and no π1(1600) is needed
in the ρπ final state.

The VES results have been summarized in a review of all
their work on hybrid mesons [63]. This included an updated
summary of the π1(1600) in all four final states, η′π ρπ ,
b1π , and f1π . In the η′π final state (Fig. 16), they note
that the 1−+ wave is dominant. While they were concerned

TABLE XII. The included decays of the π2(1670) in two analyses
of the 3π final state. “L” is the wave set used in the E852 analysis
[76,77]. “H” is the wave set used in the higher statistics analysis [85].

π2(1670) Mε = 0+ Mε = 1+ Mε = 1−

decay L H L H L H

(f2π )S × × × × ×
(f2π )D × × × ×
[(ππ )S]D × × ×
(ρπ )P × × ×
(ρπ )F × ×
(f0π )D × ×

Ev
en

ts
(K

)/
(0

.0
25

 G
eV

)

M(π-π0π0) (GeV)

1-+

FIG. 15. The 1−+ intensity for the charged mode for the high-
wave set (filled circles), the modified high-wave set (filled squares),
and the low-wave set (open circles). In the modified high-wave set
the two ρπ decays of the π2(1670) were removed from the fit. (This
figure is reproduced from Ref. [85].)

about the nature of the higher-mass part of the 2++ spectrum
[a2(1700) or background] they find that a resonant description
of π1(1600) is possible in both cases. For the case of the
b1π final state (Fig. 17), they find that the contribution of
a π1(1600) resonance is required. In a combined fit to both
the η′π and b1π data, they find a mass of 1.56 ± 0.06 GeV
and a width of 0.34 ± 0.06 GeV for the π1(1600). In the f1π

final state (Fig. 18), they find a resonant description of the
the π1(1600) with a mass of 1.64 ± 0.03 GeV and a width
of 0.24 ± 0.06 GeV which they note is compatible with their
measurement in the previous two final states. They also note,
that in contradiction with E852 [82], they find no significant
1−+ intensity above a mass of 1.9 GeV (see Sec. III D). For the
ρπ final state, they are unable to conclude that the π1(1600)
is present.

They note that the partial-wave analysis of the π+π−π−
system finds a significant contribution from the JPC = 1+
wave in the ρπ channel (2 to 3% of the total intensity). Some
of the models in the partial-wave analysis of the exotic wave
lead to the appearance of a peak near a mass of 1.6 GeV
which resembles the π1(1600). However, the dependence of
the size of this peak on the model used is significant [79]. They
note that because the significance of the wave depends very
strongly on the assumptions of coherence used in the analysis,
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the results for 3π final states on the nature of the π1(1600) are
not reliable.

To obtain a limit on the branching fraction of π1(1600)
decay to ρπ , they looked at their results of the production of
the π1(1600) in the charge-exchange reaction to η′π0 versus
that of the η′π− final state. They conclude that the presence
of the π1(1600) in η′π− and its absence in η′π0 preclude the
formation of the π1(1600) by ρ exchange. From this, they
obtain the relative branching ratios for the π1(1600) as given
in Eq. (12):

b1π : f1π : ρπ : η′π = 1.0 ± .3 : 1.1 ± .3 :< .3 : 1. (12)

While the results on ρπ between E852 and VES seem at
odds, we believe that these discrepancies are the result of the
assumptions made in the analyses. These assumptions then
manifest themselves in the interpretation of the results. The
VES analyses fit both the real and imaginary parts of their
amplitudes independently. However, for analytic functions,
the two parts are not independent. Not using these constraints
can lead to results that may be unphysical and, at a minimum,
discard important constraints on the amplitudes, all of which
can lead to difficulties in interpreting the results. In E852, many
of their results rely on the assumption of a flat background
phase, but there are many examples where this is not true. Thus,
their results are biased toward a purely resonant description of
the data rather than a combination of resonant and nonresonant
parts. It is also somewhat disappointing that E852 is unable
to make statements about relative decay rates or carry out
a coupled-channels analysis of their many data sets. Our
understanding is that this is due to issues in modeling the
rather tight trigger used in collecting their data.
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The CLAS experiment at Jefferson Lab studied the reaction
γp → π+π+π−(n)miss to look for the production of the
π1(1600) [86]. The photons were produced by bremsstrahlung
from a 5.7-GeV electron beam. While there was significant
contributions from Baryon resonances in their data, they
attempted to remove this by selective cuts on various kinematic
regions. The results of their partial-wave analysis show clear
signals for the a1(1270), the a2(1320), and the π2(1670) but
show no evidence for the π1(1600) decaying into three pions as
shown in Fig. 19. They place and upper limit of the production
and subsequent decay of the π1(1600) to be less than 2% of the
a2(1320). There results imply that the π1(1600) is not strongly
produced in photoproduction, the π1(1600) does not decay to
3π or both.

The COMPASS experiment has reported their first study
of the diffractively produced 3π final state [87,88]. They
used a 190-GeV/c beam of pions to study the reaction
π−Pb → π−π−π+X. In their partial-wave analysis of the 3π

final state, they observed the π1(1600) with a mass of 1.660 ±
0.010+0

−0.064 GeV and a width of 0.269 ± 0.021+0.042
−0.064 GeV. The

π1(1600) was produced dominantly in natural parity exchange
(Mε = 1+) although unnatural parity exchange also seemed
to be required. However, the level was not reported. The wave
set (in Ref. [88]) used appears to be somewhat larger than that
used in the high-statistics study of E852-IU [85]. Thus, in the
COMPASS analysis, the ρπ decay of the π2(1670) does not
appear to absorb the exotic intensity in their analysis. They also
report on varying the rank of the fit with the π1(1600) and the
results being robust against these changes. One point of small
concern is that the mass and width that they extract for the
π1(1600) are essentially identical to those for the π2(1670).
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FIG. 20. (Color online) COMPASS results showing the intensity
of the exotic 1−+ wave. The solid (red) curve shows a fit to the
corresponding resonances. The dashed (blue) curve is the π1(1600)
while the dotted (magenta) curve is background. (This figure is
reproduced from Ref. [87].)

For the latter, they observed a mass of 1.658 ±
0.002+0.024

−0.008 GeV and a width of 0.271 ± 0.009+0.022
−0.024 GeV.

However, the strength of the exotic wave appears to be about
20% of the π2, thus feed through seems unlikely. Results from
their partial-wave analysis are shown in Figs. 20 and 21. These
show the 1−+ partial wave and the phase difference between
the 1−+ and 2−+ waves. The solid curves are the results of
mass-dependent fits to the π1(1600) and π2(1670).

Table XIII summarizes the masses and widths found for the
π1(1600) in the four decay modes and from the experiments
which have seen a positive result. While the η′π , f1π , and
b1π decay modes appear to be robust in the observation of a
resonant π1(1600), there are concerns about the 3π final states.
While we report these in the table, the results should be taken
with some caution.

Models for hybrid decays predict rates for the decay of the
π1. Equation (9) gives the predictions from Ref. [33]. A second
model from reference [34] predicted the following rates for a
π1(1600).

πb1 ρπ πf1 η(1295)π K∗K

PSS 24 9 5 2 0.8
IKP 59 8 14 1 0.4

These can be compared to the results from VES in Eq. (12),
which are in moderate agreement. The real identification of
the π1(1600) as a hybrid will almost certainly involve the
identification of other members of the nonet: the η1 and/or the
η′

1, both of which are expected to have widths that are similar to
the π1. For the case of the η1, the most promising decay mode
may be the f1η as it involves reasonably narrow daughters.

We believe that the current data support the existence
of a resonant π1(1600) which decays into b1π , f1π , and
η′π ; however, near-term confirmation of these results by
COMPASS would be useful. For the ρπ decay, we are
uncertain. As noted earlier, the phase motion results observed
by both E852 and E852-IU are can be interpreted as either the
π2(1670) absorbing the π1(1600) or leakage from the π2(1670)
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FIG. 21. (Color online) COMPASS results showing the phase
difference between the exotic 1−+ wave and the 2−+ wave. The solid
(red) curve shows a fit to the corresponding resonances. (This figure
is reproduced from Ref. [87].)

generating a spurious signal in the 1−+ channel. While the
new COMPASS result is indeed interesting, we are concerned
about their findings of exactly the same mass and width for the
π2(1670) and the π1(1600). We are also concerned that their
initial analyses may be oversimplified, particularly in their bias
toward an all-resonant description of their data. We hope that
follow-on results from COMPASS will more broadly explore
the model space imposed by their analyses. We would also like
to see results on other final states coupled to those on three
pions.

D. The π1(2015)

The E852 experiment has also reported a third π1 state
seen decaying to both f1π [82] and to b1π [83]. In the
f1π final state, the π1(2015) is produced with Mε = 1+
in conjunction with the π1(1600). The description of the
1−+ partial wave requires two poles. They report a mass of
2.001 ± 0.030 ± 0.092 GeV and a width of 0.333 ± 0.052 ±

TABLE XIII. Reported masses and widths of the π1(1600) from
the E852 experiment, the VES experiment, and the COMPASS
experiment. The PDG average from 2008 is also reported.

Mode Mass (GeV) Width (GeV) Experiment Reference

ρπ 1.593 ± 0.08 0.168 ± 0.020 E852 [76]
η′π 1.597 ± 0.010 0.340 ± 0.040 E852 [80]
f1π 1.709 ± 0.024 0.403 ± 0.080 E852 [82]
b1π 1.664 ± 0.008 0.185 ± 0.025 E852 [83]
b1π 1.58 ± 0.03 0.30 ± 0.03 VES [84]
b1π 1.61 ± 0.02 0.290 ± 0.03 VES [78]
b1π ∼1.6 ∼0.33 VES [62]
b1π 1.56 ± 0.06 0.34 ± 0.06 VES [63]
f1π 1.64 ± 0.03 0.24 ± 0.06 VES [63]
η′π 1.58 ± 0.03 0.30 ± 0.03 VES [84]
η′π 1.61 ± 0.02 0.290 ± 0.03 VES [78]
η′π 1.56 ± 0.06 0.34 ± 0.06 VES [63]
b1π ∼1.6 ∼0.23 CBAR [81]
ρπ 1.660 ± 0.010 0.269 ± 0.021 COMPASS [87]
all 1.662+0.015

−0.011 0.234 ± 0.050 PDG [1]
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FIG. 22. (Color online) The f1π invariant mass from E852 [82].
(a) The 1++ partial wave [a1(1270)], (b) the 2−+ partial wave
[π2(1670)], and (c) the exotic 1−+ partial wave. The dotted (red)
curves show the fits of Breit-Wigner distributions to the partial waves.
(d) The phase difference between the 2−+ and 1−+ partial waves and
(e) the difference between the 1++ and 1−+ partial waves. The dotted
(red) curves show the results for a single π1 state, the π1(1600).
(f) The same phase difference as in (d), but the dotted (red) curve
shows a fit with two poles in the 1−+ partial wave, the π1(1600), and
the π1(2015). (This figure is reproduced from Ref. [82].)

0.049 GeV. Figure 22 shows the E852 data from this final
state. Figures 22(e) and 22(f)show the need for the two-pole
solution. VES also examined the f1π final state, and their
intensity of the 1−+ partial wave above 1.9 GeV (see Fig. 18)
is not inconsistent with that of E852 [63]. However, VES made
no comment on this, nor have they claimed the existence of
the π1(2015).

In the b1π final state, the π1(2015) is produced domi-
nantly through natural parity exchange (Mε = 1+) while the
π1(1600) was reported in both natural and unnatural parity
exchange, where the unnatural exchange dominated. They
observe a mass of 2.014 ± 0.020 ± 0.016 GeV and a width
of 0.230 ± 0.032 ± 0.073 GeV which are consistent with that
observed in the f1π final state. Figure 23 shows the intensity
distributions for several partial waves in this final states. The
need for two states is most clearly seen in b. VES also looked
at the b1π final state but did not observe 1−+ intensity above
1.9 GeV [63]. However, the intensity shown in Fig. 17 may be
consistent with that observed by E852. The reported masses
and widths are summarized in Table XIV. We note that this
state does not appear in the summary tables of the PDG [1].

TABLE XIV. Reported masses and widths of the π1(2015) as
observed in the E852 experiment. The PDG does not report an average
for this state.

Mode Mass (GeV) Width (GeV) Experiment Reference

f1π 2.001 ± 0.030 0.333 ± 0.052 E852 [82]
b1π 2.014 ± 0.020 0.230 ± 0.032 E852 [83]

M(b1π) (GeV)

FIG. 23. The b1π invariant mass from the E852 experiment.
(a) The 1−+ b1π partial wave produced in natural parity exchange
(Mε = 1+) and (b) the 1−+ b1π partial wave produced in unnatural
parity exchange (Mε = 0−). (c) The 2++ ωρ partial wave and (d) the
4++ ωρ partial wave. The curves are fits to the π1(1600) and π1(2015)
(a and b), the a2(1700) in (c), and the a4(2040) in (d). (This figure is
reproduced from Ref. [83].)

With so little experimental evidence for this high-mass
state, it is difficult to say much. We note that the observed
decays, f1π and b1π , are those expected for a hybrid meson.
We also note that the production of this state is consistent
(natural parity exchange) for both of the observed final
states. In the case that the π1(1600) is associated with the
lowest-mass hybrid state, one possible interpretation of the
π1(2015) would be an excited state (as suggested by recent
LQCD calculations [29]). The mass splitting is typical of radial
excitations observed in the normal mesons. In the case of the
π1(1600) identified as something else, the π1(2015) would be
a prime candidate for the lightest mass hybrid.

E. Other exotic-quantum number states

While no result has been published, the E852 collaboration
has presented evidence at conferences for an isoscalar 2+−
state [89]. The signal is observed with a mass near 1.9 GeV in
the ωπ−π+ final state. It decays through b1π and is produced
in both natural and unnatural parity exchange. This conference
report was not followed up by a publication, so the signal
should be viewed with caution. However, if confirmed, this
state roughly lines up in mass with the π1(2015) and would be
consistent with the lattice picture in which the π1(1600) is the
lowest-mass hybrid and the π1(2015) is the first excitation [29].

IV. THE FUTURE

The COMPASS experiment has recently started looking at
pion peripheral production similar to work carried out by both
VES and E852. Two new facilities are also expected in the
not-too-distant future, PANDA at GSI and GlueX at Jefferson
Lab. The former will study p̄p annihilation in the charmonium
region, but it will also be possible to search for production of
light-quark hybrids. GlueX will use a 9 GeV beam of linearly
polarized photons to produce hybrids.
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Photoproduction of hybrids is interesting for several rea-
sons. Simple arguments based on vector meson dominance
suggest that the photon may behave like an S = 1 q̄q system.
In several models, such a system is more likely to couple to
exotic quantum-number hybrids. Early calculations of hybrids
used the apparent large ρπ coupling of the π1(1600) to suggest
that this state should be produced at least as strongly as
normal mesons in photoproduction [90–92]. Unfortunately, the
current controversy on the ρπ decay of the π1(1600) makes the
underlying assumption questionable, which may be confirmed
by the nonobservation of the π1(1600) by CLAS [86].

Recently, lattice calculations have been performed to
compute the radiative decay of charmonium cc̄ and hybrid
states [93]. In the charmonium system, they find that there
is a large radiative decay for an exotic quantum number
hybrid. These studies are currently being extended to the
light-quark hybrids with the goal of providing estimates of
the photoproduction cross sections of these states. However,
based on the results in the charmonium sector, photoproduction
appears to be a good place to look for hybrid mesons.

V. CONCLUSIONS

Over the past two decades, substantial data has been
collected looking for exotic-quantum-number mesons. In
particular, searches have focused on hybrid mesons, which
arise due to excitations of the gluonic fields which confine
quarks inside mesons. Models and LQCD predictions suggest
that three nonets of exotic-quantum-number states should
exist, with JPC = 0+−, 1−+, and 2+−, where the 1−+ is
expected to be the lightest. The most recent dynamical
calculations of the isovector sector suggest a pair of 1−+
states, with the 0+− and 2+− states similar in mass to the
heavier spin-one state. Calculations for the isoscalar states are
currently underway, and preliminary results tend to agree with
the isovector spectrum. Work is also underway to use lighter
quark masses. These masses are measured by quoting the pion
mass. Current work has pushed this to 390 MeV, and 260 MeV
is in progress. Calculations at the physical pion mass may be
within reach.

While not supported by LQCD calculations, other models
suggest that exotic-quantum-number multiquark states could
exist as members of an 18 ⊕ 18 of SU(3). Expected JPC

are 1−+ and 0−−, where the spin-one states are expected
to be the lightest. The spin-zero states may be similar in
mass. However, in order for these multiquark states to have
finite widths, some additional binding mechanism needs to be
present to prevent them from simply falling apart into pairs of
mesons.

Measurements of the JPCs, multiplet structure, and decays
can be used to distinguish between these hybrid and multiquark
states. However, to do this requires the observation of multiple
members of a given multiplet as well as observation of states of
different JPC . Experimental results have provided evidence for
three JPC = 1−+ isoscalar states, the π1(1400), the π1(1600),
and the π1(2015).

The π1(1400) has been observed in both peripheral pion
production and p̄n annihilation at rest. It has been seen

decaying into ηπ (in a p wave), and even though other
decay modes have been looked for (such has η′π and ρπ ),
no conclusive evidence for these has been found. While all
experiments that have looked at the ηπ final state agree
that there is signal strength in the 1−+ exotic wave, the
interpretation of this signal is controversial. Explanations exist
for the pion production data that describe the exotic wave as
a nonresonant background phase, or produced by interference
with nonresonant processes. Unfortunately, these explanations
have not been tested against the p̄n data.

If the π1(1400) is resonant, it is difficult to explain it
as a hybrid meson. It mass is too low, and its single decay
appears inconsistent with state being part of an SU(3)
nonet. Describing the π1(1400) as a multiquark state is
a more natural explanation. However, in reviewing all the
experimental evidence, as well as the nonresonant descriptions
of the 1−+ signal, we feel that the π1(1400) is not resonant.

The most extensive experimental evidence is for the
π1(1600). It has been observed in four different decay modes,
η′π , b1π , f1π , and ρπ , by several experiments. Consistent
results between E852 and VES are found for the first three
decay modes, and from p̄p annihilation in flight for the b1π

mode. In the η′π mode, the π1(1600) is the dominant signal in
a clean channel. This final state provides very strong evidence
that this state exists. However, the ρπ decay is controversial.
This mode has been observed by two groups but not by two
others. In one (VES), the strength is reported in the exotic
wave, but they are unable to confirm that it is resonant.
However, because not all physical constraints were used, their
conclusions may be weaker than their data would suggest. A
second group, E852-IU, explains the π1(1600) as feedthrough
from the stronger π2(1670) state. However, while the intensity
of the π1(1600) does depend on the decays of the π2(1670),
the phase difference between the two states does not. This can
be interpreted as either feedthrough from the π2(1670) or a
resonant π1(1600) being absorbed by the π2(1670). The strong
η′π signal for this state may favor the latter, but to fully resolve
this controversy will likely require a multichannel analysis in
which physics beyond a simple isobar picture is included. Even
with this controversy about the ρπ decay mode, we feel that
the experimental evidence does support a resonant π1(1600).
However, confirmation with higher statistics would be helpful.

Identification of the π1(1600) as the lightest hybrid is
not inconsistent with both model predictions and LQCD
calculations, although some might argue that its mass is
somewhat low. The current observations and measurements
are also consistent with a multiquark interpretation, although
our feeling is that this is less likely. Observation of the isoscalar
partners of this state would help to confirm its hybrid nature.
Unfortunately, models predict their decays into channels that
are experimentally difficult to analyze.

The evidence for the π1(2015) is much more limited. It has
been seen by one experiment in two decay modes with very
limited statistics while a second experiment (VES) does not
see evidence for this state. What little is known about this state
makes it a good candidate for a hybrid meson, but confirmation
is clearly needed. If both the π1(1600) and the π1(2015) do
exist, then the π1(2015) may be a radial excitation of the
π1(1600). A result which is consistent with the most recent
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lattice calculations. As with the π1(1600), observation of the
isoscalar partners to this state are important.

Beyond the η1 and η′
1 partners of the π1 states, the crucial

missing pieces of the hybrid puzzle are the other JPC-exotic
nonets, 0+− and 2+−. Here, there is a single hint of an h2 state
near 1.9 GeV, but no published results to this effect. As with
the η1 decays, those of these other nonets are also challenging,
and to date, all the data that could be used in these searches has
come from pion peripheral production. Definitive observation
of these other nonets would provide the missing information
to confirm the gluonic excitations of QCD. Fortunately, there

will soon be four experimental programs running (COMPASS
at CERN, BES III in Beijing, PANDA at GSI, and GlueX
at Jefferson Lab) that can provide new information on these
issues.

ACKNOWLEDGMENTS

The authors thank Jozef Dudek for useful discussions
and comments. This work was supported in part by the
US Department of Energy under Grant No. DE-FG02-
87ER40315.

[1] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1
(2008).

[2] T. Barnes and F. E. Close, Phys. Lett. B 116, 365 (1982).
[3] Eberhard Klempt and Alexander Zaitsev, Phys. Rep. 454, 1

(2007).
[4] V. Crede and C. A. Meyer, Prog. Part. Nucl. Phys. 63, 74

(2009).
[5] R. L. Jaffe and K. Johnson, Phys. Lett. B 60, 201 (1976).
[6] A. I. Vainshtein, M. B. Voloshin, V. I. Zakharov, V. A. Novikov,

L. B. Okun and M. A. Shifman, Sov. J. Nucl. Phys. 28, 237
(1978) [Yad. Fiz. 28, 465 (1978)].

[7] Ted Barnes, F. E. Close, F. de Viron, and J. Weyers, Nucl. Phys.
B 224, 241 (1983).

[8] M. S. Chanowitz and S. R. Sharpe, Nucl. Phys. B 222, 211
(1983); [Erratum-ibid. 228, 588 (1983)].

[9] I. I. Balitsky, D. Diakonov, and A. V. Yung, Phys. Lett. B 112,
71 (1982).

[10] J. I. Latorre, P. Pascual, and S. Narison, Z. Phys. C 34, 347
(1987).

[11] S. Narison, Nucl. Phys. A 675, 54c (2000).
[12] S. Narison, Phys. Lett. B 675, 319 (2009).
[13] Y. Nambu, Univ. of Chicago report No. 70-07 (1970).
[14] T. Nambu, Sci. Am. 235, 48 (1976).
[15] G. Bali et al. (SESAM Collaboration), Nucl. Phys. Proc. Suppl.

63, 209 (1998).
[16] N. Isgur and J. Paton, Phys. Rev. D 31, 2910 (1985).
[17] N. Isgur, R. Kokoski, and J. Paton, Phys. Rev. Lett. 54, 869

(1985).
[18] S. R. Cotanch and Felipe J. Llanes-Estrada, Nucl. Phys. A 689,

481 (2001).
[19] S. R. Cotanch, I. J. General, and P. Wang, Eur. Phys. J. A 31,

656 (2007).
[20] P. Lacock et al., Phys. Lett. B 401, 308 (1997).
[21] C. Bernard et al., Phys. Rev. D 56, 7039 (1997).
[22] P. Lacock, K. Schilling (SESAM Collaboration), Nucl. Phys.

Proc. Suppl. 73, 261 (1999).
[23] C. Bernard et al., Nucl. Phys. B, Proc. Suppl. 73, 264 (1999).
[24] Z. H. Mei and X. Q. Luo, Int. J. Mod. Phys. A 18, 5713

(2003).
[25] J. N. Hedditch, W. Kamleh, B. G. Lasscock, D. B. Leinweber,

A. G. Williams, and J. M. Zanotti, Phys. Rev. D 72, 114507
(2005).

[26] C. Bernard, T. Burch, E. B. Gregory, D. Toussaint, C. DeTar,
J. Osborn, Steven Gottlieb, U. M. Heller, and R. Sugar, Phys.
Rev. D 68, 074505 (2003).

[27] C. McNeile and C. Michael (UKQCD Collaboration), Phys. Rev.
D 73, 074506 (2006).

[28] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards,
and C. E. Thomas (Hadron Spectrum Collaboration), Phys. Rev.
Lett. 103, 262001 (2009).

[29] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards,
and C. E. Thomas, Phys. Rev. D 82, 034508 (2010).

[30] Jozef Dudek (private communication).
[31] E. S. Ackleh, T. Barnes, and E. S. Swanson, Phys. Rev. D 54,

6811 (1996).
[32] T. Barnes, F. E. Close, P. R. Page, and E. S. Swanson, Phys. Rev.

D 55, 4157 (1997).
[33] F. E. Close and P. R. Page, Nucl. Phys. B 443, 233 (1995).
[34] P. R. Page, E. S. Swanson, and A. P. Szczepaniak, Phys. Rev. D

59, 034016 (1999).
[35] F. E. Close and C. E. Thomas, Phys. Rev. C 79, 045201

(2009).
[36] T. Barnes and E. S. Swanson, Phys. Rev. C 77, 055206

(2008).
[37] P. R. Page, Phys. Lett. B 402, 183 (1997).
[38] F. E. Close and J. J. Dudek, Phys. Rev. D 70, 094015 (2004).
[39] C. McNeile, C. Michael, and P. Pennanen, Phys. Rev. D 65,

094505 (2002).
[40] T. J. Burns and F. E. Close, Phys. Rev. D 74, 034003 (2006).
[41] S. U. Chung, E. Klempt, and J. G. Korner, Eur. Phys. J. A 15,

539 (2002).
[42] C. J. Morningstar and M. J. Peardon, Phys. Rev. D 60, 034509

(1999).
[43] D. P. Roy, J. Phys. G 30, R113 (2004).
[44] F. E. Close, An Introduction to Quarks and Partons (Academic

Press, New York, 1979).
[45] R. L. Jaffe, Phys. Rev. D 17, 1444 (1978).
[46] R. L. Jaffe, Phys. Rev. D 15, 281 (1977).
[47] R. L. Jaffe and F. E. Low, Phys. Rev. D 19, 2105 (1979).
[48] A. T. Aerts, P. J. Mulders, and J. J. de Swart, Phys. Rev. D 21,

1370 (1980).
[49] I. J. General, P. Wang, S. R. Cotanch, and F. J. Llanes-Estrada,

Phys. Lett. B 653, 216 (2007).
[50] H. X. Chen, A. Hosaka, and S. L. Zhu, Phys. Rev. D 78, 054017

(2008).
[51] H. X. Chen, A. Hosaka, and S. L. Zhu, Phys. Rev. D 78, 117502

(2008).
[52] N. Mathur et al., Phys. Rev. D 76, 114505 (2007).
[53] S. Prelovsek and D. Mohler, Phys. Rev. D 79, 014503

(2009).
[54] S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. F. Liu,

N. Mathur, and D. Mohler (2010), arXiv:1005.0948 [hep-lat].
[55] S. U. Chung and T. L. Trueman, Phys. Rev. D 11, 633 (1975).
[56] S. U. Chung et al., Phys. Rev. D 60, 092001 (1999).

025208-19

http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/0370-2693(82)90301-X
http://dx.doi.org/10.1016/j.physrep.2007.07.006
http://dx.doi.org/10.1016/j.physrep.2007.07.006
http://dx.doi.org/10.1016/j.ppnp.2009.03.001
http://dx.doi.org/10.1016/j.ppnp.2009.03.001
http://dx.doi.org/10.1016/0370-2693(76)90423-8
http://dx.doi.org/10.1016/0550-3213(83)90004-4
http://dx.doi.org/10.1016/0550-3213(83)90004-4
http://dx.doi.org/10.1016/0550-3213(83)90635-1
http://dx.doi.org/10.1016/0550-3213(83)90635-1
http://dx.doi.org/10.1016/0550-3213(83)90562-X
http://dx.doi.org/10.1016/0370-2693(82)90908-X
http://dx.doi.org/10.1016/0370-2693(82)90908-X
http://dx.doi.org/10.1007/BF01548817
http://dx.doi.org/10.1007/BF01548817
http://dx.doi.org/10.1016/S0375-9474(00)00214-1
http://dx.doi.org/10.1016/j.physletb.2009.04.012
http://dx.doi.org/10.1038/scientificamerican1176-48
http://dx.doi.org/10.1016/S0920-5632(97)00724-X
http://dx.doi.org/10.1016/S0920-5632(97)00724-X
http://dx.doi.org/10.1103/PhysRevD.31.2910
http://dx.doi.org/10.1103/PhysRevLett.54.869
http://dx.doi.org/10.1103/PhysRevLett.54.869
http://dx.doi.org/10.1016/S0375-9474(01)00886-7
http://dx.doi.org/10.1016/S0375-9474(01)00886-7
http://dx.doi.org/10.1140/epja/i2006-10234-2
http://dx.doi.org/10.1140/epja/i2006-10234-2
http://dx.doi.org/10.1016/S0370-2693(97)00384-5
http://dx.doi.org/10.1103/PhysRevD.56.7039
http://dx.doi.org/10.1016/S0920-5632(99)85042-7
http://dx.doi.org/10.1016/S0920-5632(99)85042-7
http://dx.doi.org/10.1016/S0920-5632(99)85043-9
http://dx.doi.org/10.1142/S0217751X03017038
http://dx.doi.org/10.1142/S0217751X03017038
http://dx.doi.org/10.1103/PhysRevD.72.114507
http://dx.doi.org/10.1103/PhysRevD.72.114507
http://dx.doi.org/10.1103/PhysRevD.68.074505
http://dx.doi.org/10.1103/PhysRevD.68.074505
http://dx.doi.org/10.1103/PhysRevD.73.074506
http://dx.doi.org/10.1103/PhysRevD.73.074506
http://dx.doi.org/10.1103/PhysRevLett.103.262001
http://dx.doi.org/10.1103/PhysRevLett.103.262001
http://dx.doi.org/10.1103/PhysRevD.82.034508
http://dx.doi.org/10.1103/PhysRevD.54.6811
http://dx.doi.org/10.1103/PhysRevD.54.6811
http://dx.doi.org/10.1103/PhysRevD.55.4157
http://dx.doi.org/10.1103/PhysRevD.55.4157
http://dx.doi.org/10.1016/0550-3213(95)00085-7
http://dx.doi.org/10.1103/PhysRevD.59.034016
http://dx.doi.org/10.1103/PhysRevD.59.034016
http://dx.doi.org/10.1103/PhysRevC.79.045201
http://dx.doi.org/10.1103/PhysRevC.79.045201
http://dx.doi.org/10.1103/PhysRevC.77.055206
http://dx.doi.org/10.1103/PhysRevC.77.055206
http://dx.doi.org/10.1016/S0370-2693(97)00438-3
http://dx.doi.org/10.1103/PhysRevD.70.094015
http://dx.doi.org/10.1103/PhysRevD.65.094505
http://dx.doi.org/10.1103/PhysRevD.65.094505
http://dx.doi.org/10.1103/PhysRevD.74.034003
http://dx.doi.org/10.1140/epja/i2002-10058-0
http://dx.doi.org/10.1140/epja/i2002-10058-0
http://dx.doi.org/10.1103/PhysRevD.60.034509
http://dx.doi.org/10.1103/PhysRevD.60.034509
http://dx.doi.org/10.1088/0954-3899/30/3/R02
http://dx.doi.org/10.1103/PhysRevD.17.1444
http://dx.doi.org/10.1103/PhysRevD.15.281
http://dx.doi.org/10.1103/PhysRevD.19.2105
http://dx.doi.org/10.1103/PhysRevD.21.1370
http://dx.doi.org/10.1103/PhysRevD.21.1370
http://dx.doi.org/10.1016/j.physletb.2007.08.015
http://dx.doi.org/10.1103/PhysRevD.78.054017
http://dx.doi.org/10.1103/PhysRevD.78.054017
http://dx.doi.org/10.1103/PhysRevD.78.117502
http://dx.doi.org/10.1103/PhysRevD.78.117502
http://dx.doi.org/10.1103/PhysRevD.76.114505
http://dx.doi.org/10.1103/PhysRevD.79.014503
http://dx.doi.org/10.1103/PhysRevD.79.014503
http://arXiv.org/abs/arXiv:1005.0948
http://dx.doi.org/10.1103/PhysRevD.11.633
http://dx.doi.org/10.1103/PhysRevD.60.092001


C. A. MEYER AND Y. VAN HAARLEM PHYSICAL REVIEW C 82, 025208 (2010)

[57] A. Binosi and L. Theussl, Comput. Phys. Commun. 161, 76
(2004).

[58] D. Alde et al., Phys. Lett. B 205, 397 (1988).
[59] W. D. Apel et al., Nucl. Phys. B 193, 269 (1981).
[60] H. Aoyagi et al., Phys. Lett. B 314, 246 (1993).
[61] G. M. Beladidze et al. (VES Collaboration), Phys. Lett. B 313,

276 (1993).
[62] V. Dorofeev et al. (VES Collaboration), AIP Conf. Proc. 619,

143 (2002).
[63] D. V. Amelin et al., Phys. Atom. Nucl. 68, 359 (2005) [Yad. Fiz.

68, 388 (2005)].
[64] D. R. Thompson et al. (E852 Collaboration), Phys. Rev. Lett.

79, 1630 (1997).
[65] A. Abele et al. (Crystal Barrel Collaboration), Phys. Lett. B 423,

175 (1998).
[66] A. Abele et al. (Crystal Barrel Collaboration), Phys. Lett. B 446,

349 (1999).
[67] A. R. Dzierba et al., Phys. Rev. D 67, 094015 (2003).
[68] G. S. Adams et al. (E852 Collaboration), Phys. Lett. B 657, 27

(2007).
[69] P. Salvini et al. (Obelix Collaboration), Eur. Phys. J. C 35, 21

(2004).
[70] W. Duenweber and F. Meyer-Wildhagen, AIP Conf. Proc. 717,

388 (2004).
[71] A. Donnachie and P. R. Page, Phys. Rev. D 58, 114012 (1998).
[72] R. Zhang, Y. B. Ding, X. Q. Li, and P. R. Page, Phys. Rev. D 65,

096005 (2002).
[73] A. P. Szczepaniak, M. Swat, A. R. Dzierba, and S. Teige, Phys.

Rev. Lett. 91, 092002 (2003).
[74] F. E. Close and H. J. Lipkin, Phys. Lett. B 196, 245 (1987).
[75] Yu. P. Gouz et al. (VES Collaboration), AIP Conf. Proc. 272,

572 (1993).

[76] G. S. Adams et al. (E852 Collaboration), Phys. Rev. Lett. 81,
5760 (1998).

[77] S. U. Chung et al. (E852 Collaboration), Phys. Rev. D 65, 072001
(2002).

[78] Yu A. Khokholov et al. (VES. Collaboration), Nucl. Phys. A
663, 596 (2000).

[79] A. Zaitsev et al. (VES Collaboration), Nucl. Phys. A 675, 155c
(2000).

[80] E. I. Ivanov et al. (E852 Collaboration), Phys. Rev. Lett. 86,
3977 (2001).

[81] C. A. Baker et al., Phys. Lett. B 563, 140 (2003).
[82] J. Kuhn et al. (E852 Collaboration), Phys. Lett. B 595, 109

(2004).
[83] M. Lu et al. (E852 Collaboration), Phys. Rev. Lett. 94, 032002

(2005).
[84] V. Dorofeev (VES Collaboration), arXiv:hep-ex/9905002

(1999).
[85] A. R. Dzierba et al., Phys. Rev. D 73, 072001 (2006).
[86] M. Nozar et al. (CLAS Collaboration), Phys. Rev. Lett. 102,

102002 (2009).
[87] A. Alekseev et al. (COMPASS Collaboration), Phys. Rev. Lett.

104, 241803 (2010).
[88] B. Grube et al. (COMPASS Collaboration), (2010),

arXiv:1002.1272 [hep-ex].
[89] G. S. Adams et al. (E852 Collaboration), J. Phys. Conf. Ser. 9,

136 (2005).
[90] A. V. Afanasev and A. P. Szczepaniak, Phys. Rev. D 61, 114008

(2000).
[91] A. P. Szczepaniak and M. Swat, Phys. Lett. B 516, 72 (2001).
[92] F. E. Close and J. J. Dudek, Phys. Rev. D 70, 094015 (2004).
[93] J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D 79,

094504 (2009).

025208-20

http://dx.doi.org/10.1016/j.cpc.2004.05.001
http://dx.doi.org/10.1016/j.cpc.2004.05.001
http://dx.doi.org/10.1016/0370-2693(88)91686-3
http://dx.doi.org/10.1016/0550-3213(81)90334-5
http://dx.doi.org/10.1016/0370-2693(93)90456-R
http://dx.doi.org/10.1016/0370-2693(93)91224-B
http://dx.doi.org/10.1016/0370-2693(93)91224-B
http://dx.doi.org/10.1063/1.1482444
http://dx.doi.org/10.1063/1.1482444
http://dx.doi.org/10.1134/1.1891185
http://dx.doi.org/10.1103/PhysRevLett.79.1630
http://dx.doi.org/10.1103/PhysRevLett.79.1630
http://dx.doi.org/10.1016/S0370-2693(98)00123-3
http://dx.doi.org/10.1016/S0370-2693(98)00123-3
http://dx.doi.org/10.1016/S0370-2693(98)01544-5
http://dx.doi.org/10.1016/S0370-2693(98)01544-5
http://dx.doi.org/10.1103/PhysRevD.67.094015
http://dx.doi.org/10.1016/j.physletb.2007.07.068
http://dx.doi.org/10.1016/j.physletb.2007.07.068
http://dx.doi.org/10.1140/epjc/s2004-01811-8
http://dx.doi.org/10.1140/epjc/s2004-01811-8
http://dx.doi.org/10.1063/1.1799737
http://dx.doi.org/10.1063/1.1799737
http://dx.doi.org/10.1103/PhysRevD.58.114012
http://dx.doi.org/10.1103/PhysRevD.65.096005
http://dx.doi.org/10.1103/PhysRevD.65.096005
http://dx.doi.org/10.1103/PhysRevLett.91.092002
http://dx.doi.org/10.1103/PhysRevLett.91.092002
http://dx.doi.org/10.1016/0370-2693(87)90613-7
http://dx.doi.org/10.1063/1.43520
http://dx.doi.org/10.1063/1.43520
http://dx.doi.org/10.1103/PhysRevLett.81.5760
http://dx.doi.org/10.1103/PhysRevLett.81.5760
http://dx.doi.org/10.1103/PhysRevD.65.072001
http://dx.doi.org/10.1103/PhysRevD.65.072001
http://dx.doi.org/10.1016/S0375-9474(99)00663-6
http://dx.doi.org/10.1016/S0375-9474(99)00663-6
http://dx.doi.org/10.1016/S0375-9474(00)00238-4
http://dx.doi.org/10.1016/S0375-9474(00)00238-4
http://dx.doi.org/10.1103/PhysRevLett.86.3977
http://dx.doi.org/10.1103/PhysRevLett.86.3977
http://dx.doi.org/10.1016/S0370-2693(03)00643-9
http://dx.doi.org/10.1016/j.physletb.2004.05.032
http://dx.doi.org/10.1016/j.physletb.2004.05.032
http://dx.doi.org/10.1103/PhysRevLett.94.032002
http://dx.doi.org/10.1103/PhysRevLett.94.032002
http://arXiv.org/abs/arXiv:hep-ex/9905002
http://dx.doi.org/10.1103/PhysRevD.73.072001
http://dx.doi.org/10.1103/PhysRevLett.102.102002
http://dx.doi.org/10.1103/PhysRevLett.102.102002
http://dx.doi.org/10.1103/PhysRevLett.104.241803
http://dx.doi.org/10.1103/PhysRevLett.104.241803
http://arXiv.org/abs/arXiv:1002.1272
http://dx.doi.org/10.1088/1742-6596/9/1/026
http://dx.doi.org/10.1088/1742-6596/9/1/026
http://dx.doi.org/10.1103/PhysRevD.61.114008
http://dx.doi.org/10.1103/PhysRevD.61.114008
http://dx.doi.org/10.1016/S0370-2693(01)00905-4
http://dx.doi.org/10.1103/PhysRevD.70.094015
http://dx.doi.org/10.1103/PhysRevD.79.094504
http://dx.doi.org/10.1103/PhysRevD.79.094504

