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Temperature dependence of the effective bag constant and the radius of a nucleon
in the global color symmetry model of QCD
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We study the temperature dependence of the effective bag constant, the mass, and the radius of a nucleon in
the formalism of the simple global color symmetry model in the Dyson-Schwinger equation approach of QCD
with a Gaussian-type effective gluon propagator. We obtain that, as the temperature is lower than a critical value,
the effective bag constant and the mass decrease and the radius increases with the temperature increasing. As the
critical temperature is reached, the effective bag constant and the mass vanish and the radius tends to infinity. At
the same time, the chiral quark condensate disappears. These phenomena indicate that the deconfinement and the
chiral symmetry restoration phase transitions can take place at high temperature. The dependence of the critical
temperature on the interaction strength parameter in the effective gluon propagator of the approach is given.
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I. INTRODUCTION

The phase transitions of quantum chromodynamics (QCD),
for example the evolution between chiral symmetry breaking
and its restoration, the color (or simply quark) confinement and
deconfinement, have been the most active topics in nuclear
and particle physics in recent years [1]. Even though recent
investigation has provided hints that the phase transitions can
be driven by the intrinsic characteristics, such as the running
coupling strength and the current quark mass, of the system
(see, for example, Refs. [2–6]), the more promising and much
better believed is that the QCD may undergo phase transitions
into a chirally symmetric and color deconfined phase at high
temperature and/or density [7].

To demonstrate the phase transitions, one usually imple-
ments the variation behaviors of not only the features of QCD
vacuum and the strong interaction matter but also the properties
of hadrons at finite temperature and/or density. On theoretical
side, one needs in principle QCD, which has been widely
accepted as the fundamental theory of strong interaction,
to carry out the investigation. However, as a basic theory,
QCD still suffers from difficulties in the low energy region,
which relates directly to strong interaction matter and hadrons.
Then, besides the approaches of lattice simulations, QCD sum
rules, instanton model(s), and Dyson-Schwinger equations
and several models, such as the bag model [8], quark-meson
coupling model (QMC) [9–11], Nambu-Jona-Lasinio (NJL)
model [12], Polyakov-loop improved NJL model [13], global
color symmetry model (GCM) [14], and so on, have been
developed. The NJL model has been widely used since it
preserves the feature of chiral symmetry and its dynamical
breaking and is easy to carry out numerical calculation. Even
though, with the Polyakov-loop improvement, the quark con-
finement effect is included at statistical level, the commonly
accepted one still only takes into account the point (contact)
interactions among quarks. The bag model is the one which
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handles hadrons as bubbles of perturbative vacuum immersed
in the physical vacuum. However, all nonperturbative physics
is included in a quantity—bag constant, which is dealt with
a phenomenological parameter in the model. And the QMC
model involves the similar problem. For the GCM, since it
can take the result of the Dyson-Schwinger equation (DSE)
[15] approach as input, it manifests well the properties of
chiral symmetry and its dynamical breaking. Because the bag
constant in the model is taken as the difference between
the energy densities of the perturbative and the physical
vacuums, the color confinement effect is also handled well
in some sense. The GCM is then believed to be a quite
sophisticated model which involves as many characteristics
of QCD as possible. And the NJL model, the QMC model,
and the bag model can be treated as the special cases of
the GCM.

Due to its solid QCD foundation, the GCM has been
widely taken to study not only the properties of nucleon
and some mesons [14,16–18] but also the QCD vacuum
structure [19,20]. It has also been extended to investigate the
properties of strong interaction matter at finite temperature
and/or density and those of some hadrons in the matter [21–26].
For the property of nucleon in finite density matter, it has
been discussed with various models for the effective gluon
propagator in the DSE and the variation behaviors of the mass,
the radius, and the bag constant of the nucleon have been given
explicitly [23]. However, in the case of finite temperature, only
the changing feature of the bag constant has been discussed
with the Munczek-Nemirovsky model [27] for the effective
gluon propagator of the DSE [22]. We will then, in this
paper, discuss some of the properties of a nucleon at finite
temperature with a sophisticated effective gluon propagator
in the DSE.

The paper is organized as follows. In Sec. II, we describe
briefly the formalism of the GCM soliton model. In Sec. III, we
describe the algorithm to carry out the numerical calculation
of the GCM soliton at finite temperature and the obtained
results. Finally we give a brief summary and some remarks
in Sec. IV.
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II. BRIEF DESCRIPTION OF GCM

The original action in the global color symmetry model
(GCM) defined in Euclidean metric is expressed as [14]

SGCM(q̄, q) =
∫

d4xq̄(x)(iγ · p + m0)q(x)

+ g2

2

∫ ∫
d4xd4yja

µ(x)Dab
µν(x − y)jb

ν (y), (1)

where ja
µ(x) = q̄(x) λµ

2 γµq(x) is the local quark current,
Dab

µν(x − y) is the full gluon propagator, m0 is the current quark
mass, g is the quark-gluon coupling constant. The Euclidean
metric is such that a · b = aµbµ, and {γµ, γν} = 2δµν . Taking
the gluon propagator to be color diagonal in the Feynman-like
gauge, i.e., Dabµν(x − y) = δabδµνD(x − y), and applying
the Fierz transformation to reorder the quark fields, one can
rewrite the action as

SGCM[Bθ (x, y)] =
∫ ∫

d4xd4yq̄(x)[(iγ · p + m0)δ(x − y)

+�θBθ (x, y)]q(x)

+
∫ ∫

d4xd4y
Bθ (x, y)Bθ (y, x)

2g2D(x − y)
, (2)

where {�θ } are direct products of Lorentz, flavor, and color
matrices of quarks which produce the scalar, vector, and
pseudoscalar terms labeled by θ . Bθ (x, y) are bilocal Bose
fields. Theoretically, it can be proved that the GCM is valid in
any gauge even though one takes the Feynman-like gauge in
deriving the above expression [28].

By integrating the quark fields, one gets the action

SGCM[Bθ (x, y)] = −T r ln G−1[Bθ (x, y)]

+
∫ ∫

d4xd4y
Bθ (x, y)Bθ (y, x)

2g2D(x − y)
, (3)

where the inverse of the quark propagator can be written as

G−1(x, y) = (iγ · p + m0)δ(x − y) + �θBθ (x, y). (4)

Generally, the bilocal fields can be expanded as

Bθ (x, y) = Bθ
0 (x, y) +

∑
i

�θ
0 (x, y)φθ

i

(
x + y

2

)
, (5)

where the first term is the translation invariant vacuum
configuration. The second term stands for the fluctuations of
the vacuum which can be identified as effective meson fields
since the θ stands for the quantum number of Bose fields. In
the lowest order, one takes the Goldstone mode, φθ

0 = {σ, �π},
which is thought of as the most important low energy degree
of freedom. The vacuum configuration can be determined
by the saddle point condition δSGCM/δBθ

0 = 0. One has
then

Bθ
0 (x, y) = g2D(x − y)tr[G(y, x)�θ ], (6)

and the quark self-energy �(x − y) = �θBθ
0 (x, y). The equa-

tion of quark self-energy in momentum space coincides with

that of the truncated Dyson-Schwinger equation (DSE)

�(p) =
∫

d4x�θBθ
0 (x, y)eiq·x

= g2
∫

d4q

(2π )4
tµνD(p − q)

λa

2
γµ

× 1

iγ · (q + m) + �(q)
γµ

λa

2
, (7)

where tµν = δµν − kµkν/k2, with k = p − q, γ µ is the color
SU(3) matrix. Generally, the quark self-energy function can
be decomposed as

�(p) = S−1(p) − S−1
0 (p),

S−1(p) = iγ · p A(p2) + B(p2), (8)

S−1
0 (p) = iγ · p + m0,

and A(p2), B(p2) are scalar functions of p2.
Recalling the configuration of the bilocal fields in Eq. (5)

and considering the Bethe-Salpeter amplitude of the mesons
and the partial conservation of axial-vector current, one can
prove [29] that, when considering the most important low
energy degree of freedom, i.e., the Goldstone mode φθ

0 =
{σ, �π}, Eq. (5) can be rewritten as

�θ [Bθ (x, y) − Bθ
0 (x, y)]

= B(x − y)

[
σ

(
x + y

2

)
+ iγ5 �τ · �π

(
x + y

2

)]
, (9)

where B is just the scalar part of the inverse of the quark
propagator which can be determined by solving the quark’s
DSE.

With a nontopological-soliton ansätz [30], the action of
the GCM soliton with quarks in chiral limit (m0 = 0) can be
given [14,17,18] as

SGCM = q{iγ · p − α[σ (x) + i �π (x) · �τγ5]}q

+
∫ [

f 2
σ

2
(∂µσ )2 + f 2

π

2
(∂µ �π)2 − V (σ, π )

]
d4z, (10)

with

V (σ, π ) ≈ −12
∫

d4p

(2π )4

{
ln

[
A2(p)p2 + (σ 2 + �π2)B2(p)

A2(p)p2 + B2(p)

]

− (σ 2 + �π2 − 1)B2(p)

A2(p)p2 + B2(p)

}
, (11)

and the quark meson coupling constant α is given as

α(x) =
∫

d4p

(2π )4
B(p)e−ip·x.

It is evident that such a quark meson coupling constant is
just the vacuum configuration of the bilocal fields and is
independent of the meson fields.

With the stationary condition of the soliton, one has the
equations of motion for the quarks and mesons as

{iγ · p − α[σ (x) + i �π (x) · �τγ5]} q = 0, (12)

−�∇2σ (�r) + δV

δσ (�r)
+ Qσ (�r) = 0, (13)
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−�∇2 �π (�r) + δV

δ �π (�r)
+ Q�π (�r) = 0, (14)

where Qσ and Q�π are the source terms contributed from the
valence quarks, and can be written as

Qσ ( �R) =
3∑

j=1

1

Zj

∫
d3xd3yūj (�x)B(�x − �y)

× δ

( �x + �y
2

− �R
)

uj (�y), (15)

Q�π ( �R) =
3∑

j=1

1

Zj

∫
d3xd3yūj (�x)B(�x − �y)iγ5 �τ

× δ

( �x + �y
2

− �R
)

uj (�y), (16)

with Zj being the renormalization constant [17]

Zj = −
∫

d3pd3qūj ( �p)
∂G−1(iεj ; �p, �q)

∂εj

uj (�q). (17)

The quark field and σ , π meson fields can be determined
by solving Eqs. (12)–(14) self-consistently. As a consequence,
the corresponding eigenenergies can be obtained. It is ap-
parent that the meson fields corresponding to the vacuum
configuration can be simply taken as σ = 1, π = 0 due to the
(normalized with f 2

π ) restriction π2 + σ 2 = 1. The vacuum
configuration is a minimum of V (σ, π ) and V (1, 0) = 0. In
light of the nontopological-soliton ansätz [14,30], one can
approximate the soliton as a chiral bag with bag constant

B = V (σ, �π ) − V (1, 0) = 12
∫

d4p

(2π )4

×
{

ln

[
A2(p)p2 + B2(p)

A2(p)p2 + (σ 2 + �π2)B2(p)

]

+ (σ 2 + �π2 − 1)B2(p)

A2(p)p2 + B2(p)

}
. (18)

With the correction from the motion of center of mass, the
zero-point effect, and the color-electronic and color-magnetic
interactions being taken into account, the total energy of a bag
(involving three valence quarks) is given as

EB(R) = 3εj (R) + 4

3
πR3B − Z0

R
, (19)

where εj (R) is the energy eigenvalue of the quark’s equation
of motion, R is the radius of the bag, Z0/R denotes the
contribution of the corrections of the motion of the center
of mass, zero-point energy, and other effects with Z0 being
a parameter. Just the same as that in Ref. [14], the bag
is identified as a nucleon in the present work. With the
equilibrium condition

dEB(R)

dR
= 0,

we can obtain the radius of a nucleon.

III. ALGORITHM AND NUMERICAL RESULTS

A. Algorithm

From the description in last section, we know that the
property of a nucleon (for instance, its mass, radius, and bag
constant) is determined by the solutions of the equations of
motion of the quarks and (chiral) mesons in the soliton. To
solve the equations of motion, one needs the solutions A(p2)
and B(p2) of the quark’s Dyson-Schwinger equation. Then
after solving the quark’s DSE in Eq. (7), or more explicitly
[with the help of the decomposition in Eq. (8)] the coupled
equations

[A(p2) − 1]p2 = g2CF

∫
d4q

(2π )4
D(p − q)tr

× [iγ · p tµνγµS(q)�ν(p, q)],
(20)

B(p2) − m0 = g2CF

∫
d4q

(2π )4
D(p − q)tr

× [tµνγµS(q)�ν(p, q)],

where CF is the eigenvalue of the quadratic Casimir operator
in the fundamental representation of the color symmetry group
[for SU (Nc), CF = (N2

c − 1)/2Nc, it reads 4/3 at Nc = 3].
To investigate the temperature dependence of the property

of a nucleon, one should at first discuss the form of the quark’s
DSE at finite temperature.

It has been well known that the appearance of (nonzero)
temperature T in the QCD reduces the O(4) symmetry to O(3).
Thus the quark’s four-momentum p should be rewritten as
p = ( �p,ωn), where ωn = (2n + 1)πT (n ∈ Z) are the discrete
Matsubara frequencies of the quark, and the four-dimensional
integral needs to be replaced by [31]∫

d4p

(2π )4
→ T

∞∑
n=−∞

∫
d3p

(2π )3
. (21)

The decomposition of the dressed quark propagator needs to
be rewritten as

S−1( �p,ωn) = i �γ · �pA(| �p|, ωn)

+ iγ4ωnC(| �p|, ωn) + B(| �p|, ωn). (22)

Furthermore, the gluon propagator at finite temperature can be
generally expressed as [31]

Dµν(�k, ωn) = DT (�k, ωn)

k2
P T

µν(k) + DL(�k, ωn)

k2
P L

µν(k), (23)

with the transverse and longitudinal projectors

P T
µν(k) =

{(
δij − kikj

�k2

)
δiµδjν, µ, ν = 1, 2, 3,

0, µ or/and ν = 4,

P L
µν(k) =

(
δµν − kµkν

k2

)
− P T

µν(k). (24)

Due to the lack of detailed information about the gluon
propagator at finite temperature, one usually naı̈vely as-
sumes that the transverse and longitudinal parts of the
gluon propagator are equal and independent of temperature
(see, for example, Ref. [32]), i.e., one has approximately
DT (�k, ωn) = DL(�k, ωn) = D(k). In this assumption and bare
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vertex approximation, we get three coupled integral equations
for the functions A( �p,ωn), C( �p,ωn), and B( �p,ωn) as

A(| �p|, ωn) = 1 + g2T
CF

�p2

∑
m

∫
d3 �q

(2π )3

D(k)

k2

1

�
{[( �p · �q)k2

+ 2( �p · �k)(�q · �k)]A(|�q|, ωm)

+ 2ωm�k( �p · �k)C(|�q|, ωm)},
C(| �p|, ωn) = 1 + g2T

CF

ω2
n

∑
m

∫
d3 �q

(2π )3

D(k)

k2

1

�

×{[ωnωmk2 + 2ωnωm�2
k]C(|�q|, ωm)

+ 2ωn�k( �p · �k)A(|�q|, ωm)},
B(| �p|, ωn) = m0 + g2T CF

∑
m

∫
d3 �q

(2π )3

D(k)

�
3B(|�q|, ωm),

(25)

where k2 ≡ �k2 + �2
k , �k ≡ ωn − ωm, and � = �q 2A2 +

ω2
mC2 + B2.

As mentioned in last section, in view of the nontopological
soliton ansätz, one can take a nucleon as a soliton bag. In
the chiral limit (m0 = 0), one has found that there exist
two types of solutions for the quark’s DSE. One is the
Nanmbu-Goldstone solution which corresponds to the chiral
symmetry spontaneously broken phase. The other is the
Wigner solution which represents the state with the chiral
symmetry. One gets then the effective bag constant as the
pressure difference between the Nambu-Goldstone solution
and the Wigner solution, which reads

B(T ) ≡ P [GNG] − P [GW ]

= 4Nc

∑
m

∫
d3p

(2π )3

{
ln

[
�NG

�W

]

+ �p2ANG + ω2
mCNG

�NG

− �p2AW + ω2
mCW

�W

}
, (26)

where �NG ≡ �p2A2
NG + ω2

mC2
NG + B2

NG, �W ≡ �p2A2
W +

ω2
mC2

W , and ANG, CNG, BNG, AW , CW denotes the Nambu-
Goldstone solution, the Wigner solution for the DSE, respec-
tively.

With the solutions of the DSE as input, we can have the
explicit expression of the quark’s equation of motion at finite
temperature as

[i �γ · �pA( �p, T ) + iγ4ωnC( �p, T ) + B( �p, T )]uj ( �p, T )

+
∫

d3k

(2π )3
B

(
p + k

2
, T

)
[σ̂ ( �p − �k)

+ iγ5 �τ · �π ( �p − �k)]uj (�k, T ) = 0, (27)

where σ̂ ≡ σ − 1. After solving the related eigenequation we
can obtain the eigenenergy of the quark at finite temperature,
εj (T ). One can in turn study the properties of a nucleon at finite
temperature by extending the GCM soliton model described
in last section.

In the case of zero temperature, one usually takes only the
lowest energy for the εj (R) in Eq. (18). At finite temperature,
due to the influence of temperature, the contribution of the
excited states of the quarks must be included. Then the energy

of the bag, i.e., the mass of a nucleon, at finite temperature T

should be written as

M(T ) = EB(T ) = 3εj (T ) − Z0

R
+ 4

3
πR3B(T ), (28)

where εj (T ) is the average of a quark’s energies at all possible
states.

In the spirit of the most simple approximation of the GCM
[14] (mentioned at the end of the last section), the quarks in the
bag (GCM soliton) at finite temperature can also be regarded
as the free one which satisfies the Dirac equation, and the
energy eigenvalue can be expressed as

εj (T ) = κj

R(T )
, (29)

where j denotes the quantum number labeling the energy level.
Since quarks are fermions, we take the Fermi-Dirac statistics
to evaluate the average energy of each quark in the bag at finite
temperature, and have

εj (T ) = N

∞∑
j=0

εj (T )

1 + eεj (T )/T
, (30)

where N is the degeneracy of quarks.
Then, by solving the stability condition dM(T )

dR
= 0, i.e.,

dEB(T )

dR
= 3

dεj (T )

dR
+ Z0

R2
+ 4πR2B(T ) = 0, (31)

we can obtain the (stable) nucleon radius R(T ) and the mass
of a nucleon (the energy of the bag) M(T ).

It is apparent that after solving the quark’s DSE and in
turn the equations of motion of the quark and meson fields at
zero and nonzero temperature, we can obtain the bag constant,
the mass and the radius of a nucleon in the corresponding
circumstance, and discuss the variation characteristic of the
property with respect to temperature. To solve the quark’s DSE,
we take a simplified form of the effective gluon propagator in
Ref. [33]:

g2D(k) = 4π2D
k2

ω6
exp

(
− k2

ω2

)
, (32)

where D and ω are dimensional parameters that can be
determined by fitting empirical date. Such an effective
gluon propagator is naturally an extension of the Munczek-
Nemirovsky model [27] and consistent with those given in
lattice QCD calculations (see, for instance, Refs. [34,35]) and
solving the coupled DSEs of quark, gluon, and ghost (see, for
instance, Ref. [36]). It has also been shown to be successful in
describing many hadron properties [15,33,37–39].

B. Calculation and numerical results

We first solve the quark’s DSE at chiral limit (m0 = 0)
and zero temperature with parameters D = 1.0 GeV2 and
ω = 0.5 GeV, which have been widely used (see, for example,
Refs. [38,39]). The obtained result of the Nambu-Goldstone
solution of the DSE at zero temperature is displayed in Fig. 1.
It shows evidently that our result reproduces exactly that given
in Ref. [37].
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FIG. 1. (Color online) Calculated result of the Nambu-Goldstone
solution of the quark’s DSE at zero temperature, with parameters in
the effective gluon propagator ω = 0.5 GeV, D = 1 GeV2.

We then solve the quark’s DSE at nonzero temperature
with the same effective gluon propagator. Figure 2 illustrates
the obtained results of the functions A(| �p|, T ), C(| �p|, T ),
B(| �p|, T ) in the Nambu-Goldstone solution and the mass
function M(| �p|, T ) at a temperature T = 30 MeV, as an
example of those at nonzero temperature. We find from the
figure that, just as expected, as the temperature is lower,
the functions A(| �p|, T ), C(| �p|, T ), B(| �p|, T ) and M(| �p|, T )
have the correct zero temperature limit. Hence, even though
we have not included explicitly the temperature effect in
the effective gluon propagator, the calculated result can
demonstrate the temperature dependence of quark propagator
with quite high precision. In addition, it can be noticed
from Fig. 2 that functions A(| �p|, ω0) and C(| �p|, ω0) have the
same behavior when the temperature is low, just as that of
the quark propagator at low chemical potential [40]. To study
the Matsubara frequency dependence of the quark propagator,
we illustrate the variation behaviors of the functions A(| �p|, ωn)
and B(| �p|, ωn) at a temperature T = 30 MeV in Fig. 3 [since
Fig. 2 has shown that the functions A(| �p|, ωn) and C(| �p|, ωn)
at T = 30 MeV are almost exactly equal to each other, we do
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FIG. 2. (Color online) Calculated results of the functions
A(| �p|, T ), C(| �p|, T ), B(| �p|, T ), and M(| �p|, T ) in the Nambu-
Goldstone solution of the quark propagator at a temperature
T = 30 MeV, with parameters in the effective gluon propagator
ω = 0.5 GeV, D = 1 GeV2.
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FIG. 3. (Color online) Calculated results of the functions
A(| �p|, ωn) and B(| �p|, ωn), where ωn = (2n + 1)πT , in the Nambu-
Goldstone solution of the quark propagator in chiral limit and at a
temperature T = 30 MeV [(a), (b), respectively] and the special case
at | �p| = 0 [(c), (d), respectively]. The calculations are also carried
out with parameters ω = 0.5 GeV, D = 1 GeV2 in the effective gluon
propagator.

not show the function C(| �p|, ωn)] as a representative. From
Fig. 3, we can find that, when the temperature is low, both
functions A and B involve an approximate bilateral symmetry
about n [since for a fixed temperature, ωn is proportional to
n due to the definition ωn = (2n + 1)πT ], and the function
B decreases rapidly as the Matsubara frequency increases.
It gives us a posterior knowledge that when we carry out the
summation of the Matsubara frequencies ωn, it is not necessary
to do that up to a very large number of n.

To demonstrate the temperature dependence of the quark
propagators explicitly, we illustrate the calculated variation
behaviors of the Wigner solution at zero momentum and
zero mode Matsubara frequency [i.e., the functions AW (| �p| =
0, ω0) and CW (| �p| = 0, ω0)] and the Nambu-Goldstone solu-
tion under the same conditions [i.e., the functions ANG(| �p| =
0, ω0), CNG(| �p| = 0, ω0), and BNG(| �p| = 0, ω0)] with respect
to temperature in Fig. 4 as a representative. From Fig. 4, we
can find that, when the temperature is low, the functions ANG

and CNG coincide with each other very well. So do the AW and
CW except that the temperature for the deviation between them
to appear is lower. It indicates that only as the temperature is
quite high, the breaking from O(4) symmetry to O(3) symmetry
(especially, for the physical state, i.e., the Nambu-Goldstone
state) becomes obvious. Moreover, the decreasing feature of
the function BNG is a manifestation of gradual restoration of
chiral symmetry.

With the solutions of the quark’s DSE as input, we solve
the equations of motion of the quark and the chiral meson
fields, and then obtain the property of a nucleon at zero and
nonzero temperature. The obtained property of a nucleon at
zero temperature is bag constant B(0) = (162 MeV)4, mass
M(0) = 939 MeV (with the parameter Z0 is fixed as 3.08), and
radius R(0) = 0.85 fm. It should be noted that the presently
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FIG. 4. (Color online) Calculated results of the temperature
dependence of the Wigner solution of the quark’s DSE at zero
momentum and zero mode Matsubara frequency [i.e., the functions
AW (| �p| = 0, ω0) and CW (| �p| = 0, ω0)] (a) and the Nambu-Goldstone
solution under the same conditions [i.e., the functions ANG(| �p| =
0, ω0), CNG(| �p| = 0, ω0) and BNG(| �p| = 0, ω0)] (b). The calculations
are also carried out with parameters ω = 0.5 GeV, D = 1 GeV2 in
the effective gluon propagator.

fixed value of the parameter Z0, 3.08, is larger than the usually
taken one, 1.84. Such a large value arises from the fact that the
term −Z0/R is a combination of the contributions from not
only the zero-point energy but also those of the color-electronic
and color-magnetic interactions, the correction on the motion
of center-of-mass and other effects. And it is consistent with
the most recent result [41] and our previous results [23]. The
gained variation behaviors of the nucleon’s bag constant, mass,
and radius with respect to temperature are illustrated in Figs. 5,
6, 7, respectively. From Figs. 5–7, one can notice that, with
the increasing of temperature if it is below a critical one,
the bag constant and the mass of a nucleon decrease, and
the radius of the nucleon increases. At critical temperature
T = 133 MeV, the bag constant and the mass of the nucleon
vanish and the radius tends to be infinite. It manifests that
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FIG. 5. Calculated result of the variation behavior of the bag
constant of a nucleon with respect to temperature.
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FIG. 6. Calculated result of the variation behavior of the mass of
a nucleon with respect to temperature.

the nucleon can no longer exist as a bag soliton, so that the
quark deconfinement happens. Admittedly, such a obtained
critical temperature may be model-dependent, however, the
gradual variation features of the nucleon’s property indicate
that the deconfinement phase transition process is that, with
the increase of temperature, the nucleons in the matter touches
with each other at first due to the increase of the radius, then
the fields of the ingredients of the nucleons mixed with each
other and the bound strength gets weaker simultaneously. As
the bound (the bag constant) vanishes, the deconfinement
phase transition occurs. Therefore, the temperature driven
deconfinement process may be, in fact, a crossover but not
a low order phase transition.

When discussing the QCD phase transition, one usually
interests in the chiral symmetry and its dynamical breaking,
too, and takes the chiral quark condensate as a order parameter
in the case of chiral limit, which is defined as

−〈q̄q〉 = NcT

n=+∞∑
n=−∞

∫
d3p

(2π )3
tr[S( �p,ωn)]. (33)

We then calculate the temperature dependence of the chiral
quark condensate. The obtained result is shown in Fig. 8.
The figure displays evidently that the chiral quark condensate
decreases gradually with the increase of temperature and
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FIG. 7. Calculated result of the variation behavior of the radius
of a nucleon with respect to temperature.
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FIG. 8. Calculated result of the variation behavior of the chiral
quark condensate with respect to temperature.

vanishes at a critical temperature. It indicates that dynamical
chiral symmetry breaking effect gets weaker and weaker with
the increase of temperature and the chiral symmetry can
be restored as the temperature reaches the critical one. In
the case with parameters ω = 0.5 GeV, D = 1 GeV2 in the
effective gluon propagator, the critical temperature for the
chiral symmetry to be restored is also approximately 133 MeV,
the same as that for the deconfinement.

As mentioned above, the critical temperature for the QCD
phase transitions to happen may be parameter dependent. To
demonstrate the parameter dependence explicitly, we carry
out a series calculations with various values of the coupling
strength parameter D and the screening width parameter ω in
the effective gluon propagator. Due to the good behavior of the
Gaussian-type gluon propagator, we can scale the Tc and D by
ω with definition T ′

c ≡ Tc/ω and D′ ≡ D/ω2. The obtained
variation behavior of the T ′

c with respect to the D′ is displayed
in Fig. 9. One can find easily from the figure that the critical
temperature increases when the coupling strength gets larger.
Furthermore, there exists a critical scaled coupling strength
D′, below which the critical temperature for the deconfinement
maintains zero. In fact, below the critical coupling strength,

0 4 6 8 102
0

0.3

0.6

0.9

1.2

D′

T
′ c

FIG. 9. Calculated result of the variation behavior of the scaled
critical temperature with respect to the scaled strength parameter D′

in the effective gluon propagator, where T ′
c = Tc/ω and D′ = D/ω2

are the scaled quantities.

the quark’s DS equation does not have a Nambu-Goldstone
solution [4,5]. In other words, there exists only quarks in chiral
symmetry. In turn, we have only deconfined quarks, but no
nucleons (more general, hadrons) even if the temperature is
zero.

IV. SUMMARY AND REMARKS

In this paper we have calculated the temperature depen-
dence of the quark propagator by solving the quark DSE
with a Gaussian-type effective gluon propagator. Based on
the calculations, we investigated the temperature dependence
of the bag constant, the mass and the radius of a nucleon
in the framework of the GCM soliton model. It shows that,
as the temperature is lower than a critical value, the bag
constant and the mass decrease and the radius increases
with the increasing of the temperature. In the case with
parameters ω = 0.5 GeV, D = 1 GeV2 in the effective gluon
propagator, the critical temperature is found to be about
133 MeV. At the critical temperature, the bag constant and
the mass decrease to zero and the radius increases to infinity.
It means that the nucleon can no longer exist as a bag soliton,
so that the deconfinement phase happens. This indicates
evidently that the quark deconfinement phase transition can
take place at high temperature. Moreover, we give the depen-
dence of the critical temperature on the interaction strength
parameter D in the effective gluon propagator. It shows that,
as the interaction strength parameter is larger than a critical
value, the critical temperature increases with the increasing of
the strength parameter.

Even though the temperature dependence of some of the
properties of nucleon is given with some approximations
and model parameters in the present work, the qualitative
behavior would be universal and it is the first one given
with quite a sophisticated approximation of QCD. Of course,
there are various aspects to be improved. For example, we
take the commonly used effective gluon propagator, which is
independent of temperature, to solve the quark DSE and make
use of the preliminary GCM soliton model [14,16,23]. It is
necessary to implement the real GCM soliton model [17,18]
with solving at first the coupled DSEs of the quark, gluon,
and ghost, and then the coupled equations of the quark and
the chiral fields, with the inclusion of the temperature effect.
In more detail, for the quark gluon interaction vertex, we
take simply the bare vertex γµ in our present work, in fact
more realistic vertex functions, such as the BC vertex [42],
which has been shown to be able to improve the calculation of
meson properties greatly [39], even the BC vertex together with
the transverse part being included simultaneously [43–45],
should be implemented to make the calculation with much
more solid QCD foundation. It is also necessary to notice
the dimensionless quantity Z0 which takes account of the
contributions of the zero-point effect, the color-electronic and
color-magnetic interactions, the motion of center of mass,
and all the others. In our present work, we handle it, in
the commonly taken way, as a free parameter to be fixed
by the property of a nucleon in free space. In fact, all the
aspects of the Z0 are quite complicated and have recently
been paid great attentions (see for example, Refs. [46,47]
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tried to evaluate the zero-point effect part from the gluon field
fluctuations directly). Furthermore, extending the result of the
thermal Casimir effect in ideal metal rectangular boxes [48],
we infer that the Z0 (at least, the zero-point effect part) may
depend on temperature. It would then be interesting to study
the temperature dependence of the parameter Z0. The related
investigations are in progress.
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