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Binding energy of a holographic deuteron and tritium in anti-de-Sitter
space/conformal field theory (AdS/CFT)
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In the large ’t Hooft coupling limit, the hadronic size of baryon is small and the nucleon-nucleon potential
is obtained from massless pseudoscalar exchanges and an infinite tower of spin-one mesons exchanges. In this
article we use the holographic nucleon-nucleon interaction and obtain the corresponding potential and binding
energy for deuteron and tritium nuclei. The obtained potentials are repulsive at short distances and clearly become
zero by increasing the distance as we expected.
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I. INTRODUCTION

One application of anti-de-Sitter space/conformal field
theory (AdS/CFT) duality is in low-energy hadron dynamics
[1] that is referred to as holographic QCD or AdS/QCD. This
method expresses two related issues from opposite directions,
one from string theory [2,3] and the other from the low-energy
chiral effective-field theory of mesons and baryons [4,5]. From
the view point of string theory the duality of strongly coupled
dynamics of QCD and the bulk sector in a controlled weak cou-
pling limit of the gravity theory is an interested subject. How-
ever, from the low-energy chiral effective-field theory outlook
the purpose is whether holographic QCD can make clear pre-
dictions on processes that are difficult to study by using QCD
proper.

There are many remarkable examples [6–11] such as chiral
dynamics of hadrons, in particular, baryons at low energy that
are typically of strong-coupling QCD and very difficult to
explain by using QCD techniques.

Between the holographic models of QCD suggested re-
cently, the Sakai and Sugimoto (SS) model [2] is one of the
most interesting and realistic models because of the accurate
results of this model. For example, the predicted results from
the SS model on the glueball spectrum of pure QCD are
in good agreement with lattice simulation [12]. Also, this
model successfully described baryons and their interactions
with mesons [2,13,14]. This is a D4 − D8 model that involves
a large number of colors, Nc large ’t Hooft coupling λ, and
quenching of fermions.

The holographic baryon in the D4 − D8 model is equivalent
with the skyrmion of chiral perturbation theory. Actually,
Holographic baryon is a direct uplift of skyrmion in the
holographic picture, but considering baryon as a solution is
not a proper way to obtain the nucleon-nucleon interaction. It
arises because finding a suitable configuration is impossible
for such complicated solitons.
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To study the interaction of baryons in large distances,
where the interbaryon distance is large compared with the
size of the considering baryons as point-like particles is a
good approximation. In this case, the interactions can be all
ascribed by exchange of light particles such as mesons and
one can find the baryon-baryon interaction with the Feynman
diagrams using cubic interaction vertices including baryon
currents and light mesons [15].

Fortunately from the D4 − D8 holographic QCD model,
all nucleon-meson coupling constants, at least in large λNc,
are obtained [13]. Also some of these coupling constants
such as the axial coupling to pions gA and vector meson
couplings gρNN and gωNN are in good agreement with the
experimental data. Recently, the nucleon-nucleon potential in
the holographic picture was studied using the meson exchange
method [16].

In this article we are going to calculate the binding energy of
light nuclei such as deuteron and tritium using the AdS/QCD.
In order to do this, we apply the D4 − D8 model, nucleon-
meson interaction, and nucleon-nucleon potential. Then we
consider the exchange of pions, isospin singlet vector mesons,
isospin triplet vector mesons, and triplet axial-vector mesons
in this potential. The minimum of the resultant potential is
considered as nuclear binding energy. Finally we obtain the
radius of these nuclei in the holographic picture.

II. D4 − D8 HOLOGRAPHIC QCD

In this model, Nc stack of D4 and Nf D8 branes are
considered in the background of Type II A superstring
[2] and the flavor symmetries of the quark sector are
embedded into a U (Nf ) gauge symmetry in R1+3 × I . By
restricting to the modes that are localized near the origin
of the fifth direction, which is topologically an interval, we
can arrive at the four-dimensional low-energy physics. Also
the massless part of this model is pure U (Nc) Yang-Mills
theory because fermions permit an anti-periodic boundary
condition.

In large Nc limit, the dynamics of D4 brane is dual to
a closed string theory in the curved background with flux
in accordance with the general AdS/CFT idea. In the large
’t Hooft coupling limit (λ = g2

YMNc � 1) and neglecting the
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gravitational backreaction from the D8 branes the metric
is [17]

ds2 =
(

U

R

)3/2

[ηµνdxµdxν + f (U ) dτ 2]

+
(

R

U

)3/2 [
dU 2

f (U )
+ U 2d�2

4

]
, (1)

where R3 = πgsNcl
3
s and f (U ) = 1 − U 3

KK/U 3. The co-
ordinate τ is compactified as τ = τ + δτ with δτ =
4πR3/2/(3U

1/2
KK ).

The effective action on a D8 brane embedding in a D4

background has the following form:

SD8 = −µ8

∫
d9x e−φ

√
−det (gMN + 2πα′FMN )

+µ8

∫
C3 ∧ Tr e2πα′F , (2)

with µ8 = 2π
(2πls )9 . By introducing the conformal coordinate w

instead of the holographic coordinate U as

w =
∫ U

UKK

R3/2dU ′√
U ′3 − U 3

KK

, (3)

the noncompact five-dimensional (5D) part of the metric is
conformally flat, then the induced metric on the D8 brane has
the following form:

g8+1 = U 3/2(w)

R3/2
(dw2 + ηµνdxµdxν) + R3/2

U 1/2(w)
d�2

4, (4)

where UKK = 2/9g2
YMNcMKKl2

s . MKK , λ, and Nc determine
all the physical scales such as the QCD scale and the pion
decay constant.

In the low-energy limit, the world-volume dynamics of the
multi-D8 brane system give the following Yang-Mills action
with a Chern-Simons term as

1

4

∫
4+1

√−g4+1
e−�VS4

2π (2πls)5
trFm̂n̂Fm̂n̂ + Nc

24π2

∫
4+1

ω5(A),

(5)

where VS4 is the S4 volume while the dilaton is

e−� = 1

gs

(
R

U

)3/4

, (6)

and dω5(A) = trF3.

III. BARYON HOLOGRAPHY AND NUCLEON-NUCLEON
POTENTIAL

Witten introduced a D4 brane wrapping the compact S4 as
a baryon vertex on the 5D space-time [18]. It is shown that a
D4 brane wrapping S4 looks like an object carrying electric
charge with respect to the gauge field on D8 and it is possible
to say that D4 brane spread inside D8 brane as an instanton.
The size of this instanton is determined by minimizing its total

energy [13,14], which is combined mass and Coulomb energy,

ρbaryon ∼ 9.6

MKK

√
g2

YMN

. (7)

Thus, in the large ’t Hooft coupling limit, instantonic
baryon is a small object in five dimensions and baryon can be
considered as a point-like quantum field in 5D. In consequence,
there should be couplings between this quantum field and the
5D gauge fields moreover the standard Dirac kinetic and a
position-dependent mass term [19].

The action involving the baryon field and the gauge field in
the conformal coordinate (xµ,w) is written as∫

d4xdw

[
−iB̄γ mDmB − imb(w)B̄B

+ g5(w)
ρ2

baryon

e2(w)
B̄γ mnFmnB

]

−
∫

d4xdw
1

4e2(w)
trFmnFmn, (8)

g5(w) is an unknown function of w that is evaluated only at
w = 0, where g5(0) = 2π2/3.

Since the four-dimensional (4D) low-energy physics is
found by restricting to the modes that are localized near the
origin of the fifth direction w, the physical 4D nucleons will
arise as the lowest eigenmodes of the 5D baryon along the w

coordinate. Thus the 5D action, Eq. (8), must be reduced to four
dimensions. It can be done by applying the mode expansion
for the baryon field and the gauge field and plugging these into
the baryon action.

On one hand, the gauge field Aµ, in the A5 = 0 gauge, has
the following mode expansion:

Aµ(x,w) = iαµ(x)ψ0(w) + iβµ(x) +
∑

n

a(n)
µ (x)ψ(n)(w).

(9)

The eigenmode analysis was done by Sakai and Sugimoto in
Ref. [2] previously. We only note that ψ(2k+1)(w) is even, while
ψ(2k)(w) is odd under w → −w, corresponding to the vector
and axial-vector mesons, respectively. Also the eigenfunctions
ψ(n) obey the following equation according to [2]

−K−1/3∂ω[K1/3∂ωψ(n)] = (
U 2

KKM2
KK

)
λnψ(n), (10)

where K = ( U
UKK

)3. Also they satisfy the orthonormality
condition∫

dw
e−�VS4

4π (2πls)5
ψ(n)(w)∗ψ(m)(w) = δnm. (11)

We have to solve Eq. (10) with the normalization condition
given by Eq. (11) to find the eigenfunction ψ(n). These
equations were solved numerically by means of a shooting
method. The corresponding computations are given in Ref. [2]
in detail.

On the other hand, the nucleon field can be expanded
as BL,R(xµ,w) = BL,R(xµ)fL,R(w), where γ 5BL,R = ±BL,R

are 4D chiral components. fL,R(w) are profile functions
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that satisfy the following conditions in the interval w ∈
[−wmax, wmax]

∂wfL(w) + mb(w)fL(w) = mBfR(w),
(12)

−∂wfR(w) + mb(w)fR(w) = mBfL(w).

The eigenvalue mB is the mass of the nucleon mode B(x),
where the 4D Dirac field for the nucleon is B = ( BL

BR
) and the

eigenfunctions fL,R(w) are normalized as∫ wmax

−wmax

dw |fL(w)|2 =
∫ wmax

−wmax

dw |fR(w)|2 = 1. (13)

Using the properties fL(w) = ±fR(−w) as well as ψ0(w)
and ψn(w) under w → −w and by plugging into the mode
expansion of the gauge field, the 4D effective action is achieved
for the nucleon∫

dx4(−iB̄γ µ∂µB − imBB̄B + Lvector + Laxial), (14)

where the nucleon coupling to vector mesons Lvector and axial
mesons Laxial are

Lvector = −iB̄γ µβµB −
∑
k�0

g
(k)
V B̄γ µa(2k+1)

µ B,

(15)

Laxial = − igA

2
B̄γ µγ 5αµB −

∑
k�1

g
(k)
A B̄γ µγ 5a(2k)

µ B,

where various coupling constants g
(k)
A,V as well as the pion-

nucleon axial coupling gA are calculated by suitable wave-
function overlap integrals. These coupling constants were
studied in Ref. [13] in detail.

Finally, in general, the one-boson exchange nucleon-
nucleon potential is written as [16]

Vπ + Vη′ +
∞∑

k=1

Vρ(k) +
∞∑

k=1

Vω(k) +
∞∑

k=1

Va(k) +
∞∑

k=1

Vf (k) ,

(16)

that is a sum of the pseudoscalar, vector, and axial-vector
mesons exchange terms, respectively.

But only following four classes of these couplings have a
leading contribution in nucleon-nucleon potential

gπNNMKK

2mN
∼ gω(k)NN ∼ g̃ρ(k)NNMKK

2mN
∼ ga(k)NN . (17)

In the D4 − D8 holography model, the pion mass is zero then
one pion exchange potential (OPEP) in this sense has the
following form

Vπ = 1

4π

(
gπNNMKK

2mN

)2 1

M2
KKr3

S12 
τ1 · 
τ2. (18)

Also, the holographic potentials for the isospin singlet vector
mesons ω(k), isospin triplet vecto mesons ρ(k), and the triplet
axial-vector mesons a(k) are

Vω(k) = 1

4π
[gω(k)NN ]2 mω(k) y0[mω(k)r], (19)

and

Vρ(k) � 1

4π

[
g̃ρ(k)NNMKK

2mN

]2 m3
ρ(k)

3M2
KK

{2y0[mρ(k)r]
σ1 · 
σ2

− y2(mρ[k)r)S12(r̂]}
τ1 · 
τ2, (20)

Va(k) � 1

4π
(ga(k)NN )2 ma(k)

3
{−2y0[ma(k)r]
σ1 · 
σ2

+ y2[ma(k)r)S12(r̂]}
τ1 · 
τ2, (21)

respectively.
In the above equations, level p is determined by distance

scale and

S12 = 3(
σ · r̂)(σ2 · r̂) − 
σ1 · 
σ2, (22)

y0(x) = e−x

x
, y2(x) =

(
1 + 3

x
+ 3

x2

)
e−x

x
. (23)

The masses of all mesons are of order MKK and mρ(k) =
mω(k) < ma(k) .

In general, for large limited λ, in the smallest distance
1/

√
λMKK , the one-meson exchange potential is satisfied.

Also, p � √
λ/10 is an acceptable value for this potential.

In the large λNc limit, the coupling constants are given
by [13]

gπNN
2mN

MKK � 8.43

√
Nc

λ
,

gω(k)NN �
√

2.33.π3ψ̂(2k−1)(0)

√
Nc

λ
= ξk

√
Nc

λ
,

(24)

g̃ρ(k)NN
2mN

MKK �
√

22.32.π3

5
ψ̂(2k−1)(0)

√
Nc

λ
= ζk

√
Nc

λ
,

ga(k)NN �
√

22.32.π3

5
ψ̂ ′

(2k)(0)

√
Nc

λ
= χk

√
Nc

λ
,

where the coefficients, ξk , ζk , and χk are calculated using the ψ

values by numerical methods. The value of these coefficients
are given in Ref. [16], and listed in Table I.

TABLE I. Numerical results for ψ̂(2k−1)(0), ψ̂ ′
(2k)(0), ξk , ζk , and χk

for spin-one mesons interacting with nucleons [16].

k ψ̂(2k−1)(0) ξk ζk ψ̂ ′
(2k)(0) χk

1 0.5973 24.44 8.925 0.629 9.40
2 0.5450 22.30 8.143 1.10 16.4
3 0.5328 21.81 7.961 1.56 23.3
4 0.5288 21.64 7.901 2.02 30.1
5 0.5270 21.57 7.874 2.47 36.9
6 0.5261 21.52 7.860 2.93 43.8
7 0.5255 21.50 7.852 3.38 50.5
8 0.5251 21.48 7.846 3.83 57.3
9 0.5249 21.48 7.843 4.29 64.1
10 0.5247 21.47 7.840 4.74 70.9
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IV. BINDING ENERGIES OF DEUTERON AND
TRITIUM NUCLEI

Here we aim to calculate the binding energy of deuteron and
tritium nuclei using the holographic nucleon-nucleon potential
represented in Sec. III.

To calculate the binding energy of deuteron, the following
potential is considered

V
holography

deuteron = VC + (
V σ

T 
σ1 · 
σ2 + V S
T S12

) 
τ1 · 
τ2, (25)

where

VC =
10∑

k=1

1

4π
[gω(k)NN ]2 mω(k) y0[mω(k)r]m, (26)

V σ
T =

10∑
k=1

1

4π

[
g̃ρ(k)NNMKK

2mN

]2 m3
ρ(k)

3M2
KK

{2y0[mρ(k)r]}

+
10∑

k=1

1

4π
[ga(k)NN ]2 ma(k)

3
{−2y0[ma(k)r]}, (27)

and

V S
T = 1

4π

(
gπNNMKK

2mN

)2 1

M2
KKr3

+
10∑

k=1

1

4π

(
g̃ρ(k)NNMKK

2mN

)2 m3
ρ(k)

3M2
KK

{−y2[mρ(k)r]}

+
10∑

k=1

1

4π
[ga(k)NN ]2 ma(k)

3
{y2[ma(k)r]}. (28)

The values of coupling constants for different amounts of
k, along with the mass of the vector and axial-vector mesons
(in units of MKK and for large λ Nc) are presented in Table II.
In these computations, we choose λ = 400, mN = 0.55 GeV
and Nc = 3 for realistic QCD.

The deuteron nucleus consists of one proton and one
neutron, thus by superselection rules we have

S12 = 2, 
σ1 · 
σ2 = 1, 
τ1 · 
τ2 = −3. (29)

The deuteron potential for the large Nc with p = 10 is
calculated and is shown in Fig. 1. As it is clear from this figure,
the deuteron potential has a minimum point at 4.41 MKK . For

TABLE II. Numerical results for masses and coupling constants
for spin-one mesons interacting with nucleons in the large λNc limit.
We choose λ = 400, mN = 0.55 GeV, and Nc = 3 for realistic QCD.

k mω(k) ma(k) gω(k)NN g̃ρ(k)NN ga(k)NN

1 0.818 1.25 2.1165 0.7055 0.8140
2 1.69 2.13 1.9312 0.6437 1.4202
3 2.57 3.00 1.8888 0.6296 2.0178
4 3.44 3.87 1.8740 0.6246 2.6067
5 4.30 4.73 1.8680 0.6226 3.1956
6 5.17 5.59 1.8636 0.6212 3.7931
7 6.03 6.46 1.8619 0.6206 4.3734
8 6.89 7.32 1.8602 0.6200 4.9623
9 7.75 8.19 1.8602 0.6200 5.5512
10 8.62 9.05 1.8593 0.6197 6.1401

FIG. 1. The deuteron potential in large λ Nc limit and p = 10.
The horizontal axis is r MKK , while the vertical axis is deuteron
potential in unit of MKK Nc/4πλ.

distance, r less than the rmin potential increases rapidly and
becomes infinity at r = 0 as expected. The minimum value
of the potential is −1.9645 MKK Nc/4πλ. So the binding
energy of deuteron is obtained roughly −2.204 MeV that is
consistent with the experimental nuclear data.

Also, tritium consist of three nucleons, two neutrons and
one proton, so we suppose the following form for its potential

V
holography

Tritium = V12 + V13 + V23

= VC + (
V σ

T 
σ1 · 
σ2 + V S
T S12

) 
τ1 · 
τ2

+VC + (
V σ

T 
σ1 · 
σ3 + V S
T S13

) 
τ1 · 
τ3

+VC + (
V σ

T 
σ2 · 
σ3 + V S
T S23

) 
τ2 · 
τ3. (30)

FIG. 2. The tritium potential in large λ Nc limit and p = 10. The
horizontal axis is r MKK , while the vertical axis is deuteron potential
in unit of MKK Nc/4πλ.
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The superselection rules for this three-nucleon system implies
that

S12 = 2, 
σ1 · 
σ2 = 1, 
τ1 · 
τ2 = −3,

S13 = 0, 
σ1 · 
σ3 = −3, 
τ1 · 
τ3 = −3, (31)

S23 = 0, 
σ2 · 
σ3 = −3, 
τ2 · 
τ3 = 1.

The holographic potential of tritium in terms of MKK r is
shown in Fig. 2. This potential also has a minimum that
occurs in 7.46 MKK . The value of potential in its minimum
is −0.617 MKK Nc/4πλ, so the binding energy of tritium is
equal to −1.034 MeV. This figure also shows the repulsive
behavior of potential at short distances.

V. CONCLUSION

In this investigation we calculate the deuteron and tritium
binding energy using the QCD holography model. Here we use

the nucleon-nucleon interaction in the D4 − D8 model in the
base of one-boson exchange picture. This potential involves
only the exchanges of pions, isospin singlet mesons, isospin
triplet mesons, and triplet axial-vector mesons. We selected
the λ = 400 and at least 10 terms of infinite tower of spin one
mesons are considered.

We depicted the deuteron and tritium potentials in terms
of MKKr and in unit of MKKNc/4πλ. As it is indicated
in Figs. 1 and 2, these potentials have repulsive behavior
at short distances and became roughly zero at large MKKr .
The deuteron potential contains a shallow minimum in depth
∼ −13.84 MKK Nc/λ around the r MKK = 4.41. Also the
potential of tritium nuclei reach a more shallow minimum
around r MKK = 7.46 with depth ∼ −4.35 MKK Nc/λ. Thus
by using these results binding energies of deuteron and
tritium nuclei approximated by −2.204 and −1.039 MeV,
respectively.

This method can be improved to calculate binding energies
of heavier nuclei by considering exchange of heavier mesons.
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