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BEC-BCS crossover and the liquid-gas phase transition in hot and dense nuclear matter
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The effect of nucleon-nucleon correlations in symmetric nuclear matter at finite temperature is studied beyond
BCS theory. Starting from a Hartree-Fock description of nuclear matter with the Gogny effective interaction,
we add correlations corresponding to the formation of preformed pairs and scattering states above the superfluid
critical temperature within the in-medium T -matrix approach, which is analogous to the Nozières-Schmitt-Rink
theory. We calculate the critical temperature for a BEC superfluid of deuterons, of a BCS superfluid of nucleons,
and in the crossover between these limits. The effect of the correlations on thermodynamic properties (equation
of state, energy, entropy) and the liquid-gas phase transition is discussed. Our results show that nucleon-nucleon
correlations beyond BCS play an important role for the properties of nuclear matter, especially in the low-density
region.
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I. INTRODUCTION

Pairing and nucleon-nucleon correlations are important
properties of interacting nuclear systems. For example, in the
weak-coupling limit, i.e., at high density, the nucleons form
Cooper pairs, and below a certain critical temperature Tc the
system is in a superfluid phase as described by the Bardeen-
Cooper-Schrieffer (BCS) theory. In the strong-coupling limit,
i.e., at low density, neutrons and protons form deuteron
bound states that will condense if the temperature is below
the critical temperature for the corresponding Bose-Einstein
condensation (BEC). It was theoretically predicted [1] and
recently confirmed by experiments with ultracold atomic
Fermi gases [2,3] that there is a smooth crossover between
the BCS and BEC limits. Qualitatively, especially at zero
temperature, these features can be studied within the BCS
(mean field) approximation [4]. Quantitatively, however, the
critical temperature obtained in this way is too high because the
BCS theory does not include the existence of noncondensed
pairs at finite temperature. In order to go beyond mean field,
one has to consider pair correlations already above the critical
temperature, as in the Nozières-Schmitt-Rink (NSR) theory
[1]. Especially in the low-density region, where the coupling
between nucleons is strong, such correlations modify the
mean-field results to a large extent.

At present, there are several groups who have studied
nuclear matter within the NSR approach. Pioneering work
has been done by the Rostock group [5,6]. There are also
extensions where the correlations are considered in a more
self-consistent way, like in the self-consistent Green’s function
method [7,8]. A generalization to temperatures below the
superfluid transition temperature was discussed by Bożek [9].
In the case of ultracold Fermi gases, where the results can be
compared with very precise measurements, theories for the
BEC-BCS crossover based on the NSR approach [10] have
been very successful [11].

It is well known that there exists a liquid-gas phase
transition in nuclear matter. Experimental information can be

obtained from multifragmentation (see, e.g., Refs. [12–15]).
The critical temperature deduced from these experiments
depends on the mass of the nuclei and can be as low as 6.7 MeV
[15] in the case of small systems. For infinite nuclear matter,
theoretical predictions give much higher values for the critical
temperature between 14 and 18 MeV [12,13] (see Ref. [16]
for a recent theoretical study). Below that temperature, nuclear
matter is unstable in a certain range of low densities. Within
mean-field theory, we know that the BCS-BEC crossover is
completely covered by the instability region of the liquid-gas
phase transition. Nevertheless, the investigation of low-density
nuclear matter is of interest for applications where regions
of low density appear in the framework of the local-density
approximation. Contrary to the nuclear matter case, the whole
crossover can be studied in the case of ultracold atomic Fermi
gases [2,3], because the pair correlations stabilize the gas [1]
such that the system does not collapse into its solid ground
state, but it remains in its metastable gas state. By analogy, one
expects that pair correlations will stabilize low-density nuclear
matter and thus reduce the liquid-gas coexistence region. One
of our subjects of investigation will be how strong this effect of
nucleon-nucleon correlations on the liquid-gas phase transition
is quantitatively.

Furthermore, in this article we will calculate the equation
of state of hot and dense symmetric nuclear matter, taking into
account the contribution of the mean field together with the
nucleon-nucleon correlations. For the mean field we will use
the Gogny interaction because it is known to give a good de-
scription of the single-particle and thermodynamic properties
of nuclear matter, including saturation at the right density, the
liquid-gas phase transition, and so on. For the part beyond the
mean field, we use the T matrix (or ladder approximation),
which contains the information on two-particle correlations.
This also allows us to extract the critical temperature for pair
condensation smoothly interpolating between the BEC and
BCS regimes.

The article is organized as follows. In Sec. II, we will give a
summary of the formalism. The numerical results are provided
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in Sec. III. The last section is devoted to the summary and
discussions.

II. FORMALISM

Before explicitly including two-particle correlations, we
calculate the single-particle Green’s function within the
Hartree-Fock (HF) approximation. In order to get a reasonable
description of the single-particle energies, we use the density-
dependent D1 Gogny effective interaction to describe the mean
field. This force gives nuclear binding at the right saturation
point and many other properties of nuclear matter and of finite
nuclei [17]. It has the form

V (r) =
2∑

m=1

(Wm + BmPσ − HmPτ − MmPσPτ )e−r2/µ2
m

+ t0(1 + x0Pσ )ραδ(r), (1)

where the Pσ and Pτ are, respectively, the spin and isospin
exchange operators. The spin-orbit coupling term is neglected
here since we consider only the properties of infinite nuclear
matter. For the parameters we use the values given in
Ref. [17].1 For details of the HF description of nuclear matter
at finite temperature with the Gogny force, see Refs. [18–20].
The HF mean field �HF contains the direct, the exchange, and
the rearrangement contributions. Because of the finite range
of the Gogny force, the exchange contribution is momentum
dependent and the single-particle Green’s function takes the
form

GHF(p,ω) = 1

ω − ξp + i0
, (2)

where ξp is the quasiparticle energy defined by

ξp = p2

2m
− �HF(p) − µ, (3)

where µ denotes the chemical potential. To facilitate the
numerical calculation of the correlation effects, we use the
effective-mass approximation for the Gogny mean field, that
is, we write [18]

ξp = p2

2m∗ − µ∗. (4)

There are different ways to define the effective nucleon mass
m∗. In principle, m∗ is momentum dependent [20]. Here we
use the effective mass defined by expanding Eq. (3) around
p = 0 (we checked that for the final results it makes almost
no difference if we expand around zero or around the Fermi
momentum),

1

m∗ = 1

m
+ 2

d�HF(p)

dp2

∣∣∣∣
p=0

, (5)

µ∗ = µ − �HF(0). (6)

1We prefer the D1 parametrization to the D1S one [32] because
it allows us to compare our HF results with those of Ref. [20] and
it gives a better compressibility of symmetric nuclear matter [33].
Anyway, since the effective mass m∗ in D1 and D1S is almost the
same, the results do not change qualitatively if we use D1S instead
of D1.

However, the effective-mass approximation will only be used
for the calculation of the correlation effects, while the mean-
field contributions will be computed with the full momentum
dependence of �HF(p).

In principle, we are looking for the full single-particle
Green’s function G including correlations. The Dyson equa-
tion can be written as

G−1(p,ω) = G−1
HF(p,ω) − �̃(p,ω), (7)

where �̃ is the correlation contribution to the single-particle
self-energy. Since the Gogny force is a density-dependent
effective interaction, which is designed to give good results
already at the HF level, we suppose that the Gogny mean
field accounts already for most of the correlation effects.
We therefore demand that the correlations do not shift the
quasiparticle energies ξp, i.e., �̃(p,ξp) = 0, and that the
role of the correlations is just to reduce the strength of
the quasiparticle pole and to distribute the remaining strength
in the continuum of the spectral function. Hence we define �̃

to be the self-energy subtracted at ξp:

�̃(p,ω) = �(p,ω) − Re�(p, ξp). (8)

To describe pair correlations, we calculate the self-energy �

within the T matrix or ladder approximation, as shown in
the lower part of Fig. 1. This is a frequently used lowest-
order correction [1,5,6,10], implying, however, that vertex
corrections as well as screening of the interaction due to the
medium effects are neglected.

Since our aim is not a completely self-consistent description
of the spectral function as in the self-consistent Green’s
function method [7,8], we make the assumption that the
correlations can be treated as a small correction to the Gogny
HF self-energy. This allows us to use the HF Green’s function
GHF in the calculation of the T matrix and of the self-energy �.
Then, for consistency, one should also keep only the first-order
term of Eq. (7),

G(p,ω) = GHF(p,ω) + G2
HF(p,ω)�̃(p,ω). (9)

A diagrammatic representation is given in the upper part of
Fig. 1.

That the self-energy in T-matrix approximation should
only be treated in first-order perturbation theory may also
have a more formal reason. The T-matrix approximation
corresponds to particle-particle random-phase approximation
(pp-RPA) [21]. It can be shown that the ground-state energy

G GHF
Σ(p, ω) Σ(p, ξp)= + -

=Σ T + Exchange Term

= + + + ...T

FIG. 1. The Feynman diagrams for (top) the Green’s function,
(middle) for the self-energy, and (bottom) for the T matrix in ladder
approximation.
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calculated from the single-particle Green’s function with
self-energy in first order and in T-matrix approximation yields
exactly the pp-RPA ground-state energy [22]. At least this
holds true for the self-energy without subtraction procedure.
Therefore our formalism is closely related to that of Ref. [23],
where the pp-RPA formalism is used, except that we apply
the subtraction prescription while the authors of Ref. [23] are
obliged to reduce the correlation contribution by introducing
a cutoff and to change the parameters of the Gogny force in
order to maintain the right saturation point of nuclear matter.

Note that our approximations are analogous to NSR theory
[1], except that in NSR theory free Green’s functions instead
of HF ones are used and consequently no subtraction is made
in the self-energy. In the case of nuclear matter, however, we
cannot expect to obtain a good description of the full self-
energy from such a simple model for the T matrix. This is
why we use the Gogny mean field and the subtraction method
described above, while the subtracted self-energy serves only
to provide the energy dependence corresponding to the pair
correlations in the channels we want to study.

In order to get a simple expression for the T matrix, we use
the separable Yamaguchi potential [24]

Vα(k, k′) = −λαv(k)v(k′), (10)

where k and k′ are the incoming and outgoing relative momenta
in the center-of-mass frame and the form factor is given by

v(k) = 1

k2 + β2
. (11)

As in Ref. [6], we consider only S-wave scattering (α =
1S0, 3S1) and neglect the coupling between the 3S1 and 3D1

channels (which comes from the tensor force). With the
parameters β = 1.4488 fm−1, λ1S0 = 2994 MeV fm−1, and
λ3S1 = 4264 MeV fm−1 [6], the low-energy nucleon-nucleon
phase shifts and the vacuum binding energy of the deuteron
(E0

b = −2.225 MeV) are very well reproduced, see results for
n = 0 in Figs. 2 and 3, so that it is unlikely that the coupling
between the 3D1 and 3S1 channels would strongly modify our
results. With the separable interaction, the resummation of the
ladder diagrams shown in the lower part of Fig. 1 reduces to a
simple geometrical series and the T matrix can be written as

Tα(k, k′,K, ω) = Vα(k, k′)
1 − Jα(K,ω)

, (12)

where k and k′ are the incoming and outgoing momenta in the
center-of-mass frame, K is the total momentum, and

Jα(K,ω) =
∫

d3k

(2π )3
Vα(k, k)

1 − f (ξK/2+k) − f (ξK/2−k)

ω − ξK/2+k − ξK/2−k + i0
.

(13)

The function f (ξ ) = 1/(eξ/T + 1) is the Fermi function, T

being the temperature. Within the effective mass approx-
imation, Eq. (4), the denominator of Eq. (13) does not
depend on the angle between k and K, and the angular
integral can be done analytically. The main contribution to
the integral over the relative momentum comes from low
momenta due to the form factor of the Yamaguchi interaction
(k � β).
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FIG. 2. The deuteron binding energy in nuclear matter from the
Yamaguchi potential and including the effect of the Gogny mean
field, as a function of the density for different values of the deuteron
momentum K . The temperature is T = 10 MeV.

In the 3S1 channel, it can happen that J3S1 (K,ωb) = 1 at
some energy ωb below the threshold energy

ω0(K) = K2

4m∗ − 2µ∗. (14)

This means that there is a bound state (the deuteron) with
binding energy Eb(K) = ωb(K) − ω0(K). As an example, the
deuteron binding energies for different values of the deuteron
momentum K are displayed in Fig. 2. As one can see, the
binding gets weaker with increasing density and eventually
the deuteron gets unbound at the so-called Mott density. Since
the Pauli blocking effect gets weaker with higher deuteron
momentum K , there exists for any density a Mott momentum
KMott above which the deuteron stays bound.

The in-medium nucleon-nucleon phase shifts δα can easily
be obtained from 1/(1 − Jα) = eiδα /|1 − Jα|. As an example,
we show in Fig. 3 the phase shift in the 3S1 channel for K = 0 at
different densities, as a function of the energy E = ω + 2µ∗ =
k2/m∗. We see that at higher densities, for example, at
n � n0/5 (n0 = 0.17 fm−3 being the saturation density of
nuclear matter), the phase shift is negative in the low-energy
region and then becomes positive as the energy increases.
The energy where the phase shift crosses zero is ω = 0,
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 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200  250  300

δ3
S

1

Ε (MeV)

T=10 MeV n=n0
n=n0/2
n=n0/5

n=n0/10
n=n0/20
n=n0/30

n=0

FIG. 3. In-medium scattering phase shift in the 3S1 channel for
K = 0 as a function of E = k2/m∗ for different densities and T =
10 MeV.
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i.e., E = 2µ∗. At lower densities, when µ∗ is negative, the
phase shift is positive at low energy. At some very low density,
the value of the phase shift at E = 0 changes from 0 to π . This
happens precisely at the density below which the deuteron is
bound.

In terms of the T matrix, we can write the self-energy
� depicted in the middle of Fig. 1 within the Matsubara
formalism as

�(p, iωn) = 3

2

∑
α= 3S1, 1S0

T
∑
n′

∫
d3p′

(2π )3
GHF(p′, iωn′ )

× Tα(k, k,K, iωn + iωn′ ), (15)

where ωn and ωn′ are Fermionic Matsubara frequencies [ωn =
(2n + 1)πT ], k = (p − p′)/2, and K = p + p′. The factor 3/2
is the product of a factor 1/4 from the averaging over spin
and isospin in symmetric nuclear matter, of a factor 2 from
the sum of direct and exchange contributions, and of a factor
(2S + 1)(2T + 1) = 3 for α =3 S1 and 1S0 from the sum over
spin and isospin in the loop. Using standard techniques [25],
the self-energy can be analytically continued to real energies,
which is necessary for the calculation of the subtraction term
�(p, ξp) in Eq. (8).

Inserting the self-energy into Eq. (9), we calculate the
density from

n(T ,µ) = −4T
∑

n

∫
d3k

(2π )3
G(k, iωn). (16)

The factor 4 comes from the sum over spin and isospin. It
is clear that the first term of Eq. (9) just gives the Hartree-
Fock density, and the second term gives the correction beyond
the mean-field approximation. After a lengthy derivation (see
Appendix), one finds the following formulas initially given in
Refs. [5,6]:

n = nHF + ncorr = nHF + nbound + nscatt. (17)

The bound-state contribution reads

nbound = 6
∫

K>KMott

d3K

(2π )3
g[ωb(K)], (18)

where g(ω) = 1/(eω/T − 1) is the Bose function. This term
gives the nucleon density corresponding to a Bose gas of
deuterons. The scattering-state contribution reads

nscatt = −6
∫

K>KMott

d3K

(2π )3
g[ω0(K)] − 6

∑
α= 3S1, 1S0

∫
d3K

(2π )3

×
∫ ∞

ω0(K)

dω

π

(
d

dω
g(ω)

)(
δα − 1

2
sin 2δα

)
. (19)

In Ref. [5], these equations were derived in a different
way using the optical theorem, analogously to the deriva-
tion of a similar formula for the electron-hole system in
Ref. [26].

Note that in spite of the double pole of the derivative of the
Bose function at ω = 0, the integrand in Eq. (19) has no pole.
This is because δα crosses zero at ω = 0. This simple zero is

raised to a double one due to the difference of the two terms
in the second line of Eq. (19).2

Once we have calculated the density, we can calculate the
pressure. To that end, we integrate the thermodynamic relation
n = (dP/dµ)T over µ,

P (T ,µ) =
∫ µ

−∞
n(T ,µ′)dµ′. (20)

Then we calculate the free-energy density F/V , the entropy
density S/V , and the energy density E/V from the thermo-
dynamic relations

F = −PV + µnV, S = − ∂F

∂T

∣∣∣∣
n

, and E = F + T S.

(21)

III. NUMERICAL RESULTS

A. Density and superfluid critical temperature

We calculate the total density by numerically integrating
Eqs. (18) and (19). The results for the densities at different
temperatures as functions of the chemical potential3 are
shown in Fig. 4.

Comparing the results with correlations (solid lines) with
the Gogny HF results (dashed lines), one can see that,
for a given chemical potential, the correlations increase the
densities. In the high-density region, we notice that the results
with and without correlations converge to the same value,
i.e., the correlations fade away at high density, as was to
be expected. For example, at T = 5 MeV, the two results
coincide starting from n = 0.07 fm−3. This is a consequence
of the Mott mechanism, which was discussed at length in
Ref. [5]. As mentioned previously, the critical number density
where the bound state (at K = 0) disappears is called the Mott
density. When we change the temperature from 5 to 10, 15.9,
and 20 MeV, the Mott density changes from 0.07 fm−3 to
0.12, 0.18, and 0.22 fm−3. This means that the mean-field
approximation is valid in the high-density region. Below this
region, the contribution of the nucleon-nucleon correlations is
important.

From this figure we also can see that when the temperature
is less than some critical value (T liq-gas

c = 15.9 MeV), the
number density has three values corresponding to one definite
value of chemical potential. This is a typical feature of
the liquid-gas phase transition in nuclear matter. We will
discuss this phenomenon in detail in the next section.

2Note also that the statement in Ref. [6], saying that Eq. (19) reduces
to the NSR formula for the density after integration by parts if the
term ∝ sin 2δα is omitted, is incorrect. In fact, the NSR formula
involves a derivative dδ/dµ instead of dδ/dω and therefore does not
have a pole in the integrand even if that term is omitted. The term
∝ sin 2δα cannot be identified with the contribution of the subtraction
of �(p, ξp) in Eq. (8).

3Strictly speaking, n is not a function of µ since it is not
single-valued, as will be discussed later. In practice, we generate the
curves in Figs. 4–12 by making a loop over the HF density and not
over µ.
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FIG. 4. The densities at T = 20, 15.9, 10, and 5 MeV (from left
to right) as functions of the chemical potential within Gogny HF
(dashes) and with correlations (solid line). T liq-gas

c = 15.9 MeV is the
critical temperature for the liquid-gas phase transition.

To see how large the correlation contribution to the density
is, we show the composition of the system at different
temperatures in Figs. 5 and 6. Since the density ratios are
shown as functions of the density and not of the chemical
potential, there are unique solutions even for temperatures
below T

liq-gas
c . In Fig. 5 one can see that at T = 5 MeV the

correlation contribution to the total density is important at low
density (n < n0/4). At n = 0.02 fm−3, the correlated part is
even larger than the HF part. This means that most of the
nucleons are in correlated pairs in this density region. With
increasing temperature (e.g., at T = 10 MeV as shown in
Fig. 6) the ratio of the correlated density to the total density
decreases, but the density region with sizable nucleon cor-
relations is enlarged. Here we do not separate the correlation
contribution into bound and scattering state contributions since
individually they are not very meaningful, as discussed in
Ref. [5]. For instance, if the temperature is much higher than
the deuteron binding energy, the first term of the scattering-
state contribution (19) cancels almost exactly the bound-state
contribution (18).

In the above calculation, when the temperature is below
some critical value, we get a divergence in the T matrix. This
pole corresponds to the formation of Cooper pairs at high
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FIG. 5. HF and correlation contributions to the total density ntot =
nHF + ncorr for T = 5 MeV.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.0001  0.001  0.01  0.1

n (fm-3)

T=10 MeV

nHF/ntot

ncorr/ntot

FIG. 6. Same as Fig. 5, but for T = 10 MeV.

density and to Bose-Einstein condensation of deuterons at low
density. Below this critical temperature Tc, the equations for
the density of the system are not applicable any more. In
the superfluid phase, one would have to include the nucleon
pairing gap explicitly in the single-particle Green’s function
(which then becomes a 2 × 2 matrix in Nambu-Gorkov space
[25]), which is beyond the scope of this article. However,
we can determine the critical temperature of the superfluid
transition as the temperature where the T matrix develops
a pole at zero total momentum (K = 0) and at zero energy
(ω = 0). This is the well-known Thouless criterion [27] for the
onset of superfluidity, coinciding with the BCS gap equation
when the gap  goes to zero:

1 − Jα(K = 0, ω = 0; T = Tc) = 0. (22)

From this equation we get the critical temperature as a function
of the effective chemical potential. Using the relation between
the effective chemical potential and the number density, we
obtain the superfluid region beyond the BCS (mean field)
result as shown in Fig. 7. Qualitatively, this result is similar
to the one in Ref. [6] except that we have a lower critical
temperature for the superfluid phase transition. The maximum
Tc in Ref. [6] is 7.2 MeV at n = 0.12 fm−3, while we have
Tc = 4.5 MeV at n = 0.05 fm−3. The difference stems from

 0

 1
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 0.001  0.01  0.1

T
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M
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n (fm-3)

Tc
BCS

Tc

Tc
BEC

FIG. 7. Superfluid critical temperature as a function of the (total)
density. The solid line is the full calculation, while the long dashes
correspond to the BCS result. The short dashes show the critical
temperature of Bose-Einstein condensation of a deuteron gas.
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the Gogny mean field, in particular from the effective mass,
which was neglected in Ref. [6]. One realizes that a Tc of
4.5 MeV is still very high, leading to a maximal gap of about
7 MeV, about three times as much as the maximum value
of the neutron-neutron gap in the spin singlet channel. The
reason clearly stems from the slightly stronger attraction in
the proton-neutron isoscalar channel. However, in finite nuclei
barely any enhancement of pairing in the S = 1, T = 0 channel
can be detected. Probably important screening is at work in that
channel. In nuclear matter, this was investigated in Ref. [28].
The addition of screening effects is, however, beyond the scope
of this article.

As mentioned previously, Tc as a function of µ coincides
with the BCS result. As a function of the density, the difference
between the results Tc(n) with and without correlations comes
only from the different relations for n as a function of µ.
Since the correlation contribution to the density vanishes in
the high-density region, the phase boundary coincides with
the BCS curve (long dashed line, which is obtained with
nHF only). At very low density and temperature, the main
contribution to the density comes from the deuteron bound
state, as can be seen from Eqs. (17) and (18). Close to the Bose
critical temperature, the Bose distribution function in Eq. (18)
starts to diverge and therefore dominates the whole expression
for the density. Therefore the superfluid critical temperature
at low density coincides with the critical temperature for
Bose-Einstein condensation of a deuteron gas, which is
given by

T BEC
c = π

m

(
n

6ζ (3/2)

)2/3

, (23)

(with ζ (3/2) = 2.612 . . .) and is shown as the short-dashed
line in Fig. 7.

A surprising behavior of our result is that in the density
region between 0.04 and 0.05 fm−3, Eq. (22) for the critical
temperature has three solutions for one given density. This
behavior is not easy to understand from physical intuition. It
seems to be related to the effective mass since it is absent in
Ref. [6]. Anyway, as we will show in the next section, this
density region lies inside the unstable region of the liquid-gas
phase transition.

B. Pressure and liquid-gas transition

As it was shown in Fig. 4, there is a region of densities where
the chemical potential decreases with increasing density.
This is a typical feature of a liquid-gas phase transition. To
determine the boundary of this first-order phase transition, we
need the pressure. In principle, one can get the pressure as a
function of temperature and chemical potential P (T ,µ) from
the number density n(T ,µ) by integration over the chemical
potential µ [cf. Eq. (20)]. However, since there is a first-order
phase transition, n is not a single-valued function of µ any
more. We therefore transform the integral over µ into an
integral over nHF:

P (T , nHF) =
∫ nHF(T ,µ)

0
n(T , n′

HF)
∂µ

∂n′
HF

∣∣∣∣
T

dn′
HF. (24)
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FIG. 8. The pressure as a function of density at different tem-
peratures. Solid lines: with correlations; dashed lines: mean-field
results.

Since µ is a single-valued function of nHF (see dashed line
in Fig. 4), this integral is well defined. In this way we obtain
the pressure as a function of nHF, but neither nHF nor P are
single-valued functions of µ.

If we plot the pressure as a function of the total density n in-
stead of nHF, we get the results shown in Fig. 8. Unfortunately,
we cannot calculate the pressure for T < 4.5 MeV, at least not
at densities above 0.05 fm−3, because our method to calculate
the pressure at a given density n necessitates the calculation of
all densities n′ < n, i.e., including the density n′ = 0.05 fm−3

where Tc is maximum. For comparison, we also give the results
for the pressure within the mean-field approximation (dashed
lines in Fig. 8). As it can be seen, the main effect of the
nucleon-nucleon correlations is to increase the pressure at
very low densities. However, in the case T = 5 MeV shown
in Fig. 8, the pressure at higher densities is lower than the HF
result.

Using the pressure, one can determine the coexistence
region of the liquid and gas phases of nuclear matter from
the following conditions:

P (T , n1) = P (T , n2) and µ(T , n1) = µ(T , n2). (25)

The result is shown in Fig. 9 as the thin solid line. At the same
time, we can determine the spinodal curve from the zeros of
∂P/∂n (or equivalently, of ∂µ/∂n), which is shown as the thick
solid line in Fig. 9. In the region under the spinodal curve, the
system cannot exist in a homogeneous phase. In the region
between the thin solid line and the spinodal curve, the gas
phase (left-hand part) or the liquid phase (right-hand part) can
exist as a metastable state. For comparison, the corresponding
mean-field results are presented in Fig. 9 as the dashed lines,
which coincide with Fig. 6 of Ref. [20].

Comparing the results with and without correlations, one
can see that the correlations decrease the phase-transition
temperature in the low-density region and reduce the unstable
region of the liquid-gas phase transition considerably. As
mentioned in the Introduction, this is an expected result. In
the high-density region, the effect of the correlations is almost
negligible.

We can determine the critical temperature of the liquid-gas
transition (i.e., the maximum temperature of the coexistence
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FIG. 9. The liquid-gas phase diagram as a function of density
and temperature (for T � 4.5 MeV). The thin lines are the boundary
of the coexistence region, while the thick lines are the boundary
of the spinodal region. Solid lines: with correlations; dashed lines:
mean-field results.

and the spinodal curves) from

∂P

∂n

∣∣∣∣
T

liq-gas
c

= ∂2P

∂n2

∣∣∣∣
T

liq-gas
c

= 0, (26)

see Fig. 8. In this way, we obtain T
liq-gas
c = 15.9 MeV,

which coincides with the mean-field result [19,20]. The fact
that T

liq-gas
c remains unchanged is an artifact of our present

approach to treat the correlation effects only at a perturbative
level, as explained in Sec. II. As shown in Ref. [31], the
inclusion of deuteron (and heavier) clusters should reduce
the liquid-gas critical temperature. We would have to do
the calculation more self-consistently in order to get a lower
critical temperature than the mean-field result.

In Fig. 10, the results of Fig. 7 for the superfluid critical tem-
perature Tc (lower solid line) and Fig. 9 for the liquid-gas co-
existence region (upper solid line) and the spinodal instability
region (dashed line) are combined in a single phase diagram.
As explained previously, we unfortunately cannot calculate the

 0
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FIG. 10. Phase diagram combining the boundary of the superfluid
phase (lower curve), the liquid-gas coexistence region (upper curve)
and the spinodal line (dashed curve). The reason why the spinodal
and coexistence curves end at Tc and 4.5 MeV, respectively, is not
physical, but it simply means that our model does not allow us to
compute them at lower temperatures (see text).

liquid-gas coexistence curve for T < 4.5 MeV, but extrapolat-
ing the solid curve to lower temperatures and remembering
that at T = 0 the liquid phase gets stable at saturation density,
it is clear that the coexistence curve will cross the superfluid Tc

curve at n ∼ n0, i.e., as one would expect, homogeneous nu-
clear matter with pairing is stable above this density. From the
results of Ref. [29] one can presume that the liquid-gas coexis-
tence region will be slightly reduced below the superfluid crit-
ical temperature, but this effect should be almost negligible in
the case of symmetric nuclear matter considered here [29,30].
At low densities, superfluid matter is never stable because
the superfluid Tc curve stays always below the coexistence
curve.

The spinodal curve (dashed line) can be calculated until it
reaches the superfluid region. From this we see that superfluid
nuclear matter is metastable below n ∼ 0.045 fm−3 and above
n ∼ 0.1 fm−3. Note that on the low-density side, the density
region where the gas phase is metastable is strongly increased
by the correlations, especially when we approach the super-
fluid transition temperature. This confirms our expectation
mentioned in the Introduction that the correlations have a
stabilizing effect. However, the BEC-BCS crossover lies still
in the unstable region of the liquid-gas phase transition.

C. Energy and entropy

The energy and the entropy can be obtained from the
pressure with the help of the thermodynamic relations (21).
Results for the energy per nucleon, E/A, and for the entropy
per nucleon, S/A, for different temperatures are shown in
Figs. 11 and 12. The corresponding mean-field results (dashed
lines) are also shown for comparison. The results shown in
Fig. 11 indicate that, for fixed temperature, the correlations
shift the minimum of the energy per nucleon to slightly
higher densities. Fortunately the change is very small because
otherwise we would have to readjust the parameters of the
Gogny force, which gives the right saturation density and
energy at zero temperature without correlations.

In the low-density region, where the deuterons and the
nucleon-nucleon scattering states dominate, the energy per

-15
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FIG. 11. Energy per nucleon as a function of density for different
temperatures. Solid lines: with correlations; dashed lines: mean-field
results.
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FIG. 12. Entropy per nucleon as a function of density for different
temperatures. Solid lines: with correlations; dashed lines: mean-field
results.

nucleon is lower than that the HF result. When the density is
high, the correlation effect goes to zero and the energy per
nucleon gets close to the mean-field result.

When the density approaches zero, both results go to the
classical value of an ideal gas of nucleons

lim
n→0

E/A = 3
2T . (27)

This is not surprising since even the lowest temperature
considered here, T = 5 MeV, is still much higher than the
deuteron binding energy so that almost all deuterons will
be dissociated. However, the result (27) is also found at
temperatures much lower than the deuteron binding energy.
This is because, at finite temperature, the deuterons are always
dissolved in the low-density limit. This is a consequence of
the mass-action law and can easily be understood as follows:
At low density, the chemical potential of the nucleons µ

gets strongly negative, µ � −T . The chemical potential of
the deuterons is 2µ, which is even more negative. So the
nucleon density ∝ eµ/T is much larger than the deuteron
density ∝ e2µ/T . Only at zero temperature, where the system
remains a deuteron BEC at arbitrarily low densities, the energy
per nucleon approaches −1.12 MeV (half the deuteron binding
energy) in the limit n → 0 [4].

The results for the entropy (cf. Fig. 12) have been calculated
from Eq. (21) and show that, for fixed temperature, the
entropy per nucleon decreases with increasing density. In
the zero-density limit, the entropy per nucleon increases
logarithmically, in agreement with the result for a classical
ideal nucleon gas. As is clear from the previous discussion,
the correlations do not change this asymptotic behavior. At
slightly larger values of the density, the correlations tend to
increase the entropy.

IV. SUMMARY

In this article, we discussed the effect of pair correlations
beyond the mean-field approximation in symmetric nuclear
matter above the superfluid critical temperature. We include
the effects of noncondensed pairs (deuterons) as well as the
contribution of scattering states. For the mean field, we use

the Gogny effective interaction to get the right saturation
properties of nuclear matter.

Starting from the single-particle Green’s function within
the Gogny HF approximation, we include the correlations
in a perturbative way by considering in addition to the HF
Green’s function the diagram with one self-energy insertion,
the self-energy being calculated in ladder approximation.
This approximation scheme is analogous to the well-known
NSR approach. However, to avoid double counting of the
quasiparticle energy shift that is already accounted for by
the Gogny mean field, we have to subtract the self-energy at
the quasiparticle energy. This leads finally to the same formula
for the density in terms of the in-medium scattering phase shifts
as given in Ref. [6]. We use a separable Yamaguchi potential in
order to get an analytical formula for the in-medium T matrix
and the phase shifts.

Evaluating numerically these formulas for the density, we
discussed the different density contributions in hot and dense
nuclear matter and found that the nucleon-nucleon correlations
are important in the low-temperature and low-density region
(n < n0). The correlation effect on the superfluid critical
temperature was discussed. The result interpolates between
the critical temperature for Bose-Einstein condensation at low
density and the BCS critical temperature at high density. We
found that the maximum of the superfluid critical temperature
decreases from 7.2 MeV (the value given in Ref. [6]) to
4.5 MeV when the effective mass m∗ due to the Gogny mean
field is taken into account.

Then we studied the liquid-gas phase transition in hot and
dense nuclear matter with the help of the pressure calculated
from the density. Especially at low density, we found that
the boundaries of the coexistence and spinodal regions of
the phase transition are shifted by the pair correlations. As
we expected, the stable and metastable regions of the gas
phase are strongly enlarged. In particular, near the superfluid
transition temperature, the gas phase stays metastable up
to much higher densities if the correlations are taken into
account. However, the correlations are not strong enough to
suppress the liquid-gas transition. This could have been
anticipated from the fact that the liquid-gas critical temperature
is much higher than the superfluid one [29,30]. Because of
our perturbative treatment of the correlations, the critical
temperature of the liquid-gas transition remains the same as
within the mean-field approximation.

Finally, we calculated the energy and entropy of nuclear
matter from thermodynamic relations. The nucleon-nucleon
correlations decrease the energy per nucleon in the low-density
region, but increase it at high density. For the entropy, the
correlations always give a positive contribution.

As mentioned previously, our result for the critical
temperature of liquid-gas phase transition is not affected by the
pair correlations because they are treated only perturbatively.
One should improve this by taking the correlations into
account self-consistently. Then the correlations will have
some effect on the HF field and the critical temperature will
change. The saturation point of nuclear matter, given correctly
by the Gogny interaction within the HF approximation, may
be changed, necessitating a readjustment of the parameters of
the Gogny force.
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Our equation of state is only valid for temperatures and
densities above the superfluid critical temperature. In order
to get a result that is valid in the whole temperature and
density plane, one should introduce the pairing gap  into the
single-particle Green’s functions. Some work in this direction
has been done for nuclear matter [9], and quite elaborate
theories have been developed for the BEC-BCS crossover in
ultracold atomic Fermi gases [10]. We leave this for future
study. Another important extension of the present work will be
to consider the case of asymmetric nuclear matter and neutron
matter since these are of great importance for the study of
neutron stars and their formation.
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APPENDIX: DERIVATION OF THE DENSITY FORMULAS

In this Appendix we give a more transparent derivation of
the density formulas (17), (18), and (19), which were initially
derived in Refs. [5,26]. For better readability, we will not write
out the sum over α = 3S1, 1S0 and suppress the index α in this
Appendix.

Let us recall the spectral representation of the T matrix

T (k, k′,K, ω) = V (k, k′) −
∫

dω′

π

ImT (k, k′,K, ω′)
ω − ω′ + i0

, (A1)

where ω can be real or complex. Analogous dispersion rela-
tions exist for the self-energy �(p,ω) and for the two-particle
propagator J (K,ω) defined in Eq. (13). Using Eq. (A1),
one can evaluate the frequency sum in Eq. (15), and one
obtains the well-known expression for the imaginary part of
the self-energy

Im�(p,ω) = 3

2

∫
d3p′

(2π )3
ImT (k, k,K,ω + ξp′ )

× [f (ξp′) + g(ω + ξp′)], (A2)

where k and K are the relative and total momenta as defined
below Eq. (15).

The correlation correction to the density is given by

ncorr = −4T
∑

n

∫
d3p

(2π )3

�(p, iωn) − Re�(p, ξp)

(iωn − ξp)2
. (A3)

If we use the spectral representation of �, the frequency sum
can be evaluated with the result

ncorr = −4
∫

d3p

(2π )3
P
∫

dω

π
Im�(p,ω)

f (ω) − f (ξp)

(ω − ξp)2
,

(A4)

where P denotes the principal value. Inserting Eq. (A2)
into this expression, one obtains with the help of the

relation f (ξp)f (ξp′) = g(ξp + ξp′)[1 − f (ξp) − f (ξp′)] and
after some transformations

ncorr = −6
∫

d3p d3p′

(2π )6
P
∫

dω

π
ImT (k, k,K,ω)

× [1 − f (ξp) − f (ξp′)]
g(ω) − g(ξp + ξp′ )

(ω − ξp − ξp′ )2
. (A5)

The next step is to introduce the new variable ω′ = ξp + ξp′

and to replace the integral over p′ by an integral over
ω′. Then, using the imaginary parts of Eqs. (12) and (13),
one can show that the resulting expression for ncorr can be
rewritten as

ncorr = 6
∫

d3K

(2π )3
P
∫

dω dω′

π2
Im

1

1 − J (K,ω)

× ImJ (K,ω′)
g(ω) − g(ω′)

(ω − ω′)2
. (A6)

With the help of the dispersion relations for the real parts, this
expression can be further reduced to

ncorr = 6
∫

d3K

(2π )3

∫
dω

π
g(ω)

(
Im

1

1 − J

d

dω
ReJ

− ImJ
d

dω
Re

1

1 − J

)
, (A7)

[the arguments of J (K,ω) are suppressed for brevity]. In order
to express everything in terms of the in-medium scattering
phase shifts δ = −Im ln(1 − J ), we notice that

dδ

dω
= Im

1

1 − J

d

dω
ReJ + Re

1

1 − J

d

dω
ImJ, (A8)

Im J Re
1

1 − J
= sin δ cos δ = 1

2
sin 2δ. (A9)

With these relations, Eq. (A7) can be rewritten as

ncorr = 6
∫

d3K

(2π )3

∫
dω

π
g(ω)

d

dω

(
δ − 1

2
sin 2δ

)
. (A10)

The final step is to integrate by parts over ω and to separate
in the resulting integral the contributions of ω > ω0(K)
(scattering-state contribution nscatt) and ω < ω0(K) (bound-
state contribution nbound). The latter reduces to Eq. (18)
since the phase shift below threshold is (see also Fig. 7 of
Ref. [1])

δ[K,ω < ω0(K)] =
{

0, if K < KMott,

πθ (ω − ωb(K)), if K > KMott.

(A11)
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(1995).

[7] A. Rios, A. Polls, A. Ramos, and H. Müther, Phys. Rev. C 78,
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