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� hypernuclear production in (K−
stop, π ) reactions reexamined
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Distorted-wave impulse approximation calculations of � hypernuclear production rates in stopped
K− reactions on several p-shell targets used recently in experiments by the FINUDA Collaboration
are reported. Chirally motivated K−N → π� in-medium transition amplitudes are employed, and the
sensitivity of the calculated rates to the initial K−-atomic wave functions and final pion distorted waves is
studied. The calculated rates are compared with measured rates, wherever available, which confirm earlier
observations that (i) the calculated rates are generally lower than the measured rates, and (ii) the deeper
the K−-nuclear potential, the worse the discrepancy. The A dependence of the calculated 1s� production
rates is discussed, providing a useful tool to resolve the issue of depth of the K−-nuclear potential near
threshold.
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I. INTRODUCTION

� hypernuclear production in (K−
stop,π ) reactions, in which

the final state is uniquely identified by measuring the outgoing
pion momentum, was reported for the first time in stopped
K− experiments at CERN in 1973 [1] and more recently in
experiments at KEK [2], BNL [3] and at DA�NE, Frascati,
by the FINUDA Collaboration [4–6]. On the theoretical side,
several distorted-wave impulse approximation (DWIA) calcu-
lations of (K−

stop,π ) hypernuclear production rates have been
reported [7–11], but none of them led to satisfactory agreement
with the measured rates.1 In general, these calculated capture
rates fall below the experimentally reported rates, with the
exception of the old CERN data for 12C [1].

The present paper primarily covers the production of 7
�Li,

9
�Be, 12

� C, 13
� C, and 16

� O, for all of which preliminary data have
recently been reported [6]. We focus on the A dependence of
the calculated rates, hitherto not explored systematically, to
look for further tests of the role played by initial- and final-
state interactions. In conjunction with previous calculations,
we use the DWIA. Several K−-nuclear optical potentials
are used to generate the required initial-state K−-atom wave
functions (w.fs.), and several pion nuclear optical potentials
are used to generate final-state pion distorted waves (DWs).
The underlying K−N → π� reaction amplitude is studied in
free space, as well as in the nuclear medium, within the chiral
Lagrangian framework [10,12–18] to generate in-medium
branching ratios (BRs) for stopped K− reactions. Past works
[8–10] used BRs extrapolated from emulsion experiments [19].
We compare results obtained in both approaches.
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1Reference [11] is a preliminary conference version, which is

outdated by the present paper.

The present paper is organized as follows. The capture at
rest DWIA formalism is outlined in Sec. II. The choice of the
microscopic chiral model for K−N → πY reactions at rest,
together with the BRs derived in this model and the input w.fs.
to the DWIA calculations, are specified in Sec. III. Results
of � hypernuclear production rate calculations for stopped
K− reactions are presented and are discussed in Sec. IV, with
a brief conclusion given in Sec. V.

II. CAPTURE AT REST CALCULATIONS

We study the reaction,

K− + A(i) −→ π−τ−1/2 + H (f ), (1)

in which a K− meson is captured on a target nucleus denoted
as A in its ground state i, from an atomic orbit nL into a
final state f of a � hypernucleus H plus an outgoing pion.
The superscript −τ − 1/2 denotes the pion charge (τ = ±1/2
for π− and π0, respectively). We follow the capture at rest
calculation formalism detailed in Ref. [8]. In the DWIA,
the nuclear reaction Eq. (1) is induced by the one-baryon
transition,

K− + N −→ π−τ−1/2 + Y, (2)

on a nucleon N to a hyperon Y , with the in-medium T matrix
assumed here to be of the s-wave type:

Tf i(qf ) =
N∑

j=1

〈f |tj (qf )|i〉 = t(qf )ρDW
f i (qf ). (3)

The charge indices are omitted for simplicity, and the DW
transition form factor is given by

ρDW
f i (qf ) =

∫
d3r χ (−)∗

qf
(r)ρf i(r)�nLM (r), (4)

where ρf i stands for the nuclear-to-hypernuclear transition
matrix element. The K−-atomic w.f. �nLM is obtained by
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solving the Klein-Gordon equation with a K−-nuclear strong
interaction optical potential V K

opt added to the Coulomb
potential VC generated by the nuclear charge distribution
plus vacuum polarization. The dependence on the magnetic
quantum number M was suppressed on the left-hand side of
Eq. (4). The pion DW χ

(−)
qf

in the final state is given in terms
of a partial-wave expansion:

χ (−)∗
qf

(r) =
∑

�

(−i)�(2� + 1)j̃�(r)P�(q̂ · r̂). (5)

The radial w.f. j̃�(r), which reduces to the spherical Bessel
function j�(qr) for a free pion, solves the Klein-Gordon
equation with the pion-nuclear optical potential plus the
appropriate electromagnetic potential for a charged pion.

The nuclear capture rate per stopped K− in the reaction
Eq. (1) is given by

Rf i/K
− = qf ωf

q̄f ω̄f

R(K−N → π�)

∫
d
qf

〈∣∣ρDW
f i (qf )

∣∣2〉
4πρ̄N

,

(6)

where the fractions R(K−N → π�) are the elementary BRs
for mononucleonic K− absorption at rest in the nuclear
medium. The brackets 〈· · ·〉 mean that the absolute square of
the DW transition form factor is to be averaged on the initial
states and summed over the final ones. The kinematical factor
in front of R in Eq. (6) appears because of transformation
of the two-body scattering amplitude, which describes the
elementary reaction Eq. (2), into the many-body center-of-
mass frame. The momentum qf of the outgoing pion is
determined by energy conservation, and ωf stands for the
reduced energy in the final state,

ω−1
f = E−1

π (qf ) + E−1
H (qf ),

ωf −→ Eπ (qf ) for A → ∞, (7)

where q̄f , ω̄f are appropriately averaged in-medium quanti-
ties. Finally, ρ̄N denotes the effective nuclear density available
to the K− capture process,

ρ̄N =
∫

ρN (r)|RnL(r)|2r2 dr, (8)

where the nucleon density ρN and the K−-atomic radial w.f.
are normalized according to∫

ρN d3r = N ,

∫
|RnL(r)|2r2 dr = 1, (9)

where N denotes the number of neutrons or protons for τ =
±1/2, respectively.

The last factor on the right-hand side of Eq. (6),

Rf i/Y =
∫

d
qf

〈∣∣ρDW
f i (qf )

∣∣2〉
4πρ̄N

, (10)

is loosely termed the capture rate per hyperon Y because its
derivation assumes that the capture reaction Eq. (2) is the only
one available. It can be decomposed into contributions, which
correspond to transitions with multipolarity k from a given
nNlN nuclear shell to a given nY lY hypernuclear shell, in the

following form [8]:

Rk
nN lN →nY lY

= N (nNlN )
(2k + 1)(lN 0 k 0 | lY 0)2Nk

nY lY ,nN lN

4πρ̄N

.

(11)

Here, N (nNlN ) is the neutron (proton) occupation number
of the target nuclear shell for τ = +1/2(−1/2), the Clebsch-
Gordan coefficient squared accounts for the conservation of
angular momentum and parity, and the entities

Nk
nY lY ,nN lN

=
∑

�

(L 0 k 0 | � 0)2
∣∣I �

nY lY ,nN lN

∣∣2
(12)

are the appropriate averages of the absolute squares of the
DWIA amplitudes,

I �
nY lY ,nN lN

=
∫ ∞

0
dr j̃�(r)u∗

nY lY
(r)unN lN (r)RnL(r), (13)

where unBlB (r)/r are the radial parts of the one-baryon w.fs.
Equations (11)–(13) assume that the DWIA capture rate
calculation does not depend on the total angular momenta
jB = lB ± 1/2 for the orbits in question. This was justified by
the numerical calculation performed in Ref. [8], where more
general formulas for the dependence on jB can be found as
well, and is checked later in the present paper.

III. INPUT

In this section, we specify the entities that are needed to
perform numerical calculations of nuclear capture rates. First,
we outline the model used for the one-baryon capture process
Eq. (2). Subsequently, we specify the baryon and meson
nuclear potentials chosen to generate initial- and final-state
w.fs. for use in the evaluation of the DWIA amplitudes Eq. (13)
that serve as input to nuclear capture rate calculations.
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FIG. 1. Calculated BRs R(K−N → π�) as a function of the
nuclear density for capture on neutrons (solid curve) and on protons
(dashed curve).
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TABLE I. R(K−N → π�) BRs (in units of 10−2).

BR BR1 BR2 BR3 [19]

R(K−N → π�) ρ = ρ0/2 ρ = 0 12C 16O

R(K−n → π−�) 10.54 9.68 8.7 7.7
R(K−p → π 0�) 5.27 4.84 4.4 3.9

A. K− N → π� branching ratios

For the calculation of BRs R(K−N → π�) of the one-
baryon capture process Eq. (2), we adopted the effective
potential model based on chiral symmetry, as described in
detail in Refs. [12,13,16–18]. The required BRs are obtained
in coupled-channel calculations that include ten meson-baryon
channels coupled to the K−p system [16,17]. We also take the
effects of Pauli blocking and kaon self-energy in the nuclear
medium into account [10,13,18]. The dependence of the
calculated BRs on the nuclear density is demonstrated in Fig. 1
as a function of the fractional nuclear density ρ/ρ0, where
ρ0 = 0.17 fm−3 is the nuclear-matter density. Although the
central nuclear density varies along the periodic table roughly
in the range 0.14–0.22 fm−3, the BRs shown in the figure do
not change much over this range of densities. Therefore, the
precise dependence on ρ may be neglected, and we assume
that the K−N → π� capture reaction takes place at a proton
(or neutron) density ρ = ρ0/2. For further applications, we
denote the BRs obtained at nuclear density ρ = ρ0/2 by BR1,
and we denote the BRs obtained in vacuum by BR2.

The use of a microscopic model for the K−N → π� BRs
is one of the novelties of the present paper. Past works used
BRs derived indirectly by extrapolating from measurements
performed in carbon and freon emulsions [19], a procedure
that is prone to systematic errors. We use these emulsion BRs
(labeled here as BR3) to compare with BRs obtained from
our microscopic chiral model. This is shown in Table I, where
the maximum difference between the various BRs (BR1, BR2,
and BR3) is as large as 30%. However, this variation is still
small compared to other effects discussed as follows. The ratio
of 1/2 for BRs on a proton to BRs on a neutron follows from
charge independence, which is implemented by conserving
isospin in our model for K−N → π�.

B. wave functions

To perform the numerical calculation of the DWIA integrals
I �
nY lY ,nN lN

Eq. (13) and ρ̄N Eq. (8), w.fs. of the initial kaon
and nucleon and of the final hyperon and outgoing pion are
needed. These w.fs. are generated by solving the respective
wave equations with fitted potentials.

1. K− wave functions

For the kaon w.f., we use the Klein-Gordon equation
with a potential, which consists of two parts, the finite-size
Coulomb potential plus first-order vacuum polarization correc-
tions, and the strong-interaction optical potential parametrized
phenomenologically by the form [20]:

V K
opt(r) = − 4π

2µK

(
1 + µK

MN

) {
b + B

[
ρ(r)

ρ(0)

]ν}
ρ(r).

(14)

Here, µK stands for the kaon-nucleus reduced mass, MN is the
nucleon mass, and ρ(r) denotes the nuclear density normalized
to the number of nucleons A. We use three different parameter
sets for the kaon-nucleus optical potential, as specified in
Table II. In the last column of the table, for orientation, we
show the approximate depth of the strong-interaction (real
part) potentials at nuclear density ρ = ρ0 = 0.17 fm−3.

The meson-nuclear optical potential is often expressed by
an effective scattering length multiplied by the nuclear density.
Thus, the parameter b for the potential [Kχ ] represents the
average of the K−n and K−p scattering lengths in the nuclear
medium computed by using the chiral model discussed in
Sec. III A. The values of parameter sets for potentials [Keff]
and [KDD] were fitted to reproduce a large set of kaonic atom
data by Friedman et al. [20]. For B = 0, the potential reduces
to the standard effective [Keff] parametrization of the optical
potential. The potential [KDD] explicitly exhibits a substantial
density dependence, which may be related to the dynam-
ics of the �(1405) resonance submerged into the nuclear
medium [20].

For the targets considered in the present paper, the relevant
K−-atomic orbits are represented by the 2P (L = 1) and 3D

(L = 2) states. These are the lowest L orbits observed in the
X-ray cascade and are sufficiently close to the nucleus for
capture to occur significantly. The calculations were performed
separately for each of these orbits, and a weighted average was
then taken according to Batty’s analysis of the atomic cascade
process [21]. The relative populations of these L = 1, 2 atomic
orbits (summed over n) are listed in Table III.

2. Baryon wave functions

The w.fs. of nucleons and hyperons were computed numer-
ically as bound states in a Woods-Saxon potential,

V (r) = − V0

1 + exp (r − R)/a
, R = r0A

1/3, (15)

with geometry fixed by setting a = 0.6 fm and r0 = 1.25 fm.
The potential depth V0 was adjusted separately for each baryon

TABLE II. Parameters of the K− nuclear optical potential Eq. (14).

Potential b (fm) B (fm) ν Re V K
opt(ρ = ρ0) (MeV)

[Kχ ] 0.38 + 0.48i 0 0 −50
[Keff ] 0.63 + 0.89i 0 0 −80
[KDD] −0.15 + 0.62i 1.65 − 0.06i 0.23 −190
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TABLE III. Relative population of K−-atomic orbits [21].

Orbit 7Li 9Be 12,13C 16O

P 0.76 0.49 0.23 0.18
D 0.24 0.51 0.77 0.82

state so that the corresponding binding energy was reproduced;
see Ref. [22] for a compilation of � hypernuclear binding
energies.

3. Pion distorted waves

The pionic optical potential is taken to be of the standard
form [23], often used in the analysis of pionic atoms and
pion-nuclear scattering:

− 2µπ

4π
V π

opt =
(

1 + mπ

MN

)
b0ρ(r) +

(
1 + mπ

2MN

)
B0ρ

2(r)

−∇ α(r)

1 + 4π
3 ξα(r)

∇,

(16)

α(r) =
(

1 + mπ

MN

)−1

c0ρ(r)

+
(

1 + mπ

2MN

)−1

C0ρ
2(r).

Here, µπ stands for the pion-nuclear reduced mass, mπ and
MN are the pion and nucleon masses, and ρ(r) denotes the
nuclear density normalized to the number of nucleons A.
Calculations were performed with a free (plane-wave) pion
and with two different parameter sets for the pion-nuclear
optical potential. These potentials were fitted to low-energy
scattering data [24,25], and their parameters are listed in
Table IV.

IV. RESULTS AND DISCUSSION

Here, we present the results of calculations of K− capture
rates for � hypernuclear production on p-shell targets and
discuss their sensitivity to various inputs. It was assumed in
these calculations that capture to the low-lying � hypernuclear
bound states, or resonances, occurs only through baryon transi-
tions 1pN → 1s� and 1pN → 1p� from the 1pN valent shell
to the 1s� and 1p� single-particle (s.p.) states, respectively,
in the final hypernucleus. Since the experimental data on
light hypernuclei often do not indicate distinct hypernuclear
s.p. structure for the 1p� configuration, we considered
the production of 1p� states only beginning with A = 12.
Furthermore, we note that the multipolarity k in Eqs. (11) and
(12) is limited to k = 1 (1− transition) for the 1pN → 1s�

capture process, whereas two values k = 0, 2 are allowed
in the 1pN → 1p� capture process (0+, 2+ transitions).
The number of valence nucleons N (1pN ), which contribute
to the capture rates Eq. (11) is 2, 3, 4, 5, and 6 (neutrons) in the
(K−

stop, π
−) reaction for target nuclei 7Li, 9Be, 12C, 13C, and

16O, respectively.

A. Sensitivity tests

1. Baryon wave functions

To test the sensitivity of our results to the baryon w.fs.
generated by Woods-Saxon potentials Eq. (15), we calculated
the capture rates for the production of 12

� C (in both the 1s�

and 1p� states) for a modified geometry of the Woods-Saxon
potential. Specifically, we used A = 11, 13 instead of A = 12
in Eq. (15). The difference in capture rates was less than 10%.
We also varied the depth of the Woods-Saxon potential and
checked that its variation by about 10% leads to a less than 5%
difference in the capture rates. In general, realistic variations
of the baryon w.fs. have a relatively small impact (less than
10%) on the calculated capture rates.

A further sensitivity test is demonstrated here for the
16O target. Table V lists capture rates per hyperon, Eq. (11) per
one p-shell neutron [N (nNlN ) = 1], obtained for a neutron in
each one of the nuclear 1pj subshells (with binding energies,
which differ roughly by 6 MeV), for a 1s� hyperon with
binding energy given by the � separation energy in the
hypernuclear ground state and for each one of the 2P and
3D K− orbits. Except for the case of 2P and [Kχ ], switching
from 1p1/2 to 1p3/2 makes little difference, in agreement with
the assumption that the relevant entities depend only weakly
on the total angular momenta jB = lB ± 1/2. However, the
2P orbit contribution is considerably weaker than that of the
3D orbit contribution in 16O (see also Table III). Hence, this j

dependence is negligible for the K− [Kχ ] potential, whereas
it amounts to approximately a 10% effect for the K− [KDD]
potential.

2. K− capture branching ratios and wave functions

We start by discussing the sensitivity of the calculated
capture rates to the choice of BRs for the K−N → π�

capture process. In Fig. 2, we show the capture rate per
stopped kaon Eq. (6) calculated for the production of 12

� C
in the 1s� state for the K−-nucleus potential [Keff] and the
pion-nucleus potential πc. We recall that BR1 and BR2 come
from our chiral microscopic model, whereas BR3 is derived
from emulsion experiments. It is seen that all the calculated
rates are quite close to each other but are significantly lower
than the experimental data [2]. Since the difference between
capture rates, which corresponds to various K−N → π� BRs

TABLE IV. Parameters of the pionic optical potential Eq. (17).

Potential b0

[
m−1

π

]
B0

[
m−4

π

]
c0

[
m−3

π

]
C0

[
m−6

π

]
ξ

πb 0.268 + 0i 0 0.036 + 0.206i 0 − 0.203i 1.4
πc 0.010 + 0.437i 0 0.047 + 0.222i 0 0
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TABLE V. Capture rates per hyperon and per one p-shell
neutron (in units of 10−4) calculated for different j orbits
assumed for 1p-shell neutrons in 16O, see text.

K− orbit [Kχ ] [KDD]

(1p1/2)n (1p3/2)n (1p1/2)n (1p3/2)n

2P 1.23 1.43 0.33 0.37
3D 2.64 2.67 0.66 0.72

is relatively small (30% at most) compared to uncertainties
caused by other effects (K−-nucleus or π -nucleus potential),
in this paper, we present results based exclusively on BR1
values, which correspond to a well-controlled in-medium
chiral calculation.

The sensitivity to the K− w.fs. for a given pion-nucleus
potential (πb) is demonstrated in Fig. 3, which shows calcu-
lated capture rates for the 1s� state of 12

� B. with respect to
the measured rate [3] (figures for other targets look similar).
The calculated rates are presented in order of increasing depth
of the K−-nucleus optical potential used to generate the kaon
w.f., from a purely electromagnetic potential (zero depth) to the
density-dependent potential [KDD] (−190-MeV depth). The
calculated capture rate appears to be a decreasing function of
the K−-nucleus potential depth.

3. Pion distorted waves

Figure 4 shows the dependence of the capture rate on the
choice of the pion-nucleus potential for the formation of 16

� O
in the 1s� configuration, which consists of two separate peaks
roughly of structure (np−1

1/2�s1/2) and (np−1
3/2�s1/2) for the

1− ground state and the 6-MeV first excited 1− state [2].
One notes that pion distortion plays an important role. The
difference between the results obtained with and without pion
distortion is enormous. On the other hand, both pion optical
potentials considered here lead to quite similar capture rates.
The resulting rate for potential πc is just a little smaller than
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FIG. 2. Sensitivity of calculated 1s� capture rates per stopped K−

in 12C → 12
� C to K−n → π−� BRs, with respect to the measured

summed 1s� capture rate [2].
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FIG. 3. Sensitivity of calculated 1s� capture rates per stopped
K− in 12C → 12

� B to K− w.fs., with respect to the measured summed
1s� capture rate [3].

the result for potential πb, with values 0.154 × 10−3 (πc) and
0.219 × 10−3 (πb), to be compared with a measured summed
1s� capture rate of 0.43 ± 0.06 [2].

B. Selected results

1. 1s� capture rates

The capture rates calculated for the summed production
of 1s� states in (K−

stop, π
−) reactions throughout the nuclear

p shell are assembled in Table VI. We only show results
obtained with pion-nucleus potential πb and with kaon-nucleus
potentials [Kχ ] and [KDD], which represent the two main
directions for how the K−-nucleus interaction is treated at
present. It appears that the 1s� capture rate is a decreasing
function of A throughout the nuclear p shell, with a rate
of decrease which depends sensitively on the depth of the
K−-nucleus potential. The ratio of 1s� capture rate in 16O to
that in 7Li is 2.66 for [Kχ ] and 5.27 for [KDD]. Put differently,
the ratio of rates related to the K− relatively shallow chiral
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FIG. 4. Sensitivity of calculated 1s� capture rates per stopped K−

in 16O → 16
� O to pion DWs, with respect to the measured summed

1s� capture rate [2].
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TABLE VI. Calculated capture rates (in units of 10−3)
for the summed 1s� production (1− transitions) in p-shell
nuclei, by using two variants for the K−-atomic w.fs.

K− potential 7
�Li 9

�Be 12
� C 13

� C 16
� O

[Kχ ] 0.583 0.464 0.425 0.268 0.219
[KDD] 0.290 0.245 0.125 0.066 0.055

potential to rates related to the K− relatively deep [KDD]
potential increases throughout the p shell, from approximately
2 for lithium up to about 4 for oxygen. This trend is caused
by the node structure of the atomic w.fs. used in the DWIA
amplitudes Eq. (13). Whereas in 7Li, the atomic 3D w.fs. are
nodeless within the nucleus, and the suppression of the rate
for [KDD] with respect to [Kχ ] is caused by a node in (the real
part of) the [KDD] 2P w.f., in 16O the [KDD] 3D w.f. too has
a node within the nucleus, which leads to further suppression
with respect to the rate calculated for the [Kχ ] nodeless 3D

w.f. Nodes of atomic w.fs. within the nucleus are linked to the
existence of quasibound K−-nuclear states [26]. The deeper
[KDD] potential generates such L = 1 quasibound nuclear
states throughout the p shell and L = 2 states beginning with
the carbon isotopes, whereas the shallower [Kχ ] potential
has L = 1 states which only begin with the carbon isotopes
and no L = 2 quasibound nuclear states throughout the
p shell.

We note the relatively sizable drop of the calculated 1s�

capture rates in going from 12C to 13C. To identify its origin, we
analyzed the impact of each one of the w.fs., which appear in
the DWIA amplitude Eq. (13) in the carbon region (except for
the remarkably stable 1s� w.f.) on the most important |I �

1s,1p|2
contribution. This procedure is demonstrated in Table VII
where by starting with 12C related K−, π−, and neutron w.fs. in
the first row, we successively replaced them by 13C related w.fs.
as specified in the first column of rows 2–4. The replacement
of the K− w.f., in particular, is seen to have a small effect for
the [Kχ ] chiral potential w.f., but a large effect for the [KDD]
w.f. The successive replacement of other w.fs., particularly the
oscillating pion DW, leads to further suppression for both [Kχ ]
and [KDD].

In Table VIII, we show the variation of the effective nuclear
density Eq. (8), which appears in the denominator of Eq. (11)
for the capture rate. The resultant effect is considerably
more moderate than for the [KDD] DWIA amplitude listed
in Table VII, simply because the two components of the ρ̄N

TABLE VII. Variation of the most dominant |I �
1s,1p|2

contribution Eq. (13) for L = 2 and pion DWs (πb) (in units
of 10−12) upon going from 12C to 13C.

Path of variation |I 3
1s,1p|2([Kχ ]) |I 1

1s,1p|2([KDD])

12C 3.92 1.44
+ Kaon w.f. 3.90 0.74
+ Pion w.f. 2.77 0.51
+ Neutron w.f. = 13C 2.70 0.42

TABLE VIII. Variation of ρ̄N Eq. (8) for L = 2 (in units
of 10−10) upon varying the 12C and 13C input.

K−(C) [Kχ ] [KDD]

ρN (12C) ρN (13C) ρN (12C) ρN (13C)

K−(12C) 2.47 2.88 3.41 3.98
K−(13C) 2.55 2.97 2.80 3.27

integrand are each positive definite and are less sensitive to
the position of nodes in the [KDD] 3D atomic w.f. The net
outcome of the variations studied in Tables VII and VIII is a
considerably smaller capture rate for 13C than for 12C, at least
for [KDD]. For [Kχ ], the reduction appears weaker (it is more
effective in some of the other |I �

1s,1p|2 contributions not shown
here).

2. 1 p� capture rates

Calculated capture rates for the 1pN → 1p� 0+ and 2+
transitions [see Eq. (11)] are presented in Table IX for 12C
and 16O targets. For completeness, we also included the
1pN → 1s� 1− transition discussed in Sec. IV B1 and added
experimental rates from KEK [2] and BNL [3]. Here, the
reason for choosing KEK over CERN [1] and FINUDA [4]
is that for 12

� C production, the KEK [2] rates are the closest to
the isospin factor 2 expected in getting these rates from the 12

� B
rates, which were measured only at BNL [3].2 Of course, if
further (K−

stop, π
0) experiments are done on 12C, which would

lead to different results from those of Ref. [3], one’s preference
might change accordingly.3 Similar to the summed 1s� rate
discussed in Sec. IV B1 the summed 1p� rate for the deep
potential [KDD] is smaller by a factor of 3 to 4 than for the
relatively shallow potential [Kχ ]. By excluding the old CERN
data [1], the calculated 1p� capture rates are generally smaller
than the experimentally reported rates, with the exception that
the [Kχ ] rates for 12

� B are larger than the reported rate [3]. Since
the 1p� spectral strength is partly mixed into the (K−

stop, π )
quasifree continuum, and its extraction from the measured
spectra is considerably more ambiguous than the extraction of
the summed 1s� production rate, we do not proceed further
to confront theory with experiment for the summed 1p�

production rate.

V. CONCLUSION

We performed DWIA (K−
stop,π ) calculations for p-shell

targets, using several K− and pion w.fs. to test the sensitivity of
the calculated hypernuclear capture rates on the choice of these
w.fs. The calculated capture rates are generally smaller than

2The reported summed 1s� capture rate in 12
� C varies from (0.2 ±

0.1) × 10−3/K− [1] to (1.86 ± 0.14) × 10−3/K− [4].
3The ratio of the calculated 1s� capture rate to 12

� C over that of 12
� B

is largely caused by the ratio of the K−N → π� BRs, which, in
the limit of good isospin, is 2. A slight departure from this ratio is
caused by charge-dependent effects in our calculation, notably from
the outgoing pion DWs.
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TABLE IX. Calculated capture rates per stopped K− (in units of 10−3) for production of 1s�

states (1− transition) and 1p� states (0+ and 2+ transitions) and selected experimental rates.

Transition Input 12
� B [3] 12

� C [2] 16
� O [2]

1− [Kχ ] 0.203 0.425 0.219
[KDD] 0.060 0.125 0.055

Experimental rates 0.28 ± 0.08 0.98 ± 0.12 0.43 ± 0.06
0+ [Kχ ] 0.096 0.216 0.134

[KDD] 0.011 0.021 0.020
2+ [Kχ ] 0.547 1.052 0.872

[KDD] 0.192 0.410 0.330
0+ + 2+ [Kχ ] 0.643 1.268 1.006

[KDD] 0.203 0.431 0.350
Experimental rates 0.35 ± 0.09 2.3 ± 0.3 1.68 ± 0.16

the measured ones; the deeper the K− potential, the smaller is
the capture rate. Since the absolute normalization of capture
at rest experimental rates is a delicate matter, we suggest to
focus on the A dependence of the measured rates, expecting
it to be largely free of the absolute normalization of the data.
The calculated capture rates for a given K− optical potential
decrease as a function of A, with the fractional difference
between the rates calculated for the two extreme K− optical
potentials, the shallow [Kχ ] and the deep [KDD], increasing
steadily with A. We find other dependencies of the calculated
capture rates to be secondary to the dependence on the K−-
atomic w.f. in the range studied here. We argue that a dedicated

experimental study of 1s� capture rates in p-shell targets,
such as reported recently by the FINUDA Collaboration in a
preliminary form [6], could yield useful information on the
depth of the threshold K− optical potential by comparing
the measured A dependence with the A dependence of the
calculated capture rates listed in Table VI.
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