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The mechanism of incoherent π 0 and η photoproduction from complex nuclei is investigated from 4 to
12 GeV with an extended version of the multicollisional Monte Carlo (MCMC) intranuclear cascade model.
The calculations take into account the elementary photoproduction amplitudes via a Regge model and the
nuclear effects of photon shadowing, Pauli blocking, and meson-nucleus final-state interactions. The results
for π 0 photoproduction reproduced for the first time the magnitude and energy dependence of the measured
rations σγA/σγN for several nuclei (Be, C, Al, Cu, Ag, and Pb) from a Cornell experiment. The results for η

photoproduction fitted the inelastic background in Cornell’s yields remarkably well, which is clearly not isotropic
as previously considered in Cornell’s analysis. With this constraint for the background, the η → γ γ decay width
was extracted using the Primakoff method, combining Be and Cu data [�η→γ γ = 0.476(62) keV] and using Be
data only [�η→γ γ = 0.512(90) keV]; where the errors are only statistical. These results are in sharp contrast
(∼50–60%) with the value reported by the Cornell group [�η→γ γ = 0.324(46) keV] and in line with the Particle
Data Group average of 0.510(26) keV.
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I. INTRODUCTION

The possibility of extracting the radiative decay width of
pseudoscalar mesons (P ≡ π0, η, and η′) into two photons
(�P→γ γ ) using photoproduction data from complex nuclei was
first proposed by H. Primakoff in 1951 [1]. The method allows
the determination of the decay width by the disentanglement
of the electromagnetic component of the meson angular dis-
tributions at forward angles. The procedure requires a detailed
understanding of the relevant photoproduction channels, since
the mesons can also be produced in the strong field of complex
nuclei either coherently or incoherently. The nuclear coherent
photoproduction is satisfactorily described under the integral
formalism developed by Glauber [2] and will not be discussed
in this work, which is dedicated to the incoherent part only.

Using the impulse approximation (IA) and assuming
closure, the nuclear incoherent photoproduction cross section
can be expressed in terms of single nucleon amplitudes, as ele-
gantly presented in Ref. [3]. The photoproduction mechanism
is caracterized by an excited nucleus in the final state with
or without the nuclear breakup. Such complicated mechanism
depends very critically on the initial photoproduction channel,
as well as on the nuclear effects. The calculation of the
nuclear amplitude for incoherent photoproduction can also
be performed under the context of the Glauber model [2]. The
main advantage of the Glauber approach is that the integral
formalism allows the derivation of analytical and general
expressions for the incoherent photoproduction cross section,
as recently proposed by S. Gevorkyan et al. [4]. However, as
discussed further in this article, the Glauber approach has some
limitations to account for short-range correlations in secondary
meson-nucleon scatterings, local density fluctuations, and

energy losses due to the nuclear excitation and meson-nucleus
final-state interactions (FSI). Moreover, the Glauber formalism
has some restrictions for the implementation of nuclear struc-
ture aspects of light nuclei, such as the momentum distribution
(MD) of the bound nucleons. Consequently, a completely
new approach based on a sophisticated multicollisional Monte
Carlo (MCMC) intranuclear cascade model is proposed here
to improve the description of incoherent photoproduction. As
will be presented later, the cascade model couples for the
first time an accurate description of the initial photon-nucleon
interaction based on a Regge model with important nuclear
effects relevant in high-energy photon-nucleus interactions.
The comparison between our results for π0 photoproduction
with the recent results from Ref. [4] will be presented in
Sec. IV.

Except the Glauber model, the calculations developed so
far for incoherent π0 and η photoproduction from complex
nuclei have been usually concentrated within the nucleon
resonances. For instance, the cross section for incoherent η

photoproduction up to ∼1 GeV is dominated by the S11(1535)
resonance excitation due to its large branching ratio decay
into the Nη channel. Similarly, for the case of incoherent
π0 photoproduction most of the theoretical predictions have
been provided up to ∼1 GeV, following the general tendency
of recent experiments performed at the Mainz Microtron
Facility [5,6]. The meson-nucleus FSI have been taken into
account using optical potentials [7], classical propagation
between meson-nucleon collisions [8], the quantum molecular
dynamics (QMD) model of Ref. [9], or the Boltzmann-
Uehling-Uhlenbeck (BUU) transport model [10]. All of these
theoretical contributions have specific features not discussed
in this article and represent important developments for the
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investigation of meson photoproduction within the nucleon
resonances. On the other hand, the calculations include only
a limited number of photoproduction channels and are not
supposed to describe incoherent photoproduction at forward
angles and higher energies (4 to 12 GeV), the aim of this
work.

The radiative decay width of the neutral pion (�π0→γ γ )
has been subject to intense experimental and theoretical
efforts since the advent of the PrimEx Collaboration at the
Jefferson Laboratory [11]. Recent calculations based on chiral
perturbation theory (ChPT) [12–14] showed a typical 4%
enhancement in the decay width compared with the axial
anomaly prediction [15]. Such increase was most likely
dominated by the isospin-breaking–induced mixing of the
pure SU(3) states η and ή. Another correction of a much
smaller magnitude to the leading order π0 → γ γ amplitude
was attributed to excited mesonic states using QCD sum rules
[16]. The connection between the π0 and η radiative decay
widths is evident since the latter is a necessary input to obtain
the former beyond the chiral anomaly prediction [12–14,16].
Consequently, more accurate measurements of the η → γ γ

decay width are also strongly encouraged with the forthcoming
12-GeV upgrade at the Jefferson Laboratory. Obviously, this
renewed interest in the Primakoff method also requires a
detailed understanding—proposed in the present work—of the
incoherent background both for π0 and η photoproduction up
to 12 GeV.

The η → γ γ decay width has been measured in collider
experiments [17–22] and also using the Primakoff method at
Cornell [23]. There is also another Primakoff-type experiment
[24], but the uncertainty from the separation of the Coulomb
and nuclear contributions was probably underestimated. The
collider measurements are in overall agreement, while the
Primakoff-type measurement from Cornell is significantly
lower [0.324(46) keV] and was recently excluded from the
Particle Data Group (PDG) world average of 0.510(26) keV
[25]. This huge discrepancy between Cornell’s and collider
measurements provided strong evidence of an inadequate
analysis of the inelastic background embedded in the η

photoproduction yields from Cornell.
As we have shown in a recent Letter [26], the inelastic

background in Cornell’s data for η photoproduction from Be
and Cu at Eb = 9 GeV could be safetly attributed to the
nuclear incoherent (NI) cross sections obtained via the MCMC
model. On the other hand, such contribution is largely Pauli
suppressed at forward angles and cannot be approximated
by an isotropic distribution; a procedure adopted in Cornell’s
analysis. The decay width extracted by fitting Cornell’s data
with the MCMC NI background is 0.476(62) keV, where
the quoted error is only statistical. Therefore, our previous
work [26] brought the η → γ γ decay width from Cornell
in line with collider measurements, despite the fact that we
have neglected the experimental systematic errors. It is worth
mentioning, however, that our reanalysis is not supposed to
supersede Cornell’s measurement; a next-generation high-
precision experiment is recommended for this purpose. The
goal of our calculation was the delineation of the incoherent
background, a necessary condition to support the Primakoff
method in future measurements of the η → γ γ decay width.

The details of our previous analysis [26] will be presented in
Sec. IV.

The MCMC model consists of a relativistic and time-
dependent Monte Carlo algorithm that describes the dynamics
of an excited nuclear ensemble in terms of successive and time-
ordered binary collisions. The photoproduction mechanism is
described via a two-step process: (i) meson photoproduction
from a single nucleon (IA) and (ii) meson-nucleus FSI via
a cascade approach. An earlier version of the MCMC model
[27] has been successfully applied for the interpretation of
recent data of incoherent π0 photoproduction from MAMI
[5]. Another version [28] also investigated coherent π0 pho-
toproduction (electromagnetic/nuclear) including the nuclear
recoil.

The basic features and improvements of the MCMC
model discussed in this article are the following: (i) the
use of time-dependent multicollisional relativistic kinematics,
(ii) the inclusion of the meson photoproduction mechanism
(π0 and η) from 4.0 to 12.0 GeV via a Regge model (ρ and
ω exchange included), (iii) the incorporation of accurate
momentum distributions for light nuclei taken from nucleon
knock-out reactions, (iv) a rigorous nonstochastic Pauli block-
ing both for the photoproduction and binary meson-nucleon
scatterings, (v) the implementation of photon shadowing
effects using a vector-meson dominance (VMD) model with
vector-meson formation time constraint, (vi) a consistent
analysis of the meson-nucleus FSI via a multiple scattering
framework, and (vii) the inclusion of realistic (diffractive)
angular distributions for the PN → PN elastic scattering.

The article is organized as follows. In Sec. II we present
a Regge model to describe the elementary photoproduction
amplitude for π0 and η photoproduction from the nucleon.
Section III is dedicated to the nuclear incoherent photopro-
duction, where we delineate the basic features of the MCMC
model to account for the nuclear effects. In Sec. IV we show the
results of the MCMC model in comparison with the available
data. The calculations for incoherent π0 photoproduction are
successfully applied for the interpretation of the magnitude and
energy dependence of the measured ratio σγA/σγN taken for
several nuclei (Be, C, Al, Cu, Ag, and Pb) at Cornell [29].
In this section we also present a detailed explanation for
the incoherent background of η mesons in another Cornell
experiment [23], extracting the η → γ γ decay width via the
Primakoff method. The conclusions and final remarks are
presented in Sec. V.

II. PSEUDOSCALAR MESON PHOTOPRODUCTION
FROM THE NUCLEON: THE CASCADE TRIGGER

The elementary photoproduction of a pseudoscalar meson
P from the nucleon is represented by the following process:

γ (k) + N (p1) → P (p) + N (p2), (1)

where k, p1, p, and p2 represent the four-momentum of
the incoming photon, struck nucleon, produced meson, and
outgoing nucleon, respectively.

The differential cross section for meson photoproduction
from the nucleon at small angles in the center of mass of the

024608-2



NUCLEAR INCOHERENT PHOTOPRODUCTION OF π0 . . . PHYSICAL REVIEW C 82, 024608 (2010)

s channel can be written as [27,30]:

dσn

d�
∼= |f1 − f2|2 + θ2

∗
2

[|f3 + f4|2

+ 2 Re(f ∗
1 f2 + f ∗

1 f4 + f ∗
2 f3)], (2)

where the fi’s are the Pauli-type amplitudes [31] and θ∗ is
the polar angle of the photoproduced meson in the center of
mass of the s channel. The fi’s amplitudes are functions of
the invariant amplitudes Ai = Ai(s, t), with s = (k + p1)2 and
t = (k − p)2 the usual Mandelstam variables. The relationship
between the Pauli-type amplitudes fi’s and the analytical
amplitudes Ai’s is given by Refs. [30,31], where we have
assumed that the initial and final nucleon energies are the
same.

By decomposing the invariant amplitudes Ai in terms of
regularized and parity-conserving t-channel helicity ampli-
tudes Fi , we obtain [32,33]:

A1 = − tF1 + 2mNF3

t − 4m2
N

(3)

A2 = F1

t − 4m2
N

+ 1

t

(
F2 + 2mNF3

t − 4m2
N

)
(4)

A3 = −F4 (5)

A4 = −2mNF1 + F3

t − 4m2
N

, (6)

where mN is the nucleon mass.
The amplitudes F2 (unnatural parity exchange) and F3

(natural parity exchange) receive contributions from different
trajectories, while the amplitudes Ai are known to be free of
kinematical singularities [30]. Since Eq. (4) has a pole at t = 0,
one is forced to postulate the “conspiracy relation” at zero-
momentum transfer suitable for π0 and η photoproduction
[33]:

F3(s, t = 0) = 2mNF2(s, t = 0). (7)

So, using Eqs. (3)–(7) and writing Eq. (2) in terms of the
Fi’s, we have [32]:
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∗
π
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F 2
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[
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3
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2mN

1

p∗
√

s

]}
, (8)

where µ is the meson mass. Equation (8) is the same as Eq. (5)
from Ref. [26] imposing the conspiracy relation F3 = 2mNF2.
The helicity-flip unnatural parity exchange amplitude F4 is
neglected in Ref. [26] and also in the present analysis since
it goes with t and does not contribute significantly at forward
angles.

The remaining helicity amplitudes F1 and F3 are then
calculated using a Regge model that includes ω and ρ exchange
(VMD model) and the Reggeon cuts, as suggested in Ref. [34].
In contrast with our previous work for η photoproduction [26],
the b1 meson exchange was neglected in the present analysis
since we found that its contribution is very small and cannot
be unambiguously separated from the other terms with the
limited amount of forward-angle data available. Therefore, we

adopted a more concise formula [Eq. (8)] that simultaneously
fits both data sets of π0 and η photoproduction within the
desired energy range.

The natural-parity exchange amplitudes F1 and F3 are then
calculated in terms of pole and cut contributions [34]:

F1 → F
ρ

1 + Fω
1 + F cut

1 (9)

F3 → F
ρ
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3 + F cut

3 (10)

where
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(
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, (11)
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s
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µ

FIG. 1. (Color online) Differential cross section for π0 photopro-
duction on the proton. The blue lines represent our Regge model with
the Coulomb amplitude constructively interfering with F1. The data
points are from DESY [34] (squares) and SLAC [36] (triangles). The
first data points from DESY [34] taken at θπ0

∗ = 0 are omitted in
our fitting due to the effects of angular resolution neglected in our
analysis.
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FIG. 2. (Color online) Differential cross section for η photoproduction on the proton. The blue lines represent our Regge model with the
Coulomb amplitude destructively interfering with F1. The data points are from DESY [35] (squares), SLAC [37] (triangles), and Cornell [38]
(circles).

The Regge trajectories (same for ρ and ω exchange)
were taken as α(t) = 0.45 + 0.9t for π0 photoproduc-
tion and α(t) = 0.39 + 1.0t for η photoproduction, with
s0 = 1 GeV2.

The parameters γ1 = γ
ρ

1 + γ ω
1 , γ3 = γ

ρ

3 + γ ω
3 , γ cut

1 , γ cut
3 ,

and a are obtained by fitting the available data of π0 and η

photoproduction from the proton also including the Coulomb
amplitude:

FC(s, t) = −2mN

t
0.0543

√
�P→γ γ

1(
1 + q2

t

0.71

)2
,

where we have used the PDG [25] recommended values
�π0→γ γ = 7.7 eV and �η→γ γ = 0.510 keV, with qt represent-
ing the transverse-momentum transfer. The results of the fits
for π0 and η photoproduction are presented in Figs. 1 and 2,
respectively; where a nice agreement between the Regge model
and the data is achieved. The forward-angle data included
in our analysis are from DESY [34,35], SLAC [36,37], and

Cornell [38]. The constructive interference between the strong
and Coulomb amplitudes is highly favorable for π0 photo-
production (F1 → F1 + FC), while for η photoproduction the
situation is opposite (F1 → F1 − FC). Table I summarizes
the results of the fitted parameters of the Regge model. The
inclusion of the Coulomb term is crucial to fit the data at
forward angles, as shown in Fig. 3, where we present the
prediction of the Regge model with and without the Coulomb
term for π0 photoproduction at 5.8 GeV.

The inclusion of the b1 trajectory and the other terms of
Eq. (5) of Ref. [26] does not change the overall fitting obtained
for η photoproduction, since the contribution of Reggeon
cuts tends to compensate the absence of b1 exchange. In our
previous work [26], we obtained χ2/DOF ∼ 1.4 in compari-
son with the present result of approximately 1.43. A similar
situation is also found for π0 photoproduction, where we got
a reasonably good fitting neglecting b1 exchange (χ2/DOF ∼
1.57). Such interesting scenario shows that the Regge model
herein presented is not unique and other parametrizations

TABLE I. Fitted parameters of the Regge model for π0 and η photoproduction from the proton.
Details in the text.

Meson γ1(
√

µb) γ3(
√

µb) γ cut
1 (

√
µb) γ cut

3 (
√

µb

GeV ) a(GeV−2) χ2

DOF

π 0 127.2(15) 61.6(17) 33.88(65) 10.23(23) 0.668(12) 111.2
73

η 44.3(51) 27.2(39) 155.4(24) 8.9(11) 2.059(26) 61.6
43
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FIG. 3. (Color online) Differential cross section for π0 photopro-
duction on the proton. The solid blue line represents our Regge model
with the Coulomb amplitude constructively interfering with F1 and
the dashed red line includes only the strong part. The data points
are from DESY [34] (squares), where the first point at θπ0

∗ = 00 is
omitted in the fitting due to the effects of angular resolution neglected
in our analysis.

would certainly provide plausible interpretations of the proton
data both for π0 and η photoproduction. A detailed analysis
of the elementary amplitude for π0 photoproduction from 3 to
18 GeV was recently published by Sibirtsev et al. [39]. This
work used a Regge model with pole and cut amplitudes for
ω, ρ, and b1 exchanges and reproduced quite satisfactorely
a larger data set of the differential cross sections and single
and double polarization observables for π0 photoproduction.
Nevertheless, as presented in Table 3 of Ref. [39], the model
uses 17 free parameters in order to achieve a global fitting to
the data. Furthermore, the F1 amplitude was obtained without
the Coulomb term and omitting the interference region |t | <

0.04 GeV2 of the differential cross section; a crucial region
included in our analysis. Such restriction of the analysis from
Ref. [39] is strong evidence of the poor experimental scenario
of the differential cross sections of π0 photoproduction at
extreme forward angles, making it difficult to establish one
unambiguous Regge model for the interpretation of the data.
This scenario is even more critical for η photoproduction,
where data at extreme forward angles is provided only up to
6 GeV (Fig. 2). A recent Regge model calculation [40] has
shown the importance of future forward-angle η photoproduc-
tion measurements from the proton. This analysis propitiated
the extraction of the η → γ γ decay width by fitting the proton
data, where the authors found values two to three σ larger than
the PDG average [0.86(11) and 0.70(90) keV]. The fits, though
quite interesting, assume that the decay width is uncorrelated
with the other parameters used to fit the hadronic part. In our
understanding, however, the decay width obtained by a fitting
procedure to the angular distributions (Primakoff approach)
should be correlated with the hadronic parameters and the
interference phase angle. It would be interesting to verify a
simultaneous (correlated) fitting with the model of Ref. [40].
The contribution of Regge cuts (absorptive part) on the
hadronic amplitude is still unclear. Obviously the interpre-
tation of the beam and target asymmetries done in Ref. [40]

represents a significant improvement for the disentanglement
of the natural and unnatural parity exchange amplitudes.
However, at extreme forward angles, the conspiracy relation
takes place F3 ∼ 2mNF2 and the beam and target asymmetries
are close to 1 and zero, respectively. In fact, the effects of
polarization are relevant only for |t | � 0.5 GeV2 (see Fig. 3
from Ref. [40]), where the incoherent cross section is expected
to be quite small. So, the sophisticated calculation of Ref. [40]
is very relevant with the advent of more precise forward-angle
data. On the other hand, the determination of the decay width
with high accuracy using only the proton target, though repre-
senting a much more clean measurement, seems unfeasible due
to the strong correlations of the fitted parameters at extreme
forward angles. For that reason, until more precise forward
angle data of π0 and η photoproduction from the proton
are not available, we consider our analysis suitable for the
interpretation of the elementary cross sections. In fact, as
we have shown in a recent work dedicated to incoherent π0

photoproduction from carbon [41], the contribution of Regge
cuts is negligible in the nuclear cross section, which is highly
sensitive to short-range correlations and meson-nucleus FSI.
It is worth mentioning, however, that the predictions from
Ref. [39] for the neutron cross section are extremely useful
for possible improvements in the analysis, since one can
disentangle the isoscalar and isovector contributions of the
amplitudes.

III. PHOTOPRODUCTION FROM COMPLEX NUCLEI

A. The cascade approach

The MCMC intranuclear cascade model consists of a
semiclassical transport calculation that describes the dynamics
of a nuclear reaction via a time-dependent multicollisional
Monte Carlo algorithm. The model can be applied for hadron-
and photon-induced nuclear reactions, as far as we can neglect
the effect of the other nucleons during the first interaction
mechanism (IA). For high-energy nuclear incoherent (NI)
photoproduction processes, the photon is supposed to interact
with a single nucleon and the rest of the nuclear wave
function �A−1 works as an expectator. The two outgoing
particles from the photoproduction vertex (the struck nucleon
and the photoproduced meson) are strongly susceptible to
interact with the other nucleons, with high probability of
producing additional mesons via FSI. These two trajectories
can be treated semiclassically and consist of two correlated
cascade branchings. The amount of absorption of the primary
meson photoproduction flux depends very critically on the
photoproduction mechanism itself and also on the dynamics
of the excited nuclear system. Such complicated process is
generally treated using event generators that account for meson
and nucleon multiplicities and gross features of physical
observables. These statistical approaches are convenient for
the description of the general behavior of the nuclei, since
they can be constructed and sometimes adjusted to repro-
duce the bulk properties of high-energy nuclear reactions.
Nevertheless, the advent of high-precision experiments using
tagged photon beams and next generation detectors demand
a state-of-the-art calculation to account for the inelastic NI
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background. Such background is highly dependent on the
photoproduction mechanism (Sec. II) and also on several
nuclear effects, such as photon shadowing, Pauli blocking,
meson absorption, and rescattering back to forward angles,
among others. In Sec. II we have proposed a Regge model
to account for the initial photoproduction mechanism, which
works as the cascade trigger. In this section we present the
basic features of the MCMC model to account for the nuclear
effects and to deliver accurate information about the angular
distributions and the energy spectra of the photoproduced
mesons.

B. The nuclear ground state

The positions of the bound nucleons in the Monte Carlo
algorithm are distributed using nuclear densities appropriate
for light and heavy nuclei. For light nuclei, such as beryllium
and carbon, we adopted a shell-model distribution [29]:

N (r) = 4

(a0
√

π)3

(
1 + δr2

a2
0

)
exp

(−r2

a2
0

)
, (15)

where a0 = 1.71 fm for Be and 1.65 fm for C with δ = 1
6

(A − 4). For intermediate and heavy nuclei, we have used a
Woods-Saxon distribution [29]:

N (r) = N0

exp
[ (r−c)

z1

] + 1
, (16)

where c = 1.12A1/3 and z1 = 0.545 fm.
Another important physical constraint to build up a realistic

nuclear ground state is the momentum distribution (MD) of
the bound nucleons. Since we are specifically concerned with
high-precision relativistic kinematics, we have to take into
account very accurately the initial state of the struck nucleon.
Furthermore, the Pauli blocking mechanism plays an essential
role for low momentum transfer and small differences in the
MD parametrizations drastically affect the shape of the NI
cross sections at small angles.

For intermediate and heavy nuclei, the Fermi gas model is
known to work reasonably well and we adopted the uniform
distribution in momentum space:

WF (pN )d3pN = 3

4π

p2
N

p3
F

dpN sin(θp) dθpdϕp, (17)

where pF is the Fermi momentum and θp and ϕp the angular
variables defining the direction of the three-momentum of the
nucleon pN .

In contrast with the infinite nuclear matter approximation
which works reasonably well for intermediate and heavy
nuclei, the MD for light nuclei can be explored using
knock-out reactions, such as quasielastic (e, e′p). The missing
energy Em and missing momentum pm can be written in the
form:

Em = ω − Tp − TA−1, (18)

pm = p′
N − q, (19)

where p′
N and Tp are the momentum and kinetic energy of the

outgoing proton and TA−1 the kinetic energy of the residual

nucleus. The energy and momentum of the virtual photon are ω

and q, respectively. In the plane-wave impulse approximation
(PWIA), the fivefold differential (e, e′p) cross section can be
factorized in the form [42]:

σee′p = d5σ

d�ed�pdEp

= Kσep|φα(pm)|2, (20)

where K = p′
NEp, σep is the off-shell electron-proton-

scattering cross section [43], and φα(pm) is the wave function
in momentum space of the quantum state α, which can be
approximated by a single-particle bound-state wave function.
The factorization presented in (20) does not hold if we take
into account the distortion effects of the incident electron
and outgoing proton and electron. In spite of this, one can
still define the reduced cross section ρee′p(pm) by the ratio
between the measured cross section and the electron-proton
cross section:

ρee′p(pm) = σee′p

Kσep

. (21)

So, by measuring σee′p, we can calculate the distorted
momentum distribution ρee′p(pm), which in PWIA is the
squared Fourier transform of the radial wave function.

Obviously the distortion effects on the incoming and outgo-
ing waves depend very critically on the reaction mechanism.
These distortions do not permit a model-independent result
for the true MD for light nuclei; the main focus of the present
analysis. The true MD is the undistorted spectral function
integrated in missing energies and is not achievable by proton
knock-out experiments. For this reason, we have adopted the
PWIA of Ref. [42] as the reference input of the s and p shells
MD for light nuclei, where we have assumed the spectroscopic
factors S = 2J + 1. These momentum distributions, together
with the accurate information about the Fermi momentum in
light nuclei [44], allow a phenomenological analysis of the
spin-orbit coupling during photoproduction. This approach
takes advantage of the Monte Carlo method and circumvents
the technical difficulties related with the spectral function
in actual nuclei. We have also investigated the sensitivity
of the cascade results using empirical (distorted) momentum
distributions from several nucleon knock-out experiments (see
Table 1 from Ref. [45]). An extensive review of the proton
knock-out data for light nuclei can be found in Ref. [42] and
references therein.

C. Photon shadowing in high-energy
photon-nucleus interactions

The direct coupling of high-energy photons with vector
mesons propitiates a phenomenological analogy between
photon- and hadron-induced nuclear reactions. The main
hypothesis of the VMD model is that the physical photon
state can be decomposed into a bare and a hadronic com-
ponent, where the former is not expected to interact with
hadrons. So, the photon state is assumed to be given by
[46]:

|γ 〉 ∼=
√

Z3 |γB〉 + √
α |h〉 , (22)
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where the factor Z3 is introduced for the normalization of |γ 〉.
One important constraint of the theory is that both |γB〉 and |h〉
have the same quantum numbers (J PC = 1−−) and the same
three-momentum of the physical photon. The assumption that
the hadronic state |h〉 is solely attributed to the vector mesons
ρ, ω, and φ is one of the main restrictions of the VMD model
and is also employed in the present analysis. Considering
only the low-mass components of the photon and a narrow
resonance state, we may write

√
α|h〉 as a superposition of

vector-meson states:
√

α|hs〉res =
∑
V

e

fV

|V 〉, (23)

where e

fV
is our choice of normalization for real photons [46]

and the label s indicates that such approximation is valid
only for low-mass constituents. For higher-mass components,
however, the interaction of the vector mesons with hadrons
is typically short ranged and the hadronic photon behaves
similarly as a bare photon without substantial shadowing.
Assuming that the bare photon does not interact (VMD),
we may connect the scattering amplitudes for high-energy
γN → X processes to analogous amplitudes of vector-meson
scattering V N → X using the S matrix:

〈X|S|γN〉 =
∑
V

e

fV

〈X|S|V N〉. (24)

Employing the diagonal approximation and using (24), we
may write the total photoabsorption cross section in hadrons
σγN due to vector mesons in the form:

σγN =
∑
V

e2

f 2
V

σV N, (25)

where σV N is the total V N cross section. Taking the coupling
constants and the VMD model II of Table XXXV of Ref. [46],
we have:

σρN = σωN = 19.1

[
1 + 0.766√

p(GeV/c)

]
mb and (26)

σφN = 12 mb. (27)

Inserting Eqs. (26) and (27) into (25) and using a nonshadowed
(NS) component of σ NS

γN = 24.5 µb, we have:

σ Total
γN (p) = 19.1e2

(
1

f 2
ρ

+ 1

f 2
ω

) [
1 + 0.766√

p(GeV/c)

]

+ 12.0e2

f 2
φ

+ 24.5 µb. (28)

Equation (28) provides information about the total hadronic
cross section and the relative contributions of the vector
mesons and the nonshadowed component:

RV =
e2

f 2
V

σV N

σ Total
γN

,

(29)
RNS = 24.5µb

σ Total
γN

.

The total hadronic cross section was measured in the energy
interval 3.5 � k � 5.4 GeV (σ Total

γp = 116 ± 17 µb) [47] and
also at 7.5 GeV (σ Total

γp = 126 ± 17 µb) [48]. The results
obtained with Eq. (28) are in nice agreement with the
measured values (σ Total

γp = 123.6 µb for p 	 4.5 GeV and
σ Total

γp = 117.9 µb for p 	 7.5 GeV).
Another important step for the evaluation of the shadowing

effect for photonucleus interactions is the concept of formation
time, which is the time interval that the physical photon is
momentarily in a vector-meson state. Shadowing effects are
expected to take place if the formation time is long enough
to allow the virtual hadrons to undergo collisions deep in
the nuclei as if they were real hadrons. We can estimate the
formation time of a vector meson with mass mV using the
uncertainty principle:

tf ∼
∣∣∣∣ 1

k −
√

k2 + m2
V

∣∣∣∣. (30)

The mass of the vector meson is sampled in the MC
assuming a Lorentzian distribution and the vector meson ρ

as the reference (Rρ ∼ 0.7):

W (mV ) = 1

2π

�ρ

(mV − mρ)2 + (�ρ

2

)2 , (31)

with mρ = 769.3 MeV and �ρ = 150.2 MeV. The correspond-
ing values of tf are then distributed combining Eqs. (30)
and (31). From a direct inspection of Eq. (30), we note that tf
increases with higher photon energies and lower vector-meson
masses. The energy dependence of tf affects the photon ability
to interact with hadrons. The higher is the photon energy, the
stronger is its attenuation deep in the nuclei. The relationship
between ctf and the size of the nucleus also originates a much
steeper decrease of the photoabsorption cross section for heavy
nuclei at higher energies, in comparison with light nuclei.

The evaluation of the shadowing effect is performed using
the MCMC cascade model in a straightforward approach.
The nuclear photoabsorption cross section is expected to be
proportional to the single nucleon cross section such that

σ Total
γA = Aeffσ

Total
γN , (32)

where Aeff is the effective number of nucleons that contribute
to the reaction. The values of Aeff provide information about
the nuclear response and the ratio Aeff

A
gives the amount

of photon shadowing considering the total nuclear photoab-
sorption mechanism. For the case of nondiffractive meson
photoproduction, however, the values of Aeff also include the
effects of FSI of the photoproduced mesons. Consequently,
the values of Aeff

A
obtained in this section refer to the initial

photoabsorption process only such that Aeff ≡ Aabs
eff .

The factor Aabs
eff can be calculated using the information

about the nuclear transparency to the hadronic photon obtained
under the framework of the cascade model. In this approach,
we can calculate Aabs

eff using the separation of (25) and the
additional NS contribution:

Aabs
eff = ARNS + ARρTγρ + ARωTγω + ARφTγφ, (33)
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where TγV represents the nuclear transparency of the hadronic
photon assuming a direct coupling to its hadronic components
ρ, ω, and φ. Since in our model σρN = σωN , we have
Tγρ = Tγω. The nuclear transparencies are then calculated as
a function of the nuclear densities as follows:

TγV = 4π

A

∫
TγV (r)N (r)r2dr, (34)

where TγV (r) is the transparency of the hadronic photon as a
function of the radial distance. Obviously for nonshadowed
photoabsorption, we have TγV (r) = 1 and Eq. (33) gives
Aabs

eff = A. The nuclear transparency of the hadronic photon
is calculated as a function of the radial distance considering
that the incoming photon couples with the vector mesons with
impact parameters uniformly distributed in the area of a disk
perpendicular to the photon direction (z axis). For each cascade
run, the vector-meson mass mV and the formation time tf
are distributed according to Eqs. (30) and (31), conserving
the three-momentum of the incoming photon. The formation
time tf starts when the vector meson and the struck nucleon
reach their minimal relative distance and the primary V N

collisions are collected. The nuclear transparencies obtained
under the cascade framework are shown in Fig. 4, where we
have included the results from Be, C, Cu, and Pb from 3.2 to
8.6 GeV. The vector-meson formation time tf plays an
important role for the evaluation of the transparencies. For
instance, for larger nuclei, the amount of photon shadowing
increases with ctf . On the other hand, for light systems, the
transparencies tend to an asymptotic value above approxi-

mately 6 GeV, since any increase in ctf will not increase
the fraction of the nuclear volume illuminated by the vector
meson. This argument also explain why the hadronic photon
transparencies are higher for heavier nuclei at lower energies,
since the magnitude of ctf is much lower than the nuclear size.

D. Pauli blocking in the MCMC model: A time-dependent
nonstochastic approach

Short-range correlations in nuclear matter play an important
role for the accurate determination of meson angular dis-
tributions at extreme forward angles. The Pauli suppression
reduces the cross sections in the forward direction (meson
photoproduction) and also dictates the dynamics of secondary
meson-nucleon scatterings (meson-nucleus FSI) during the
cascade process. As we have shown in a work dedicated to
the quasideuteron channel [49], the evaluation of the Pauli
blocking is crucial for low-energy photonuclear reactions. In
this work, a nonstochastic Pauli blocking was implemented
propitiating a time-dependent analysis of multiple particle-
hole excitations during the cascade process. The method is
completely new and provides a more rigorous formalism to
address short-range correlations in nuclear matter in compar-
ison with the statistical approaches employed in some refined
transport calculations [10], as well as in other cascade models,
like the sophisticated Liège INC model [50]. Similarly with
the scenario found in low-energy nuclear reactions, forward-
angle meson photoproduction processes are also strongly
sensitive to the Pauli blocking mechanism due to the typical
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FIG. 4. (Color online) Hadronic photon nuclear transparencies from the MCMC model for (a) Be, (b) C, (c) Cu, and (d) Pb within 3.2 to
8.6 GeV. The dashed red lines represent the transparencies assuming the coupling of the incoming photon with the vector meson φ and the
solid black lines refer to the coupling with ρ or ω.
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small-momentum-transfer regime. Furthermore, the Pauli
blocking suppression depends on the initial nucleon momen-
tum and also on the meson-scattering angle, making the
MC approach a convenient framework to address such a
complicated process.

The Pauli-suppression factor can also be calculated ana-
lytically considering the Fermi gas model or an independent
particle model with harmonic oscillator (HO) wave functions.
The former is expected to work properly for intermediate and
heavy nuclei, while the latter is useful for the description of
finite nuclei effects in light and double magic nuclei, such
as 16O. A detailed review about neutral pion photoproduction
from complex nuclei up to 900 MeV and the Pauli blocking
factors can be found in Ref. [3]. In this approach, the Pauli-
suppression factor for intermediate and heavy nuclei is given
by

1 − G(qt ) = 3

4

(
qt

pF

)
− 1

16

(
qt

pF

)3

for qt < 2pF and

= 1 for qt > 2pF , (35)

where pF is the Fermi momentum with qt ∼ kθ . For light
nuclei, the following expression was obtained:

1 − G(qt ) = 1 −
[

1 +
(

qt

2κ

)4
]

exp

(−q2
t

2κ2

)
, (36)

where κ2 = 15
4R2 	 0.019 (GeV/c)2.

The MCMC model, on the other hand, consists of an appro-
priate tool for the accurate determination of the Pauli blocking
suppression factor. Equations (35) and (36) were derived using
closure approximation without any specification about the
photoproduction operator. The MCMC model also requires
closure, since the NI amplitude for meson photoproduction
from the nucleus is obtained as an incoherent sum of single
nucleon amplitudes, but it is still possible to include the dynam-
ical information for the elementary photoproduction during
the evaluation of the Pauli-suppression factor. This powerful
Monte Carlo method provides a more accurate calculation
of the Pauli blocking, since it accounts for the underlying
dynamics of the photoproduction mechanism. For the case
of heavy nuclei one should expect small differences between
Eq. (35) and the MCMC model, since in both cases the MD of
the nucleons are taken from the Fermi gas model. For the case
of light nuclei, on the other hand, more significant differences
between the MCMC model and the calculations presented in
Ref. [3] should be expected due to the realistic MD used in
the former. The Pauli blocking factor in the MCMC model—
herein denoted fPB(k, θ )—is easily obtained by the ratio
between Pauli-allowed and the total number of events, after
distributing the meson production angle in the center of mass
of the s channel using Eq. (8). So, the total cross section after
the inclusion of the Pauli principle ( dσ

d�
)PB can be written as:(

dσ

d�

)PB

= fPB(k, θ )

(
dσ

d�

)PWIA

= AfPB(k, θ )

(
dσn

d�

)
.

(37)

Figure 5 shows the results of the Pauli blocking factors
for π0 photoproduction at 5.2 GeV from carbon (a) and lead
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FIG. 5. (Color online) Pauli blocking factors for π0 photopro-
duction from (a) carbon and (b) lead at 5.2 GeV. The solid black
lines show the results from the MCMC model taking into account the
photoproduction mechanism of Eq. (8). The dashed red lines are
the predictions from the HO (a) and Fermi gas (b) models, while
the dotted blue line refers to the cascade model predictions for lead
assuming isotropic photoproduction.

(b) obtained via the MCMC model using the photoproduction
mechanism of Eq. (8) (solid black lines). The predictions from
the HO model [Eq. (36)] and the Fermi gas model [Eq. (35)]
are given by the red dashed lines, where we have used a Fermi
momentum of 279 MeV/c for lead. As previously expected,
the result from the MCMC model for light nuclei differs
substantially from the predictions given by the HO model.
There are two distinct structures in fPB(k, θ ) for carbon at
∼0.5◦ and ∼3.0◦ associated with the dominant contributions
from the p and s shells, respectively. Furthermore, the Pauli
suppression obtained in the MCMC model (assuming a Fermi
momentum of 221 MeV/c for carbon [44]) is much weaker
than the one obtained by the double magic configuration of the
HO model. Obviously the HO potential of Ref. [3] is expected
to work properly for nuclei with closed s and p shells, such as
the working example 16O presented there. In this model, the
p3/2 and p1/2 states are degenerated, propitiating an analytical
expression for G(k, θ ). Nevertheless, for the case of nonclosed
p-shell nuclei, such as Be and C, the spin-orbit term plays an
essential role, making the HO approximation a crude estimate
in comparison with the accurate MD used in the MCMC
model. The result for heavy nuclei is also less restrictive
than the prediction from the Fermi gas as a consequence of
the forward-peaked elementary photoproduction cross section.
The result of the MCMC model for lead assuming isotropic
photoproduction (dotted blue line) agrees remarkably well
with the prediction from the Fermi gas model, as previously
expected. It is clear that the Pauli blocking factor depends
on the photoproduction mechanism, since the later is much
more favorable for meson photoproduction at forward angles,
softening the Pauli suppression.

Additionally to the issue of Pauli suppression during
meson photoproduction, short-range correlations dictate the
dynamics of the nuclear reaction due to binary meson-nucleon
scattering processes. As will be presented in the next section,
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FIG. 6. (Color online) Time derivative of the average number of π0N scatterings with (dashed-red) and without (solid black) Pauli blocking
at 5.2 GeV for carbon (upper panels) and lead (lower panels). The left/right plots assume isotropic/diffractive elastic π0N scattering. The
elasticity cuts on the π 0 energy were taken as 0.82 for carbon and 0.92 for lead.

the elastic meson-nucleon channel is of the order of 20% of
the total meson-nucleon cross section, exhibiting a typical
diffractive behavior. Therefore, the elastic channel is largely
dominated by low-momentum transfer, making the evaluation
of the Pauli blocking mechanism a critical step in the cascade
process.

In order to evaluate the influence of the Pauli princi-
ple during secondary scatterings, we have run the cascade
model with and without the Pauli blocking, collecting binary
meson-nucleon collisions as a function of the intranuclear
cascade time. The final results are extremely sensitive to the
kinematical cuts in the meson elasticity (εP = EP

k
), which

represents a minimum energy cutoff value to interrupt the
cascade process. The higher is the meson elasticity (EP ≈ k),
the lower is the scattering angle and the higher is the fraction of
Pauli-blocked events. For extremely inelastic events (εP � 1),
the meson ability to interact is strongly reduced and the fraction
of blocked events also increases. A typical result for the time
derivative of the average number of π0N scatterings ( dN

dt
)

during a cascade at k = 5.2 GeV is presented in Fig. 6 for
carbon (upper plots) and lead (lower plots). The calculations
assume both isotropic π0N → π0N scattering (left plots) and
a more realistic π0N → π0N scattering (right plots) taken
from π+/−p → π+/−p data (see the next section). The solid
black/dashed red lines represent dN

dt
neglecting/including the

Pauli blocking. The total number of scatterings is obtained by
the integral

∫
dN
dt

dt and the ratio between the Pauli-allowed and
the total number of scatterings gives the fraction of unblocked
events. These fractions are 0.995 (0.956) for carbon and 0.983
(0.938) for lead, taking into account isotropic (diffractive)

π0N elastic scattering. The results using the diffractive elastic
scattering show that the Pauli principle affects 5 to 6% of all the
binary events during the cascade stage. Considering that the
Pauli principle affects more significantly the elastic channel,
we can estimate that approximately 25% of the elastic π0N

scatterings are being blocked, since this mechanism accounts
for approximately 20% of the total π0N cross section.

E. Meson-nucleus final-state interactions

The calculation of the FSI of the photoproduced mesons
with the nucleus is the main issue for the determination of the
NI cross section. The huge amount of open channels requires a
powerful tool, based on a sophisticated Monte Carlo algorithm,
to address the dynamics of such complicated system. The main
disadvantage of the Glauber model for the calculation of the
absorption and rescattering effects is that it does not account for
energy losses during secondary scatterings and also includes
short-range correlations using phase-space considerations.
However, for meson photoproduction at extreme forward
angles, soft meson-nucleon scatterings are most likely to
occur, making the analysis of the Pauli blocking and FSI very
sensitive to the meson-nucleon kinematics and dynamics. The
kinematics has to take into account the energy losses during
the cascade process and also the realistic MD for the bound
nucleons, while the dynamics should incorporate, as accurately
as possible, the s and t dependence of the secondary scattering
mechanism.

Table II presents the meson-nucleon channels for π0

photoproduction considered in the MCMC cascade. The
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TABLE II. Meson-nucleon scattering channels considered in the MCMC model. The input channels are represented by the first line, while
the output channels are represented by lines 1 to 22. The last line represents the mechanism of pion absorption by a nucleon-nucleon pair.
Details in the text.

Out ⇓ \in ⇒ π 0p π+p π−p π 0n π+n π−n

1 π 0p π+p π−p π 0n π+n π−n

2 �(1232)+ �(1232)++ �(1232)0 �(1232)0 �(1232)+ �(1232)−

3 N∗(1520)+ – N∗(1520)0 N∗(1520)0 N∗(1520)+ –
4 N∗(1680)+ – N∗(1680)0 N∗(1680)0 N∗(1680)+ –
5 �(1950)+ �(1950)++ – �(1950)0 – �(1950)−

6 π+n – π 0n π−p π 0p –
7 2π 0p π 0π+p π 0π−p 2π 0n π 0π+n π 0π−n

8 – – 2π 0n – 2π 0p –
9 3π 0p 2π 0π+p 2π 0π−p 3π 0n 2π 0π+n 2π 0π−n

10 2π 0π+π−p π 02π+π−p π 0π+2π−p 2π 0π+π−n π 02π+π−n π 0π+2π−n

11 3π 0π+n 2π 02π+n 2π 0π+π−n 3π 0π−p 2π 0π−π+p 2π 02π−p

12 π 0π+n 2π+n π+π−n π 0π−p π−π+p 2π−p

13 π 0π+π−p 2π+π−p π+2π−p π 0π+π−n 2π+π−n π+2π−n

14 π 02π+π−n 3π+π−n 2π+2π−n π 0π+2π−p 2π+2π−p 3π−π+p

15 2π 0π+n π 02π+n π 0π+π−n 2π 0π−p π 0π+π−p π 02π−p

16 – – 3π 0n – 3π 0p –
17 π 02π+2π−p 3π+2π−p 2π+3π−p π 02π+2π−n 3π+2π−n 2π+3π−n

18 π 03π+2π−n 4π+2π−n 3π+3π−n π 02π+3π−p 3π+3π−p 2π+4π−p

19 2π 02π+2π−p π 03π+2π−p π 02π+3π−p 2π 02π+2π−n π 03π+2π−n π 02π+3π−n

20 4π 0p 3π 0π+p 3π 0π−p 4π 0n 3π 0π+n 3π 0π−n

21 3π 0π+π−p 2π 02π+π−p 2π 0π+2π−p 3π 0π+π−n 2π 02π+π−n 2π 0π+2π−n

22 (+n) → pn (+n) → pp (+n) → nn (+p) → np (+p) → pp (+p) → nn

entrance channels are given by binary collisions with one pion
(π0, π+, π−) and one nucleon (p, n). Collisions of the type
πN, πN∗, π�,NN,NN∗, and N� are taken into account,
but collisions between pairs of pions are not considered due to a
much lower pion density. There is a huge amount of important
channels in high-energy photoproduction processes and a great
number of additional mesons are likely to be produced via
FSI. Figure 7 presents the energy dependence incorporated in
the MCMC code for the π0p(n) → X channels. The cross
sections for the output channels (1 trough 22 in Table II)
were estimated combining the symmetry properties of isospin
and time reversal of the strong interactions and the results
for charged pions; usually constrained by the experimental
data.

A typical entrance channel for π+p → X is presented
in Fig. 8 in comparison with the PDG total cross section
[25], where the magenta solid line represents the sum of
all processes included in the MCMC model. Such procedure
allowed the inclusion of approximately 95% (85%) of the
relevant channels for π+p → X and 85% (55%) for π−p →
X at 6 GeV (12 GeV). The production of vector mesons and
strange particles in secondary scatterings is neglected in our
analysis, explaining our limitations with the neutral channel
π−p → X at higher energies. However, as will be discussed
later, the π0-nucleon interaction probability is considered in
the MCMC model taking into account the total cross section
σπ0N→Total, instead of the sum of all channels from Table II.
The total cross section, on the other hand, is assumed to be
the average (σπ+p→Total + σπ−p→Total)/2. The cross sections
σπ+p→Total and σπ−p→Total are then obtained by fitting the

available data using the Regge parametrization [51]:

σπ±p→Total(s) = Zπ±p + B log2

(
s

s2

)
+ Yπ±p

(
s1

s

)η

, (38)

with B = 0.308 mb,
√

s1 = 1 GeV,
√

s2 = 5.38 GeV [51] and
the charge conjugation symmetry η1 = η2 = η ∼ 0.49. The
parameters Zπ+p = 19.29(56) mb, Zπ−p = 19.62(31) mb,
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FIG. 7. (Color online) Energy dependence for the π0p(n) → X

channels included in the MCMC routine. The solid black line
represents the total cross section taken as the average (σπ+p→Total +
σπ−p→Total)/2. The output channels (1 to 22) are shown in Table II for
the input channels π 0p and π 0n.
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FIG. 8. (Color online) Energy dependence for the π+p → X

channels included in the MCMC routine versus the PDG data for
σπ+p→Total. The solid magenta line represents the sum of all processes
(second column of Table II) for the π+p scattering included in the
algorithm. Details in the text.

Yπ+p = 23.1(19) mb, and Yπ−p = 29.7(10) mb were ob-
tained by fitting the π+p (χ2/DOF = 1.16) and π−p data
(χ2/DOF = 0.83) from 4 to 12 GeV. The results of the fitted
cross sections are presented in Fig. 9. Such procedure assures
that our best knowledge of the pion-nucleon cross section is
considered for the evaluation of the interaction probability,
despite our limitations to exhaust the output channels for
π−p → X at higher energies (∼12 GeV).

Furthermore, our calculations consider only a single-
meson photoproduction mechanism and are not suitable to
describe the total meson yield at any arbitrary large angle
and low-elasticity regime. The single-meson photoproduction
mechanism represents only a fraction (∼10%) of the total
hadronic cross section [48], restricting our analysis to the
quasielastic domain. So the calculations and results that
follow for π0 photoproduction consider only single-meson
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FIG. 9. (Color online) Total cross sections for π−p (a) and π+p

(b) from PDG (data points) in comparison with the parametrization
[Eq. (38)] employed in the MCMC model (solid red lines).

photoproduction that subsequently interacts with the bound
nucleons in accordance with the elementary processes depicted
in Table II. As will be presented in the following sections,
the NI photoproduction cross section is forward peaked
and largely dominated by quasielastic mesons, making the
elasticity cuts a powerful tool for the interpretation of the
available data via the MCMC model.

For the case of η photoproduction, on the other hand, we
adopted a simpler procedure due to our lack of knowledge
on both the total and elastic ηN cross sections. The calcula-
tions assumed that σηN→Total = C σπ0N→Total and σηN→ηN

σηN→Total
=

σπ0N→π0N

σ
π0N→Total

, with C representing a multiplicative factor. Due
to the absense of absolute cross-section measurements for
η photoproduction from complex nuclei it was not possible
to estimate the constant C with the help of the MCMC
model and the results that follow assume C = 1. With this
approximation, the total η-nucleon cross section is the sum
of the elastic part σηN→ηN and one absorptive part given by
σηN→abs = σηN→Total − σηN→ηN .

The elastic π0(η)N → π0(η)N channel consists of the
most important contribution (∼20%) of the total cross section
within 4 to 12 GeV and is also the major source of quasi-elastic
mesons at the forward direction after secondary scatterings.
Other channels can also contribute in the quasielastic domain.
For instance, a charged pion photoproduction can contribute
to the π0 yield via a charge-exchange process. Fortunately,
the probability for a charge exchange goes to zero above√

s ≈ 2.5 GeV (output channel 6 from Table II and Fig. 7)
and these processes can be safely neglected above 4 GeV. On
the other hand, the decay of the vector mesons ρ and ω into
the π0 channel can contribute significantly in the hadronic
background of neutral pions. Specifically, the channel ω →
π0γ is expected to play an important role at forward angles
due to the combination of three factors: (i) a huge diffractive ω

photoproduction in nuclei, (ii) a significant branching ratio for
the ω → π0γ decay (8.5%), and (iii) a favorable kinematics
for the production of high-energy and forward-peaked pions in
the ω → π0γ decay. The contribution of the ω → π0γ decay
in the π0 inelastic cross section (NI plus ω photoproduction)
was estimated to be ∼5% for carbon and lead at k = 5.2 GeV
and θπ0 ∼ 4◦.

The differential cross section for elastic π0(η)N →
π0(η)N scattering was assumed as the average:

(
dσ

d�

)
π0(η)N→π0(η)N

= 1

2

[(
dσ

d�

)
π+p→π+p

+
(

dσ

d�

)
π−p→π−p

]
, (39)

with the cross sections for π+(−)p → π+(−)p scattering given
by [52]:

(
dσ

d�

)
π+(−)p→π+(−)p

=
σ

π+(−)p→Total
(p)

σ
π+(−)p→Total

(p0)
exp(a + bt + ct2),

(40)
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FIG. 10. (Color online) Differential cross section for the elastic
π+(−)p → π+(−)p scattering (data points) versus the prediction from
Eq. (40) (solid blue lines). The data points are from Ref. [53]
(squares), Ref. [54] (circles), and Ref. [55] (triangles). Details in
the text.

where p0 = 20 GeV/c. The total cross sections σ
π+(−)p→Total

is
calculated from Eq. (38) and can also be approximated by:

σ
π+p→Total

(p) = 23.01 + 20.48

p(GeV/c)
(41)

σ
π−p→Total

(p) = 24.1 + 26.78

p(GeV/c)
, (42)

with the parameters a, b, and c taken from Ref. [52].
The differential cross sections for the elastic π+(−)p →

π+(−)p scattering at several pion momenta are presented in
Fig. 10 in comparison with the available data [53–55]. The
data at extreme forward angles [55] show an enhancement due
to the Coulomb exchange, which is not taken into account in
Eq. (40). Fortunately, the elastic π0(η)N → π0(η)N channel
is not sensitive to the Coulomb term and is safely described by
the combination of Eqs. (39) and (40).

IV. RESULTS

A. π 0 photoproduction

1. Single differential cross sections for incoherent π0

photoproduction from complex nuclei

The single differential cross section for incoherent π0 pho-
toproduction from complex nuclei is calculated combining the
elementary photoproduction mechanism described in Sec. II
with the nuclear effects delineated in the previous section. The
elementary photoproduction constraints the initial polar angle
of the photoproduced meson and provides the normalization
of the final results. The total cross section from complex nuclei

0 1 2 3 4 5 6
0

50

100

150

200
C

γA−−> π0X
k = 5.2 GeV
επ : [0.92 − 1.0]

dσ
/d

Ω
 (

µb
/s

r)

(a)

π0 polar angle (deg)

 (dσ/dΩ)PWIA

 (dσ/dΩ)PB

 (dσ/dΩ)FSI

 (dσ/dΩ)FSI+SHAD

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000
Pb(b)

π0 polar angle (deg)

FIG. 11. (Color online) Differential cross section for incoherent
π 0 photoproduction from (a) carbon and (b) lead at 5.2 GeV. The
dashed black line is the PWIA [Eq. (43)] and the dotted red line
includes the Pauli blocking. The results taking into account the FSI
are given by the dashed-dotted blue line, while the solid magenta line
represents our final results that also include photon shadowing. The
calculations assume an elasticity cut on pion energy of 0.92.

neglecting the nuclear effects is simply given by:(
dσ

d�

)PWIA

= A

(
dσn

d�

)
. (43)

The other steps introduce the nuclear effects, such as
the Pauli blocking and meson-nucleus FSI. The shadowing

effect reduces the cross sections by a factor Aabs
eff
A

and is angle
independent in our approach (see the previous section).

The predictions of the cascade model for incoherent
π0 photoproduction from carbon and lead at 5.2 GeV are
presented in Fig. 11; where we have used an elasticity cut on the
pion energy of επ0 � 0.92. The results of the PWIA [Eq. (43)]
are presented by the black dashed lines, while the red dotted
lines include the effect of Pauli blocking. The results after the
inclusion of FSI are shown by the blue dashed-dotted lines
and the final results (including photon shadowing) are given
by the solid magenta lines. The Pauli suppression reduces the
cross sections at low polar angles and dictates its overall shape.
The FSI of the photoproduced mesons also influence the final
shape of the cross sections mostly due to the contribution
of secondary elastic meson-nucleon scatterings at forward
angles. The effects of FSI are almost angle independent above
approximately 2◦ and the attenuation is typically 35% for
carbon and 70% for lead. Below ∼2◦, the contribution of
the elastic meson-nucleon scattering plays an essential role,
increasing the cross sections. The effect of photon shadowing
is angle independent and reduces the cross sections by the ratio
Aabs

eff
A

∼ 0.75 both for carbon and lead.
The MCMC model results for carbon [Fig. 11(a)] differ

in shape and magnitude from the recent results published in
Ref. [4]. For instance, at θπ0 ∼ 00, we found ∼2.3 mb instead
of ∼1 mb, found in Ref. [4]. Moreover, at approximately
1◦, we found 11.5 mb while ∼3 mb is reported in Ref. [4].
The predictions match around 2◦ (∼28 mb) and also differ at
higher angles, where we found ∼49 mb at 4◦, in comparison
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FIG. 12. Differential cross section for incoherent π0 photopro-
duction from (a) Be and (b) C at 12.0 GeV. The solid black lines are
the final results from the cascade model assuming an elasticity cut of
0.90 on the pion energy.

with ∼62 mb found in Ref. [4]. The higher cross section at
low polar angles found in our analysis is probably associated
with the elastic π0N scattering in secondary interactions. Such
mechanism is forward peaked (see Fig. 10) and increases the
cross sections in the forward direction. The peak angle for
the NI cross sections is the same in both calculations (∼3.5◦),
which are approximately proportional above ∼2.5◦. The ratio
between the results from Ref. [4] and the MCMC model
prediction is typically 1.25 at higher angles. Such difference
in magnitude could be associated with the photon shadowing

effect (Aabs
eff
A

∼ 0.75), which is neglected in Ref. [4]. A further
discussion about the magnitude of the NI cross section will
be presented later, where we compare the MCMC results with
previous measurements from Cornell.

The predictions of the MCMC model at 12 GeV are
presented in Figs. 12(a) for beryllium and 12(b) for carbon. The
solid black lines show the final results obtained after running
the cascade model with an elasticity cut on the pion energy of
0.9. The results cover the existing lack in the theory related
with incoherent photoproduction and might be helpful for the
delineation of the inelastic background in future experiments
dedicated to the extraction of the π0(η) → γ γ decay width
via the Primakoff method (see the discussion below).

2. Double differential cross sections for incoherent π0

photoproduction from complex nuclei

The double differential cross section for incoherent meson
photoproduction from complex nuclei is the most convenient
observable for the evaluation of the hadronic background at
forward angles. Such theoretical prediction propitiates the
construction of realistic event generators of the NI mechanism,
since it includes the information about the energy losses due
to the nuclear excitation either with or without secondary
meson-nucleus interactions. Different kinematical cuts may
take place in different analyses and the double differential
cross section could provide a consistent and convenient tool to
match theory and experiment. At extreme forward angles, the

pion energies are very close to the photon energy and different
kinematical cuts should lead to similar and consistent results.
At larger angles, on the other hand, the shape of the NI cross
section is very sensitive to the cuts made on the pion energy
and small differences in the choice of the elasticity cut could
lead to different results in shape and magnitude. The double
differential cross section as a function of the pion polar angle

d2σ
dθdEπ0

is directly obtained in the Monte Carlo algorithm and
satisfies the normalization:∫

d2σ

dθdEπ0
dEπ0 = 2π sin θ

(
dσ

d�

)FSI+SHAD

. (44)

The results for carbon and lead at 5.2 GeV and επ0 � 0.92
are presented in Figs. 13 and 14, respectively. At low polar
angles (θπ0 � 2◦), the pion spectra exhibit a sharp peak close
to the photon energy, since the nuclear excitation is small
for low-momentum transfer. The effect of the Pauli principle
is also observed for lower angles, where the pion spectra
decrease about one order of magnitude from 1.25 to 0.25◦. At
larger angles (θπ0 � 2◦) the spectra are typically shifted 50 to
100 MeV from the photon energy, with the Pb results showing
longer tails at lower energies due to the larger phase space.
These spectra clearly show that the elasticity cuts applied on
the pion energy (επ0 � 0.9) do not change the results of the NI
cross sections, which are concentrated within higher elasticity
ranges (επ0 � 0.96).

3. Aeff factors for π 0 photoproduction from complex nuclei:
Revisiting the Cornell experiment

The total cross section for nondiffractive meson photopro-
duction from complex nuclei is expected to scale with the
single-nucleon cross section:

σγA = AeffσγN, (45)

where Aeff represents the effective number of nucleons that
contribute to the photoproduction. Consequently, we can
obtain Aeff from the MCMC model results, since:

Aeff =
∫ (

dσ
d�

)FSI+SHAD
d�∫ (

dσn

d�

)
d�

= A
∫ (

dσ
d�

)FSI+SHAD
d�∫ (

dσ
d�

)PWIA
d�

. (46)

Previous measurements of the Aeff factors were performed
at Cornell [29] for several nuclei. The π0 yields from complex
nuclei were measured in the range 0.10 < |t | < 0.25 (GeV/c)2

and the Aeff factors were obtained normalizing the complex
nuclei data to the deuteron data. Such procedure did not
permit a model-independent measurement of Aeff , since the
normalization was sensitive to the Glauber corrections in the
deuteron target. Despite of this limitation of Cornell’s data, it is
still very important to confront theory and experiment. The Aeff

factors provide information about the magnitude of the cross
sections from complex nuclei and the MCMC cascade model
consists of an important framework for the interpretation of the
data. Obviously future experiments in complex nuclei are very
welcome to provide more accurate and model-independent
results for Aeff and to establish more precisely the range of
applicability of the nuclear models.
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FIG. 13. Double differential cross section for incoherent π0 photoproduction from carbon at 5.2 GeV. The histograms represent the pion
spectra at selected polar angles (Lab. frame) of the photoproduced pions.

The diffractive contribution (coherent photoproduction) in
Cornell’s yields vanishes within the range of momentum trans-
fer adopted in their analysis [29]. Therefore, the predictions
of the cascade model for the NI cross sections are suitable
for the description of the Cornell data, assuming that the
Glauber corrections to the deuteron target are satisfactory
[56]. Furthermore, the range of polar angles covered in their
experiment (2.3◦ � θπ0 � 8.9◦) and also the range of pion
elasticity (επ0 � 0.87) assures that the single π0 photopro-
duction channel largely dominates the yields. The results of
the Aeff factors obtained in the MCMC model are presented
in Fig. 15 together with the Cornell data. The agreement
between the calculations and the data is remarkable with
our results reproducing both the energy (3.2 to 8.6 GeV)
and target (Be to Pb) dependences of the data. Such result
shows for the first time that the DESY [34] and SLAC
[36] data for the elementary photoproduction cross sections
are mutually consistent with the complex nuclei data from
Cornell [29].

Figure 16 presents the differential cross sections ( dσ
dt

) for
carbon [Fig. 16(a)] and lead [Fig. 16(b)] at 〈Eπ0〉 ∼6.4 GeV.
The dotted vertical lines show the range of momentum transfer
integrated in Cornell’s analysis. The ratio between the shaded
area and the area within the dotted lines represent our values

of Aeff such that:

Aeff = A

∫ 0.25
0.1

(
dσ
dt

)FSI+SHAD
dt∫ 0.25

0.1

(
dσ
dt

)PWIA
dt

. (47)

Alternatively, the Aeff factors can be calculated using the
integral formalism of Glauber. In this model, the following
expression is deduced for high-energy pions:

AG
eff = 2π

σπ0N

∫ ∞

0

[
1 − exp

(
−σπ0N

∫ ∞

−∞
N (b, z) dz

)]
bdb,

(48)

where σπ0N is the total π0N cross section and N (b, z) the
nuclear density with r2 = b2 + z2. For 〈Eπ0〉 ∼ 6.4 GeV, we
have σπ0N ∼ 27 mb and Eq. (48) gives AG

eff = 7.2 for carbon
and 60.1 for lead. The results are typically 28 and 43% higher
than the MCMC results for carbon and lead, respectively. Such
systematic increase in AG

eff in comparison with the MCMC
results is at some extent associated with the shadowing effect,
which is neglected in Eq. (48). Moreover, for the case of π0

photoproduction from carbon at 5.2 GeV [see Fig. 11(a)], we
also found results 25 to 30% lower than the predictions of
Ref. [4] around the peak angle (θπ0 ∼ 3.5◦) and within the
range of momentum transfer adopted in Cornell’s analysis
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FIG. 14. Double differential cross section for incoherent π0 photoproduction from lead at 5.2 GeV. The notation is the same as in Fig. 13.

[29]. For that reason, the magnitude of AG
eff for carbon found

in Eq. (48) is consistent with the reported values of Ref. [4]
and approximately 25 to 30% above the MCMC results and
the Cornell data (see Fig. 15).
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FIG. 15. (Color online) Aeff factors obtained in the MCMC model
(solid lines) in comparison with Cornell data [29]. The calculations
assume a pion elasticity of επ0 � 0.906 for the average energies
〈Eπ0 〉 = 3.2, 6.4 and 8.6 GeV and επ0 � 0.870 for 〈Eπ0 〉 = 4.6 GeV.
The cascade results were integrated in the range 0.10 < |t | <

0.25 (GeV/c)2 according with Eq. (47).

Figure 17 shows the results of
( dσ

dt
)FSI+SHAD

Aeff
obtained in the

MCMC model for 〈Eπ0〉 ∼ 6.4 GeV in comparison with
the strong part of the proton cross section, which represents
the cascade input. As easily observed, the results for light
nuclei (Be and C) exhibit a sharp peak around |t | ∼ 0.1 GeV2,
following the general trend of the nucleon cross section.
For the case of intermediate and heavy nuclei, on the other
hand, the collisional broadening due to a more effective
Fermi motion and a stronger meson-nucleus FSI attenuates
the structure at 0.1 GeV2. The results found for complex
nuclei obviously satisfy the condition 1

Aeff

∫
( dσ

dt
)FSI+SHADdt =∫

dσn

dt
dt , as expected from Eq. (45). Such result indicates that

the accurate MD adopted for light nuclei is crucial for the
delineation of the t dependence of the cross sections.

B. η photoproduction

1. Single differential cross sections for incoherent η

photoproduction from complex nuclei

The calculations for incoherent η photoproduction followed
the same steps adopted for π0 photoproduction, except for the
evaluation of the FSI. As previously explained, the η-nucleon
interaction is not well understood and the total and elastic
η-nucleon cross sections are unknown. On the other hand,
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FIG. 16. (Color online) Differential cross sections ( dσ

dt
) for

incoherent π 0 photoproduction from (a) carbon and (b) lead at
〈Eπ0 〉 ∼ 6.4 GeV. The dashed black lines represent the PWIA, while
the solid magenta lines are the final results from the cascade model.
The vertical dotted lines show the range of momentum transfer
adopted in Cornell experiment.

the η-nucleon cross section is expected to be smaller than
the π0-nucleon cross section due to the strangeness content
of the η meson. Furthermore, the magnitude of the total
η-nucleon cross section could be estimated combining the data
from complex nuclei with the MCMC model calculations.
Unfortunately, these data are not available in absolute scale
and for the calculations that followed we have assumed
σηN→Total = C σπ0N→Total and σηN→ηN

σηN→Total
= σπ0N→π0N

σπ0N→Total
. The scaling

factor C was varied between 0.5 and 1 in order to verify its
influence on the NI cross sections. Fortunately, the relevant
results and conclusions that will be presented in this section
are not sensitive to the scaling factor C, they depend only on
the final shape of the cross sections.
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FIG. 17. (Color online) Differential cross sections
( dσ

dt
)

Aeff
for inco-

herent π 0 photoproduction from Be (dashed red), C (dotted blue),
Al (dashed-dotted green), Cu (dashed double dotted cyan), Ag (short
dashed magenta), and Pb (short dashed-dotted gray) obtained in the
MCMC model. The solid black line represents the strong part of the
elementary photoproduction cross section [Eq. (8)].
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FIG. 18. (Color online) Differential cross section for incoherent
η photoproduction from (a) Be and (b) Cu at 8.5 GeV. The notation
is the same as in Fig. 11, where we have assumed εη � 0.89.

The MCMC results for incoherent η photoproduction from
Be and Cu at 8.5 GeV are presented in Fig. 18, where we
have used C = 1 and an elasticity cut of 0.89 on the total
meson energy. The notation is the same adopted for π0

photoproduction (Fig. 11).
The influence of the scaling factor C on the NI cross section

was investigated running the cascade model with a smaller
η-nucleon cross section. The results for incoherent η photopro-
duction from Be at k = 8.5 GeV [ dσ

dθ
= 2π sin θ ( dσ

d�
)FSI+SHAD]

and εη � 0.89 are presented in the left panel of Fig. 19 for
C = 0.5 (dashed black line), C = 0.75 (dotted red line), and
C = 1 (solid blue line). The right plot of Fig. 19 shows the
respective ratios of the cross sections to the result obtained
with C = 1. Above typically 1◦, a 25% reduction of the
η-nucleon cross section (C = 0.75) leads to a 7.5% increase in
the NI cross section. A further 25% reduction of the η-nucleon
cross section (C = 0.5) also increases the NI cross section
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FIG. 19. (Color online) (a) Differential cross section ( dσ

dθ
) for

incoherent η photoproduction from Be assuming C = 0.5 (dashed
black line), C = 0.75 (dotted red line), and C = 1 (solid blue line).
(b) Cross section ratios between the results for C = 0.5 (dashed black)
and C = 0.75 (dotted red) and the reference result for C = 1.
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FIG. 20. Differential cross section for incoherent η photoproduc-
tion from (a) Be and (b) C at 12.0 GeV. The solid black lines are
the final results from the cascade model assuming an elasticity cut of
0.90 on the meson energy.

by approximately the same amount (∼16%). Below 1◦, the
results for C = 0.5 and C = 0.75 are typically within 10% of
the reference result for C = 1. The cascade model results at
12 GeV are shown in Figs. 20(a) for Be and 20(b) C, where
we have used C = 1 and εη � 0.9.

In order to compare the shapes of the NI cross sections for
π0 and η photoproduction, we have scaled our final results
obtained for η by the ratio of the corresponding elementary
photoproduction cross sections at 12 GeV and t 	 −0.1 GeV2:
(dσn/dt)π

0

t=−0.1 ≈ 5(dσn/dt)ηt=−0.1. The results are shown in
Figs. 21(a) for Be and 21(b) C, where one easily observes
that the cross sections exhibit quite different shapes. The η

photoproduction cross section peaks at higher angles than the
π0 cross section, which falls more abruptly at larger angles.
Such difference in shape is related with the t dependence of the
elementary photoproduction cross sections, where a dip around
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FIG. 21. (Color online) Differential cross sections for incoherent
π 0 (solid black lines) and η (dashed red lines) photoproduction from
(a) Be and (b) C at 12.0 GeV. The results for η photoproduction are
multiplied by a factor 5, which is approximately the ratio between the
elementary photoproduction cross sections at |t | ∼ 0.1 (GeV/c)2.

|t | ≈ 0.5 (GeV/c)2 is clearly evident for π0 photoproduction
(see Figs. 1 and 2).

2. Extracting the η → γ γ decay width via the Primakoff method:
Revisiting the Cornell experiment

At extreme forward angles, the total cross section for
pseudoscalar meson photoproduction from complex nuclei is
assumed to be in the form [2,3,23,57,58]:

dσ

d�
= |TP + eiϕTNC|2 + |TNI|2, (49)

where TP , TNC, and TNI represent the relevant amplitudes
for the photoproduction mechanism. The amplitudes TP and
TNC are related with coherent meson photoproduction via the
exchange of a virtual photon (TP ) or a vector meson (TNC).
The interference phase-angle ϕ between these two amplitudes
plays an essential role at forward angles and is usually treated
as a free parameter. The remaining amplitude TNI is related
with incoherent photoproduction.

As deduced by H. Primakoff, the Coulomb amplitude is the
sum of the amplitudes from the protons such that [1]:

TP = [8αZ2�P→γ γ ]
1
2

(
β

µ

) 3
2 k2

Q2
F̃C(k, θ ) sin θ, (50)

where α 	 1/137, Z is the atomic number, and Q2 = −t is the
four-momentum transfer. F̃C(k, θ ) represents the electromag-
netic form factor (FF) including meson-nucleus FSI, while β

and θ are the velocity and production angle (Lab. frame) of
the photoproduced meson, respectively.

The nuclear coherent (NC) amplitude is given by:

TNC = AF̃NC(k, θ )L sin θ, (51)

where F̃NC(k, θ ) is the strong FF taking into account FSI and
L sin θ is the spin-nonflip nucleon amplitude. Such amplitude
is not known precisely at our energies of interest and we
adopted the same parametrization of Ref. [23] for the case
of η photoproduction (L = 4k).

The NI cross section is obtained from the cascade calcula-
tions such that:

|TNI|2 =
(

dσ

d�

)FSI+SHAD

. (52)

Consequently, the shape of the total cross section dσ
d�

is
dependent on the radiative decay width �P→γ γ and on the
interference phase angle ϕ, which are usually free parameters
to be obtained via a fitting to the complex nuclei data.
Furthermore, the magnitudes of the NC and NI contributions
are also generally left free to account for the inaccuracies in the
absolute value of the spin-nonflip amplitude L sin θ and also
to account for the compatibility between the complex nuclei
data and the proton data, which provide the normalization of
the NI cross section (see Figs. 1 and 2).

For the case of Cornell experiment [23], on the other hand,
the cross sections of η photoproduction from complex nuclei
were not published and the only information available are
the meson yields, which are the number of two γ events
within the invariant mass of the η meson at a given angular
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bin. Therefore, in order to compare theory and experiment,
a separate Monte Carlo algorithm was developed to account
for the η → γ γ decay. This routine collects the number of
η events according with the MCMC results for the double
differential cross sections d2σ

dθdEη
that simultaneously satisfy

the selection criteria from Cornell experiment regarding the
geometry acceptance and kinematical cuts. With this routine,
we were able to write the number of η events at a given angular
bin n(θ ) in terms of shape factors for the three components of
the cross section:

n(θ ) = aP SP (θ ) + aNCSNC(θ ) + aNISNI(θ )

+ 2
√

aP aNC cos ϕ
√

SP (θ )SNC(θ ), (53)

where SP , SNC, and SNI [59] are, respectively, the shapes for
the Coulomb, NC, and NI contributions; with aP , aNC, aNI,
and ϕ constants to be determined by fitting the complex nuclei
data from Cornell [23].

Our reanalysis of Cornell’s decay width proposes the
interpretation of the η photoproduction yields from Be and Cu
at Eb = 9 GeV. The U data, on the other hand, are not included
since the Primakoff and NC contributions peak almost in the
same angles without an adequate angular resolution in Cornell
experiment to disentangle these terms unambiguously. This FF
issue was discussed in N. A. Roe (p. 1451) [60] and will be
addressed later.

The shapes for the Coulomb and NC components of Eq. (53)
were taken from Cornell’s analysis [23] to assure that the only
difference between Cornell’s and this approach is the inelastic
part (NI). Such contribution was assumed to be isotropic,
energy independent, and proportional to A

3
4 in Cornell’s

analysis (Tb = 1.0A0.75µb/sr) and is more deeply investigated
in this work. Furthermore, Cornell’s shapes include angular
resolution effects, which are very relevant specially for SP due
to its typical sharp peak at forward angles.

The shapes of SNI(θ ) for Be and Cu were then calculated
neglecting angular resolution effects and folding the two
γ events from the MC routine with a flat bremsstrahlung
spectrum. The shapes for the two γ events as a function of
photon energy and meson polar angle SNI(k, θ ) were calculated
from 8 to 9 GeV in 100-MeV steps. This procedure was
employed considering that only the mesons with high elasticity
εη � 0.89 (8.05 � Eη � 9.0 GeV) could satisfy the maximum
γ γ opening angle cut of 0.137 rad adopted in Cornell’s
analysis for Eb = 9 GeV [23]. Figure 22 presents our results
of SNI(k, θ ) for Be in relative scale (left plot) taken at three
different incident energies. The right plot shows our final
result for Be after folding SNI(k, θ ) with the bremsstrahlung
spectrum.

In order to verify our method to obtain the shapes of
SNI(θ ) that satisfy Cornell’s geometry and kinematics, we
have also calculated with the same algorithm the expected
two γ events from η decay due to incoherent photoproduction
assuming isotropic distribution SISOT

NI (θ ) and neglecting the
Pauli blocking. The result of this simulation is presented by
the histogram of Fig. 23 and reproduces quite reasonably the
shape obtained in Cornell’s analysis (solid red line), which
also assumes isotropic distribution without Pauli blocking.
Consequently, the shapes of SNI(θ ) that were obtained for Be
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FIG. 22. (Color online) Shape factors in relative scale for the
two γ decay events due to incoherent η photoproduction from Be,
including Cornell’s detection geometry and kinematical cuts [23].
(a) NI shape factors for k = 8.1 GeV (dashed blue), k = 8.5 GeV
(dotted red), and k = 9.0 GeV (dashed-dotted green) as a function of
the meson polar angle. (b) NI shape factor after folding the cascade
results within 8 to 9 GeV with a flat bremsstrahlung spectrum. The
calculations consider Cornell’s geometry, meson elasticity regime
(εη � 0.89), and maximum γ -γ opening angle cut (θγγ � 0.137 rad).

and Cu effectively account for the detection geometry and
kinematical cuts applied in Cornell’s analysis.

The P and NC components of Eq. (53) are generally strongly
correlated due to the contribution of the interference term.
On the other hand, the NC cross section scales with A2

[Eq. (51)] and one should expect that a single parameter,
namely aNC, should fit simultaneously the complex nuclei
data from Be and Cu. However, the magnitude of the NC
cross section is also sensitive to FSI, which are in principle
included in the FF calculations. Furthermore, the interference
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FIG. 23. (Color online) MCMC calculations (solid black his-
togram) for the two γ events from η decay assuming isotropic
NI photoproduction without Pauli blocking and including Cornell’s
geometry and kinematical cuts. The red solid line is the NI back-
ground obtained in Cornell’s analysis also neglecting Pauli block-
ing and assuming isotropic photoproduction (Tb = 1.0A0.75µb/sr).
The MCMC calculations are normalized such that

∫
SISOT

NI (θ ) dθ =∫
abn

Cornell
b (θ ) dθ .
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TABLE III. Fitting results of Cornell’s data from Be and Cu at
Eb = 9 GeV. The first line represents our best χ 2 result for a seven
parameter fitting combining Be and Cu results. Lines two, three, and
four present illustrative fits for fixed phase shifts. The last line shows
the results fitting Be data only. Details in the text.

aP (keV) aNC
ab

∫
nCornell
b

(θ)dθ

aNI
∫
SNI(θ)dθ

ϕ(rad) χ2

DOF

Be
Cu

0.476(62)
0.89(32)
6.3(13)

0.957(70)
1.10(13)

0.59(52)
1.88(19)

71.09
70

Be
Cu

0.341(29)
1.07(15)
0.93(27)

1.006(67)
0.950(90)

0.0 (fixed) 96.26
72

Be
Cu

0.470(26)
1.92(20)
3.41(56)

1.079(83)
1.03(11)

π

2 (fixed) 112.93
72

Be
Cu

0.381(27)
1.42(17)
1.54(38)

1.045(74)
0.971(97)

1.0 (fixed) 100.06
72

Be only 0.512(90) 0.97(46) 0.964(72) 0.83(43) 36.08
35

phase angle ϕ is also sensitive to FSI and should be different
for different targets. The fitting parameter aNC is strongly
correlated with the interference phase angle and is also affected
by the correlation between SP and SNC. Obviously these
correlations differ for Be and Cu and it is not recommended
to impose a single NC parameter to fit both data sets
simultaneously.

So by inserting the shapes of SP , SNC, and SNI in Eq. (53),
we were able to refit simultaneously Be and Cu data from
Cornell using a 7-parameter fitting (aP , aBe

NC, aCu
NC, aBe

NI , a
Cu
NI ,

ϕBe, and ϕCu). The best χ2 results are presented in the first
line of Table III. The parameters aP and aNC were obtained
using the ratios between the Primakoff and NC events found in
our fitting and found in Cornell’s analysis with the respective
fitting parameters for the same data set (second line of Table I
from Ref. [23]). The contribution of the NI term is presented in
the third column, where we show the ratio (always consistent
with unit) between the NI events found in Cornell’s analysis
[
∫
abn

Cornell
b (θ ) dθ ] and in our calculations [

∫
aNISNI(θ ) dθ ].

Additional fits for fixed phase shifts were also performed
to illustrate the strong correlations between aP /aNC and ϕ.
For instance, the aNC parameters for Cu vary by a factor
of 4 considering constructive (ϕ = 0) and no interference
(ϕ = π

2 ). This complicated scenario is attributed to the big
overlap between SP and SNC for intermediate and heavy
nuclei due to a FF effect, without adequate angular resolution
from Cornell experiment. For instance, at k ∼ 8.5 GeV, the
Primakoff peak (target independent to first order) is ∼3.5
mrad, while the NC peak angle is ∼19, 10, and 7 mrad
for Be, Cu, and U, respectively. So, the Primakoff and NC
peak angles for intermediate and heavy nuclei are typically
5 mrad apart. The angular bin in Cornell’s data was taken
as 1 mrad, making it difficult to establish one unambiguous
fitting of the Primakoff and NC components for Cu and Pb.
In fact, the Cornell group found five different NC parameters
in their analysis (fourth column of Table I from Ref. [23]).
For instance, for a machine energy of 5.8 GeV (Be, Cu, and
U) and 11.45 GeV (U only) they found aN = 0.25 ± 0.24 and
aN = 0.24 ± 0.60, respectively. These numbers are consistent
with zero and a factor of 4 to 5 lower than the results found

in the other fits, reflecting the strong correlations previously
mentioned. These strong correlations provide clear evidences
for the discrepancy in the value of �η→γ γ obtained at Cornell
after averaging the results from Be, Al, Cu, Hg, and U;
making salient the advantage of using light nuclei for similar
measurements within this kinematics. To stress our hypothesis,
we have also performed a fitting to the Be data only (last
line of Table III). As easily verified, the fitted parameters
found in this analysis are consistent with our main results
for Be. The interference phase angle (ϕBe = 0.83 ± 0.43 rad)
is also consistent with the result expected from the Regge the-
ory (neglecting FSI): ϕRegge 	 tan−1[ ImF1(t=0)

ReF1(t=0) ] = π[1−α(0)]
2 =

0.958 rad.
Figure 24 shows our main results for Be and Cu in

comparison with Cornell’s data (upper plots). At extreme
forward angles, the Primakoff (dotted blue lines) and the
interference (short-dashed cyan lines) terms largely dominate
the yields. At higher angles, the NC (dashed-dotted green lines)
and NI (dashed-double-dotted magenta lines) contributions
become the most relevant processes. We have also found a
significant interplay between the P, NC, and INT terms for Cu,
where a destructive interference is observed (see discussion
below). The cascade results for the NI components are essential
to fit the data at larger angles, where the other terms simply
vanish. The lower plots of Fig. 24 present a comparison
between the NI backgrounds from MCMC calculations (solid
black lines) and Cornell’s isotropic approach (dashed red
lines) obtained for Be and Cu. As verified, Cornell’s NI
backgrounds both for Be and Cu are approximately four
times higher than the MCMC predictions under the Primakoff
peak (∼3.5 mrad), since they have assumed an isotropic NI
cross section. The MCMC background, on the other hand, is
strongly suppressed at forward angles due to the exclusion
principle. Despite of this difference in shape, the number of
NI events from the MCMC calculations and from Cornell
are consistent with each other even for the illustrative fits
for fixed phase shifts (third column of Table III). Our final
reported values of the decay width correspond to our main
result obtained for Be and Cu �η→γ γ = 0.476(62) keV and
also to the single fitting of Be data �η→γ γ = 0.512(90) keV.
The errors of the decay widths include only the statistical errors
from the fits and should be interpreted as lower limits of our
analysis.

There are two main sources of uncertainties on the extracted
decay width related with the evaluation of the nuclear effects
of Pauli blocking in light nuclei and η-nucleus FSI. The
systematic uncertainty due to the Pauli blocking depends
strictly on the γ -nucleon kinematics, Fermi momentum, and
meson-scattering angle (Fig. 2). The γ -nucleon kinematics
depends essentially on the momentum distribution of the struck
nucleon, while the other two sources are safely constrained
by the experimental data and introduce negligible effects
on the decay width. The uncertainty due to the momentum
distribution was estimated by fitting Cornell’s data with the
MCMC output that provided the most significant difference
from our reference value obtained with the PWIA of Ref. [42]
(Fig. 24). This output was obtained using the empirical
distribution from a NIKHEF experiment [61] (see Fig. 2 from
Ref. [45]), leading to a systematic uncertainty in the decay
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FIG. 24. (Color online) (Upper panels) η photoproduction yields from (a) Be and (b) Cu at Eb = 9 GeV (data points) and fitted shape
factors of the Primakoff (dotted blue), NC (dashed-dotted green), NI (dashed-double-dotted magenta), and interference (short-dashed cyan)
components of the total yield (solid black). The data points and the shapes of SP and SNC were taken from Ref. [23]. (Lower panels) Fitted NI
contributions from the MCMC model aNISNI(θ ) (solid black) and from Cornell abn

Cornell
b (θ ) (dashed red) for (c) Be and (d) Cu.

width of less than 2% for the combined fit (Be and Cu) and
less than 4% for the single fit (Be only).

The uncertainty in the decay width due to the η nucleus
FSI was estimated assuming a robust variation (50%) in the
η-nucleon cross section. Since this variation introduces an
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FIG. 25. (Color online) (a) η → γ γ decay width measurements
obtained in collider experiments (squares) [17–20] that participate to
the PDG average (solid red line) of 0.510(26) keV [25] and via the
Primakoff method at Cornell [23] (circle). (b) Comparison between
collider measurements [17–20] (squares) and the results obtained in
our reanalyses (triangles). The asterisk indicates that the errors of the
decay widths are purely statistical.

almost isotropic effect, the corresponding systematic error is
vanishing small both for the simultaneous (<0.2%) and single
(<0.1%) fits.

So, the uncertainty in the decay width due to the model error
can be safely estimated to be less than 4%. Such value is much
lower than the statistical uncertainties for the combined (13%)
and single (17.6%) fits and one order of magnitude lower than
the discrepancy between Cornell and collider measurements
(∼50%).

Figure 25(a) presents some of the experimental results for
the η → γ γ decay width obtained in collider experiments
[17–20] (squares) and via the Primakoff method at Cornell [23]
(circle). The PDG average of 0.510(26) keV [25] is shown by
the solid red line. The right plot shows our results (triangles)
from the reanalysis of Cornell’s yields from Be and Cu and
Be only in comparison with collider measurements. Despite
of our limitations related with the experimental systematic
uncertainties (see discussion below), our results are in sharp
contrast (∼50–60%) with the value obtained at Cornell and in
nice agreement with the collider measurements.

V. CONCLUSIONS AND FINAL REMARKS

A sophisticated calculation based on an extended version
of the MCMC intranuclear cascade model was proposed to
study incoherent photoproduction of pseudoscalar mesons
(π0 and η) from complex nuclei. The calculations coupled
for the first time an accurate description of the elementary
photoproduction mechanism (Sec. I) with important nuclear
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effects in high-energy photon-nucleus interaction (Sec. III).
The results for π0 and η photoproduction were concentrated at
forward angles within 4 to 12 GeV and covered a large range
of target masses (Be to Pb).

The calculations for π0 photoproduction reproduced with
good accuracy the magnitude and energy dependence of the
measured ratios σγA/σγN from Cornell [29]. This result also
shows for the first time that the proton data from DESY [34]
and SLAC [36] are consistent with the complex nuclei data
from Cornell. It is worth mentioning, however, that the Cornell
data were sensitive to the Glauber corrections to the deuteron
and additional cross section measurements with tagged photon
beams are strongly encouraged for the verification of the
MCMC cascade model.

Our reanalysis of Cornell’s η photoproduction yields
propitiated the extraction of the η → γ γ decay width by
a simultaneous fitting of Be and Cu data at Eb = 9 GeV
[�η→γ γ = 0.476(62) keV] and also using Be data only
[�η→γ γ = 0.512(90) keV]. These results are in sharp contrast
(∼50–60%) with the value reported by the Cornell group
[0.324(46) keV] and in line with the PDG average, as shown
by the right plot of Fig. 25. The systematic uncertanty on the
extracted decay width due to our model error is estimated to
be less than 4%.

The inelastic background of η mesons in Cornell ex-
periment [23] was attributed to the NI photoproduction
mechanism. Such procedure was the same adopted in Cornell’s
analysis, where they fitted the data using four components of
the cross section [Eq. (53)]. The main difference between this
and Cornell’s analysis is the parametrization of the NI cross
section. This NI term was calculated for the first time for η

photoproduction within 8 to 9 GeV using the MCMC model
and represents a significant improvement in comparison with
the unphysical isotropic term used by the Cornell group. In
fact, this isotropic term without Pauli blocking was also used
by the Cornell group for the extraction of the π0 → γ γ decay
width [57]. Fortunately, for the case of π0 photoproduction,
the Primakoff peak angle is approximately 16 times lower

than for η photoproduction (
m2

π0

m2
η

	 1
16 ), making the decay

width much less sensitive to the parametrization of the NI term
(few percentages level). This argument represents a plausible
explanation for the huge discrepancy (∼60%) in the η → γ γ

decay width obtained via the Primakoff effect in Cornell in
comparison with collider measurements, since the NI term
plays an important role within the Primakoff peak.

Additionally with the better description of the NI back-
ground, our analysis also differs from Cornell’s with respect
to the data that was fitted. In Cornell, data from light,
intermediate and heavy nuclei were fitted simultaneously to
extract the decay width. In our approach, however, we have
restricted the analysis to Be and Cu data only. As easily
verified in Fig. 2 from Ref. [23], the Primakoff, NC, and
interference terms for U peak almost at the same angles. This
poor experimental scenario generates a dramatic correlation
between the fitted parameters due to the strong overlap
between the P and NC components of the cross sections. For
instance, Cornell group obtained aN parameters (Table I from
Ref. [23]) consistent with zero for the fits at 5.8 GeV (Be,

Cu, and U) and 11.45 GeV (U only). For that reason, the
averaging procedure adopted in Cornell’s analysis is strong
evidence for the discrepancy in the decay width, since they
have mixed strongly correlated fitted parameters. These strong
correlations also appeared in our reanalysis of the Cu data,
where a destructive P-NC interference provided the best fit.
Such destructive interference has absolutely no relationship
with the NI term, which reproduced the data at larger angles
with good accuracy. It is most likely related with the poor
experimental scenario in Cornell’s data for Cu and should be
further verified in a more precise high-resolution experiment
before any conclusive statement.

There are some important restrictions in our reanalysis
of Cornell’s data [23] that should be carefully mentioned:
(a) The effect of the angular resolution was neglected when
folding SNI(k, θ ) with the bremsstrahlung spectrum, (b) the
bremsstrahlung spectrum was assumed to be flat within 8 to
9 GeV, (c) U data were discarded in the analysis, and (d) the
experimental systematic uncertainties were neglected in the
reported errors of the decay widths. Approximations (a) and
(b) were verified at some extent when we recovered Cornell’s
background term assuming isotropic photoproduction
(Fig. 23). Approximation (c) was necessary due to the strong
correlations for U previously mentioned, while approximation
(d) reflects our inability to recover all necessary information to
claim for a superceded decay width measurement. In fact, our
goal was to deliver a consistent explanation of the discrepancy
in Cornell’s η → γ γ decay width based on a sophisticated
calculation of the NI background, without the necessary
accuracy to supercede Cornell’s measurement though.

In conclusion, additional cross section measurements of π0

and η photoproduction from the proton and from complex nu-
clei are strongly recommended with the advent of the 12-GeV
upgrade of the Jefferson Laboratory. These measurements,
together with the state-of-the-art cascade calculations for the
NI term, would propitiate the extraction of more precise values
for the radiative decay widths of pseudoscalar mesons via
the Primakoff method. The elementary photoproduction cross
sections are the necessary inputs for the cascade calculations
and new measurements both for π0 and η photoproduction at
extreme forward angles are desirable to fix more accurately the
parameters of the Regge models. The nuclear measurements,
in our understanding, should be concentrated in light systems,
such as Be and C, due to the combination of a sizable Primakoff
contribution (∼Z2) and a smaller correlation between the
Coulomb and nuclear coherent terms in comparison with
intermediate and heavy nuclei. The He target is also interesting
and complementary to light nuclei, but one should expect
stronger correlations between the NC and NI terms due to a FF
effect. The measurements should encompass larger angles to
fix more accurately the NI cross section, which also constraints
the magnitude of the NC component. With the NC magnitude
more accurately determined, the phase shift and decay width
are also better determined.
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